Skip to main content
Log in

Macroscopic and mesoscopic characteristics of liquid-gas two-phase flow in a single fracture

Caractéristiques macroscopiques et mésoscopiques d’un écoulement diphasique liquide-gaz dans une fracture unique

Características macroscópicas y mesoscópicas del flujo de dos fases líquido-gas en una fractura simple

单一裂缝中气液两相流的宏观和中观特性

Característica macroscópicas e mesoscópica de um fluxo bifásico líquido-gás em uma única fratura

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The liquid-gas two-phase flow in rock fractures is of great significance for oil and gas field development, groundwater pollution control and underground nuclear waste disposal. In this study, liquid-gas two-phase flow experiments under different liquid and gas flow rates were carried out on a self-developed transparent-plate fracture apparatus with liquid-gas two-phase flow. Typical liquid-gas two-phase flow patterns, i.e., bubble flow, fingering flow and annular flow, were obtained. The relationship between the relative permeability and phase saturation indicates obvious inter-phase interference between the liquid and gas phases. The mesoscopic flow characteristics of bubbles under different flow patterns are obtained. With the change of flow pattern, the phenomena of bubble merging and dispersion occur, resulting in area fluctuation, and the actual flow velocity of the gas phase in the fracture is greater than the “nominal” flow velocity. Based on the generalized Darcy’s Law, a surface tension model for liquid-gas two-phase flow in a smooth parallel-plate fracture was proposed, which can well reflect the effect of surface tension between the liquid and gas and the inter-phase interference. Based on the experimental data, it is verified that the surface tension model has a better description of the relative permeability variation compared with other classical two-phase flow models. Finally, the connection between mesoscopic and macroscopic flow characteristics is analyzed and discussed. Furthermore, surface tension correction factors are proposed to represent the effect of surface tension on the inter-phase interference in the fracture.

Résumé

L’écoulement diphasique liquide-gaz dans des fractures rocheuses joue un grand rôle dans le développement des champs pétroliers et gaziers, le contrôle de la pollution des eaux souterraines et le stockage souterrain des déchets radioactifs. Dans la présente étude, des expériences d’écoulement diphasique liquide-gaz ont été réalisées pour différents débits de liquide et de gaz sur un appareil auto-développé de fracturation à plaque transparente avec écoulement diphasique liquide-gaz. Des modes d’écoulement diphasique liquide-gaz typiques, c’est-à-dire l’écoulement à bulles, l’écoulement en forme de doigts et l’écoulement annulaire ont été obtenus. La relation entre la perméabilité relative et la saturation de phases montre une interférence manifeste entre les phases liquide et gazeuse. Les caractéristiques mésoscopiques de l’écoulement à bulles ont été acquises sur différents schémas d’écoulement. Avec le changement de schéma d’écoulement, le phénomène de mélange et de dispersion des bulles se produit, entraînant une variation de surface et la vitesse réelle d’écoulement de la phase gazeuse dans la fracture devient supérieure à la vitesse “nominale” d’écoulement. Sur la base de la Loi de Darcy généralisée, un modèle de tension superficielle pour écoulement diphasique liquide-gaz dans un fracture lisse à parois parallèles a été proposé, capable de refléter correctement l’effet de la tension superficielle entre le liquide et le gaz et l’interférence entre phases. Sur la base des données expérimentales, il a été vérifié que le modèle de tension superficielle offre une meilleure description de la variation de la perméabilité relative que les autres modèles d’écoulement diphasiques classiques. Enfin, le lien entre les caractéristiques d’écoulement macroscopiques et mésoscopiques est analysé et discuté. En outre, des facteurs de correction de la tension superficielle sont proposés pour représenter son effet sur l’interférence entre les phases à l’intérieur de la fracture.

Resumen

El flujo de dos fases líquido-gas en fracturas de rocas es de especial importancia para el desarrollo de yacimientos de petróleo y gas, el control de la contaminación de las aguas subterráneas y la eliminación subterránea de residuos nucleares. En este estudio, se llevaron a cabo experimentos de flujo de dos fases líquido-gas bajo diferentes caudales de líquido y gas en un aparato de placa transparente para fracturas de desarrollo propio con flujo de dos fases líquido-gas. Se obtuvieron patrones típicos de flujo de dos fases líquido-gas, es decir, flujo de burbujas, flujo de digitación y flujo anular. La relación entre la permeabilidad relativa y la saturación de fase indica una interferencia evidente entre las fases líquida y gaseosa. Se obtienen las características de flujo mesoscópico de las burbujas bajo diferentes patrones de flujo. Con el cambio del patrón de flujo, se produce el fenómeno de fusión y dispersión de las burbujas, lo que da lugar a una fluctuación del área, y la velocidad de flujo real de la fase gaseosa en la fractura es mayor que la velocidad de flujo “nominal”. Basándose en la Ley de Darcy generalizada, se propuso un modelo de tensión superficial para el flujo de dos fases líquido-gas en una fractura lisa de placa paralela, que puede reflejar bien el efecto de la tensión superficial entre el líquido y el gas y la interferencia entre fases. Basándose en los datos experimentales, se verifica que el modelo de tensión superficial tiene una mejor descripción de la variación de la permeabilidad relativa en comparación con otros modelos clásicos de flujo de dos fases. Por último, se analiza y discute la conexión entre las características mesoscópicas y macroscópicas del flujo. Además, se proponen factores de corrección de la tensión superficial para representar el efecto de la tensión superficial en la interferencia entre fases en la fractura.

