Skip to main content
Log in

Simulated Output Images of Near-Field Optics by Volume Integral Equation: Object Placed on the Dielectric Substrate

  • OPTICAL SYSTEMS AND TECHNOLOGIES
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We investigated near-field optical (NFO) imaging characteristics of a small object placed on a dielectric slab by a computer-code using a three-dimensional volume integral equation with an effective iteration technique called the generalized minimal residual method. A simplified three-dimensional NFO microscope that consists of a small dielectric object placed on the dielectric substrate and a small dielectric sphere as a scanning probe-tip was considered. Calculating two-dimensional output images obtained from scattered far fields, we studied the effect of the substrate on NFO output images, the comparison of NFO output images with electrostatic field around the small object, the dependence of output image characteristics on the wavelength and the difference of imaging characteristics between incident plane waves and incident evanescent waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Pohl and D. Courjon ed.: Near Field Optics (Kluwer Academic, New York, 1993).

    Google Scholar 

  2. M. A. Paesler and P. J. Moyer: Near-Field Optics: Theory, Instrumentation and Applications (John Wiley & Sons, New York. 1996).

    Google Scholar 

  3. J. P. Fillard: Near Field Optics and Nanoscopy (World Scientific, London, 1996).

    Google Scholar 

  4. M. Ohtsu, ed.: Near-Field Nona/Atom Optics and Technology (Springer-Verlag, Tokyo, 1998).

    Google Scholar 

  5. M. Ohtsu and H. Hori: Near-Field Nano-Optics (Kluwer Academic/ Plenum Publishers, New York, 1999).

    Google Scholar 

  6. C. Girard and A. Dereux: Rep. Prog. Phys. 59 (1996) 657.

    Article  Google Scholar 

  7. K. Tanaka, Mengyun Yan and M. Tanaka: Opt. Rev. 8 (2001) 43.

    Article  Google Scholar 

  8. J.-L. Greffet and R. Carminati: Prog. Surf. Sci. 56 (1998) 133.

    Article  Google Scholar 

  9. C. Girard, A. Dereux and O. J. F. Martin: Phys. Rev. B 50 (1994–1) 14467.

    Article  Google Scholar 

  10. O. J. F. Martin, C. Girard and A. Dereux: Phys. Rev. Lett. 74 (1995) 526.

    Article  PubMed  Google Scholar 

  11. J. J. H. Wang: Generalized Moment Method in Electromagnetics: Formulation and Computer Solution of Integral Equations (John Wiley & Sons, New York, 1991).

    Google Scholar 

  12. J. J. H. Wang and J. R. Dubberley: IEEE Trans. Microwave Theory Tech. 37 (1989) 1119.

    Article  Google Scholar 

  13. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donate, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. van der Vorst: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, 1994).

  14. A. B. Samokhin: J. Commun. Technol. Electron. 38 (1993) 15.

    Google Scholar 

  15. N. Morita, N. Kutnagai and J. R. Mautz: Integral Equation Methods for Electromagnetics (Artech House, New York, 1999).

    Google Scholar 

  16. K. Kobayashi and O. Watanuki: J. Vac. Sci. Technol. B 15 (1997) 1966.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Yan, M. & Tanaka, M. Simulated Output Images of Near-Field Optics by Volume Integral Equation: Object Placed on the Dielectric Substrate. OPT REV 9, 213–221 (2002). https://doi.org/10.1007/s10043-002-0213-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-002-0213-y

Key words

Navigation