Skip to main content
Log in

Effect of Superficial Tissue on Spatial Sensitivity Profile of Optical Brain Activity Measurement Evaluated by Direct Hybrid Monte Carlo-Diffusion Method

  • ENVIRONMENTAL, BIOLOGICAL, AND SPACE OPTICS
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The light propagation in the brain is highly affected by the superficial tissues such as skin, skull and cerebrospinal fluid (CSF). The development of an adequate model to calculate light propagation in the head is very important for optical brain activity measurement. We developed a novel approach, the direct hybrid Monte Carlo-diffusion method (DHMDM), which can calculate light propagation in the three-dimensional head models including low scattering regions in which the light propagation does not obey either the diffusion approximation or the radiosity theory. The effect of thickness of the superficial tissue upon the spatial sensitivity profiles for optical brain activity measurement is evaluated by the DHMDM. The sensitivity to the brain activity decreases with increasing thickness of the superficial layer whilst the spatial decay of sensitivity on the brain surface depends little upon the thickness of the superficial layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope and D. T. Delpy: Anal. Biochem. 227 (1995) 54.

    Article  PubMed  Google Scholar 

  2. S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge and N. Tamaki: Physiol. Meas. 23 (2002) 301.

    Article  PubMed  Google Scholar 

  3. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi and H. Koizumi: Med. Phys. 22 (1995) 1997.

    Article  PubMed  Google Scholar 

  4. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota and J. B. Mandeville: Neuroimage 13 (2001) 76.

    Article  PubMed  Google Scholar 

  5. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope and D. T. Delpy: Appl. Opt. 36 (1997) 21.

    Article  Google Scholar 

  6. E. Okada and D. T. Delpy: Appl. Opt. 42 (2003) 2906.

    PubMed  Google Scholar 

  7. M. Firbank, S. R. Arridge, M. Schweiger and D. T. Delpy: Phys. Med. Biol. 41 (1996) 767.

    Article  PubMed  Google Scholar 

  8. M. Ono, Y. Kashio, M. Schweiger, H. Dehghani, S. R. Arridge, M. Firbank and E. Okada: Opt. Rev. 7 (2000) 426.

    Google Scholar 

  9. S. R. Arridge, H. Dehghani, M. Schweiger and E. Okada: Med. Phys. 27 (2000) 252.

    Article  PubMed  Google Scholar 

  10. T. Hayashi, Y. Kashio and E. Okada: Appl. Opt. 42 (2003) 2888.

    PubMed  Google Scholar 

  11. C. R. Simpson, M. Kohl, M. Essenpreis and M. Cope: Phys. Med. Biol. 43 (1998) 2465.

    Article  PubMed  Google Scholar 

  12. M. Firbank, M. Hiraoka, M. Essenpreis and D. T. Delpy: Phys. Med. Biol. 38 (1993) 503.

    Article  PubMed  Google Scholar 

  13. P. van der Zee, M. Essenpreis and D. T. Delpy: Proc. SPIE 1888 (1993) 454.

    Google Scholar 

  14. S. R. Arridge and M. Schweiger: Appl. Opt. 34 (1995) 2683.

    Google Scholar 

  15. S. R. Arridge and M. Schweiger: Appl. Opt. 34 (1995) 8026.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, T., Kashio, Y. & Okada, E. Effect of Superficial Tissue on Spatial Sensitivity Profile of Optical Brain Activity Measurement Evaluated by Direct Hybrid Monte Carlo-Diffusion Method. OPT REV 10, 501–505 (2003). https://doi.org/10.1007/s10043-003-0501-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-003-0501-1

Key words

Navigation