Skip to main content
Log in

Design and Fabrication of Microlens Array for Near-Field Vertical Cavity Surface Emitting Laser Parallel Optical Head

  • INFORMATION OPTICS
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A GaP microlens for collecting laser light was developed in the tip of a near-field probe. It is important to realize a near-field optical probe head with high throughput and a small spot size. The design and fabrication results of the GaP microlens array are described. The most suitable GaP microlens with a probe was calculated as having a 10 μm radius using the two-dimensional finite difference time domain (2-D FDTD) method. The full width half maximum (FWHM) spot size variation and optical power density tolerance were calculated as 157 nm ± 5 nm and 7%, respectively. A spherical GaP microlens was fabricated with a radius of 10 μm by controlling the Cl2/Ar gas mixture ratio. The difference between the theoretical spherical shape and the fabricated GaP microlens was evaluated as 40 nm at peak to valley. The FWHM spot size and optical throughput of the fabricated microlens were measured as 520 nm and 63%, respectively. The microlens was the same as a theoretical lens with a 10 μm radius. The micron-lens array fabrication process for a near-field optical head was demonstrated in this experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorhy, P. L. Finn, M. H. Kryder and C. H. Chang: Appl. Phys. Lett. 61 (1992) 142.

    Article  Google Scholar 

  2. K. Goto: Jpn. J. Appl. 37 (1998) 2274.

    Article  Google Scholar 

  3. T. Yatsui, M. Kourogi, K. Tsutsui, J Takahashi and M. Ohtsu: Proc. SPIE 3791 (1999) 76.

  4. Y.-J. Kim, K. Suzuki and K. Goto: Jpn. J. Appl. Phys. 40 (2001) 1783.

    Article  Google Scholar 

  5. P. N. Minh, T. Ono and M. Esashi: Rev. Sci. Instrum. 71 (2000) 3111.

    Article  Google Scholar 

  6. K. Kurihara, Y.-J. Kim and K. Goto: Jpn. J. Appl. Phys. 41 (2002) 2034.

    Article  Google Scholar 

  7. I. D. Nikorov, K. Goto, S. Mitsugi, Y.-J. Kim and V. I. Kavardjikov: Nanotechnol. 13 (2002) 471.

    Article  Google Scholar 

  8. K. Goto, Y.-J. Kim, S. Mitsugi, K. Suzuki, K. Kurihara and T. Horibe: Jpn. J. Appl. Phys. 41 (2002) 4835.

    Article  Google Scholar 

  9. J. P. Berenger: J. Comput. Phys. 144 (1994) 185.

    Article  Google Scholar 

  10. J. B. Judkins and R. W. Ziolkowski: J. Opt. Soc. Am. A 12 (1995) 1974.

    Google Scholar 

  11. S. Mitsugi, Y.-J. Kim and K. Goto: Opt. Rev. 8 (2001) 120.

    Article  Google Scholar 

  12. R. S. Longhurst: Geometrical and Physical Optics (Longman, London, 1973) 3rd ed. p. 378.

    Google Scholar 

  13. D. Daly, R. F. Stevens, M. C. Hutley and N. Davies: Meas. Sci. Technol. 1 (1990).

  14. A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yamamoto, G. Hashimoto, A. Iida and K. Osato: Jpn. J. Appl. Phys. 41 (2002) 1825.

    Article  Google Scholar 

  15. Y.-J. Kim, R. Tateno, T. Ikura, K. Matsuda, H. Kawai, M. Suzuki and K. Goto: Jpn. J. Appl. Phys. 37 (1998) 2201.

    Article  Google Scholar 

  16. S. F. Yoon, T. K. Ng and H. Q. Zheng: J. Vac. Sci. Technol. B 19 (2001) 1775.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuma Kurihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurihara, K., Nikolov, I.D., Mitsugi, S. et al. Design and Fabrication of Microlens Array for Near-Field Vertical Cavity Surface Emitting Laser Parallel Optical Head. OPT REV 10, 89–95 (2003). https://doi.org/10.1007/s10043-003-0089-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-003-0089-5

Key words

Navigation