Skip to main content
Log in

Transillumination Laser Computed Tomography System with Fiber-Optic-Based Coherent Detection Imaging Method - High Spatial-Resolution and Quantitative Tomographic Imaging of Highly Scattering Objects -

  • ENVIRONMENTAL, BIOLOGICAL, AND SPACE OPTICS
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We recently proposed and developed a novel transillumination laser computed tomography (CT) imaging system using a fiber-optic method based on coherent detection imaging (CDI) for biomedical use. Use of optical fibers enables portability and robustness against environmental changes in a room, such as variable temperature, air-flow shifts, and unexpected vibrations. In addition, motion-artifact-free images can be obtained because measurements can be performed with the object fixed. In the present paper, we experimentally investigate in detail the fundamental imaging properties of the system, which has a spatial resolution of 500 μm, a dynamic range of approximately 120 dB, and a minimum-detectable-optical power of 10−14W as a result of the excellent properties of the heterodyne detection. Based on experimental observations, the proposed system can reconstruct tomographic images of highly scattering objects in the transillumination mode, similar to X-ray CT, at sub-millimeter spatial resolution and with quantitativeness. Finally, we demonstrate with experiments using a physical phantom that the imaging system possesses high resolution and quantitative imaging abilities for highly scattering objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Müller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg and P. van der Zee, eds.: Medical Optical Tomography: Functional Imaging and Monitoring (SPIE Opt. Eng. Press, Bellingham, 1993) Vol. IS11.

    Google Scholar 

  2. R. R. Alfano ed.: OSA Proceedings on Advances in Optical Imaging and Photon Migration (Opt. Soc. Am., Washington DC, 1994) Vol. 21.

  3. J. G. Fujimoto and M. S. Patterson eds.: OSA Trends in Optical and Photonics on Advances in Optical Imaging and Photon Migration (Opt. Soc. Am., Washington DC, 1998) Vol. 21.

    Google Scholar 

  4. Y. Xu, N. Iftimia, H. Jiang, L. L. Key and M. B. Bolster: J. Biomed. Opt. 7 (2002) 88.

    Article  PubMed  Google Scholar 

  5. S. A. Colak, D. G. Papaioannou, G. W. ‘t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen and N. A. A. J. van Asten: Appl. Opt. 36 (1997) 180.

    Google Scholar 

  6. S. R. Arridge and M. Schweiger: Opt. Express 2 (1997) 213.

    Google Scholar 

  7. V. Tuchin: Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Opt. Eng. Press, Bellingham, 2000) Vol. TT38.

    Google Scholar 

  8. Handbook of Optical Coherence Tomography, eds. B. E. Bouma and G. J. Tearney (Marcel Dekker, New York, 2002).

    Google Scholar 

  9. e.g., A. Yariv: Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1985) 3rd ed., Chap. 11.

  10. J. J. Snyder: Appl. Opt. 27 (1988) 4465.

    Google Scholar 

  11. A. E. Siegman: Appl. Opt. 5 (1966) 1558.

    Google Scholar 

  12. H. Inaba: Medical Optical Tomography: Functional Imaging and Monitoring, eds. G. Müller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg and P. van der Zee (SPIE Opt. Eng. Press, Bellingham, 1993) Part IV-4, p. 317.

    Google Scholar 

  13. B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka and H. Inaba: IEEE J. Sel. Top. Quantum Electron. 2 (1996) 1008.

    Article  Google Scholar 

  14. B. Devaraj, Y. Watanabe, M. Takeda, M. Usa, T. Yuasa, T. Akatsuka and H. Inaba: OSA Trends in Optics and Photonics on Advances in Optical Imaging and Photon Migration, eds. J. G. Fujimoto and M. S. Patterson (Opt. Soc. Am., Washington DC, 1998) Vol. 21, p. 338.

    Google Scholar 

  15. B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada and H. Inaba: Appl. Phys. Lett. 69 (1996) 3671.

    Article  Google Scholar 

  16. C. Kak and M. Slanery: Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1987).

    Google Scholar 

  17. Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, M. Takagi, H. Taniguchi, B. Devaraj and T. Akatsuka: Proc. The First IEEE Int. Conf. Sensors, Orlando, Florida, 2002, p. 156.

  18. Y. Sasaki, J. Suzuki, S. Tanosaki, T. Yuasa, M. Takagi, A. Ishikawa, H. Taniguchi, B. Devaraj and T. Akatsuka: Proc: Asian Symposium on Biomedical Optics and Photomedicine (Biomed. Opt. Group in Opt. Soc. Jpn., Sapporo, 2002) p. 270.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, Y., Suzuki, J., Inage, H. et al. Transillumination Laser Computed Tomography System with Fiber-Optic-Based Coherent Detection Imaging Method - High Spatial-Resolution and Quantitative Tomographic Imaging of Highly Scattering Objects -. OPT REV 10, 462–465 (2003). https://doi.org/10.1007/s10043-003-0462-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-003-0462-4

Key words

Navigation