摘要

岩石裂缝中的液体-气体两相流对于油气田开发、地下水污染控制和地下核废料处置具有重要意义。本研究在一种自主研发的具有液体-气体两相流的透明平板裂缝装置上进行了不同液体和气体流速下的液体-气体两相流实验。得到了典型的液体-气体两相流型,即气泡流、指流和环流。相对渗透率与相饱和度之间的关系表明液相和气相之间存在明显的相间干扰。获得了不同流型下气泡的细观流动特性。随着流型的变化,气泡聚合和分散现象发生,导致区域波动,裂缝中气相的实际流速大于“名义”流速。基于广义达西定律,提出了一种平滑平行板裂缝中液体-气体两相流的表面张力模型,能够很好地反映液体和气体之间的表面张力和相间干扰的影响。通过实验数据验证了该表面张力模型在描述相对渗透率变化方面比其他经典的两相流模型更好。最后,分析和讨论了细观和宏观流动特性之间的联系。此外,进一步提出了表面张力修正因子,以表示裂缝中表面张力对相间干扰的影响。

Resumo

O fluxo bifásico líquido-gás em fraturas de rochas é de grande importância para o desenvolvimento no campo de petróleo e gás, controle na poluição de águas subterrâneas e depósitos de lixos nucelares subterrâneos. Neste estudo, experimentos de fluxo bifásico líquido-gás sob diferentes índices de vazões de líquidos e gás foram realizados em um aparelho de fratura autodesenvolvido, de placa transparente, com fluxo bifásico líquido-gás. Tipicamente, fluxos bifásicos líquido-gás, p. ex., fluxo de bolhas, fluxo dedilhado e fluxo anular, foram obtidos. A relação entre a permeabilidade relativa e a fase de saturação indica uma obvia interferência de interfase entre a fase líquida e gasosa. O fluxo mesoscópico característico das bolhas sob diferentes padrões de fluxo foi obtido. Com a mudança do padrão de fluxo, o fenômeno de dispersão e fusão de bolhas ocorre, resultando em uma área de flutuação, e a atual velocidade de fluxo da fase gasosa nas fraturas é maior do que na velocidade de fluxo “nominal”. Com base na Lei de Darcy generalizada, foi proposto um modelo de superfície de tensão para fluxos bifásicos líquido-gás em uma fratura de placa-paralela suave, a qual pode refletir bem o efeito da superfície de tensão entre o líquido e o gás e a interferência interfase. Baseado nos dados experimentais, foi verificado que o modelo de superfície de tensão teve uma melhor descrição da variação da permeabilidade relativa comparada com outros modelos clássicos de fluxos bifásicos. Por fim, a conexão entre as características de fluxo mesoscópica e macroscópicas foram analisadas e discutidas. Além disso, os fatores de correção da superfície de tensão são ainda propostos para representar o efeito da tensão superficial na interferência interfase na fratura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

Download references

Funding

The authors would like to express their deepest gratitude for the generous support provided by the National Natural Science Foundation of China (Grant Nos. 42177157, 51779045), the Applied Basic Research Program of Liaoning Province (Grant Nos. 2022JH2/101300127, 2023JH2/101300153), and Shenyang Science and Technology Program (Grant No. 22-322-3-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhechao Wang.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Nomenclature

A

Cross-sectional area of the fracture

bi

Fracture aperture at the i-th interface

k

Absolute permeability

k rg

Relative permeability of gas phase

k rl

Relative permeability of liquid phase

L

Fracture length

N cs

Number of liquid-gas contact surfaces

P c

Surface tension along the liquid-gas interface

\({\overline{P}}_{\textrm{c}}\)

Average surface tension

Pc

Total surface tension

Pi

Liquid-gas pressure difference inside the fracture

\(\overline{\triangle{P}}_{\textrm{i}}\)

Mean liquid-gas pressure difference inside the fracture

f p

Frequency of pressure fluctuations inside the fracture

P ci

Surface tension along with the i-th liquid-gas interface

P i

Inlet pressure

P o

Outlet pressure

q g

Gas phase flow rate

q l

Liquid phase flow rate

R 1

Radius of the in-plane curvature

R 2

Radius of the out-of-plane curvature

S l

Liquid phase saturation

S g

Gas phase saturation

v g

Gas flow velocity

v l

Liquid flow velocity

a g

Surface tension correction coefficient of gas phase

a l

Surface tension correction coefficient of liquid phase

β

Surface tension geometry coefficient

β l

Geometry coefficient for liquid phase

β g

Geometry coefficient for gas phase

γ

Contact angle

μ l

Dynamic viscosity coefficient of liquid phase

μ g

Dynamic viscosity coefficient of gas phase

σ

Surface tension coefficient

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Feng, H., Qiao, L. et al. Macroscopic and mesoscopic characteristics of liquid-gas two-phase flow in a single fracture. Hydrogeol J 31, 2177–2195 (2023). https://doi.org/10.1007/s10040-023-02721-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02721-7

Keywords

Navigation