Skip to main content

Advertisement

Log in

Identification of potential artificial groundwater recharge sites using GIS and the analytical hierarchy process: case study of Tamellalt plain, Morocco

Identification des sites potentiels de recharge artificielle des eaux souterraines à l’aide d’un SIG et du processus d’analyse hiérarchique: cas d’étude de la Plaine de Tamellalt, Maroc

Identificación de potenciales lugares de recarga artificial de aguas subterráneas utilizando SIG y procesos de jerarquía analítica: estudio de caso de la llanura de Tamellalt, Marruecos

利用地理信息系统和层次分析法确定潜在的地下水人工补给点——以摩洛哥塔梅拉尔平原为例

Identificação de potenciais locais artificiais de recarga de águas subterrâneas usando SIG e análise hierárquica de processos: estudo de caso da planície de Tamellalt, Marrocos

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater resources are crucial in arid and semiarid regions with limited rainfall and surface-water scarcity. However, these areas face challenges such as high evaporation and groundwater contamination, leading to dangerously low groundwater levels. This research identifies suitable locations for artificial groundwater recharge to address these challenges, improve long-term resource performance, and promote water conservation and storage. Artificial recharge sites were identified based on various criteria, in conjunction with geographic information system (GIS) methods, including slope, soil type, geology, geomorphology, land cover, groundwater depth, hydraulic conductivity, electrical conductivity, and drainage density. Each criterion was evaluated using the analytical hierarchy process (AHP), and experts from different disciplines contributed through pairwise comparisons. The study focuses on the Tamellalt region (Morocco) as a representative arid area. The AHP findings reveal that aquifer transmissivity is the most significant factor, accounting for 16.08% of the total influence, while the recharge component represents only 8.22%. Combining thematic maps generated a potential final map, indicating that 54% of the land is suitable for artificial groundwater recharge. These areas are further categorized as good, moderate, and poor, covering respective land areas of 183,600, 125,800, and 30,600 ha. These locations exhibit high infiltration potential and good water quality, making them favorable for artificial recharge, particularly in regions with significant pluvial water accumulation. Overall, this research provides insights into addressing groundwater depletion in arid regions. Identifying suitable sites for artificial recharge offers a potential solution to enhance long-term water resource management, promote conservation, and mitigate water scarcity challenges.

Résumé

Les ressources en eaux souterraines sont essentielles dans les régions arides et semiarides où les précipitations sont limitées et les eaux de surface rares. Toutefois, ces régions sont confrontées à des problèmes tels qu’une forte évaporation et la contamination des eaux souterraines, ce qui entraîne des niveaux d’eau souterraine extrêmement bas. Cette recherche identifie des sites appropriés pour la recharge artificielle des eaux souterraines afin de relever ces défis, d’améliorer la performance des ressources à long terme et de promouvoir la conservation et le stockage de l’eau. Les sites de recharge artificielle ont été identifiés sur la base de différents critères, en utilisant des outils du système d’information géographique (SIG), notamment la pente, le type de sol, la géologie, la géomorphologie, la couverture du sol, la profondeur des eaux souterraines, la conductivité hydraulique, la conductivité électrique et la densité de drainage. Chaque critère a été évalué à l’aide du processus analytique hiérarchique (AHP), et des experts de différentes disciplines ont apporté leur contribution en procédant à des comparaisons par paires. L’étude se concentre sur la région de Tamellalt (Maroc) en tant que zone aride représentative. Les résultats de l’AHP révèlent que la transmissivité de l’aquifère est le facteur le plus important, représentant 16.08 % de l’influence totale, tandis que la composante de recharge ne représente que 8.22 %. La combinaison des cartes thématiques a généré une carte finale potentielle, indiquant que 54 % des terres conviennent à la recharge artificielle des eaux souterraines. Ces zones sont classées en trois catégories : bonnes, modérées et médiocres, couvrant des superficies respectives de 183,600, 125,800 et 30,600 ha. Ces sites présentent un potentiel d’infiltration élevé et une bonne qualité de l’eau, ce qui les rend propices à la recharge artificielle, en particulier dans les régions où l’accumulation d’eau pluviale est importante. Dans l’ensemble, cette recherche donne des indications sur la manière d’aborder l’épuisement des eaux souterraines dans les régions arides. L’identification de sites appropriés pour la recharge artificielle offre une solution potentielle pour améliorer la gestion à long terme des ressources en eau, promouvoir la conservation et atténuer les problèmes de pénurie d’eau.

Resumen

Los recursos hídricos subterráneos son esenciales en las regiones áridas y semiáridas con precipitaciones limitadas y escasez de aguas superficiales. Sin embargo, estas zonas se enfrentan a problemas como la elevada evaporación y la contaminación de las aguas subterráneas, que conducen a niveles subterráneos peligrosamente deprimidos. Esta investigación identifica lugares adecuados para la recarga artificial de las aguas subterráneas con el fin de hacer frente a estos retos, mejorar el rendimiento de los recursos a largo plazo y promover la conservación y el almacenamiento del agua. Los lugares de recarga artificial se identificaron basándose en varios criterios, junto con métodos del sistema de información geográfica (SIG), incluyendo la pendiente, el tipo de suelo, la geología, la geomorfología, la cubierta vegetal, la profundidad de las aguas subterráneas, la conductividad hidráulica, la conductividad eléctrica y la densidad de drenaje. Cada criterio se evaluó mediante el proceso de jerarquía analítica (AHP), y expertos de distintas disciplinas contribuyeron mediante comparaciones por pares. El estudio se centra en la región de Tamellalt (Marruecos) como zona árida representativa. Los resultados del AHP revelan que la transmisividad del acuífero es el factor más significativo, con un 16.08% de la influencia total, mientras que el componente de recarga representa sólo el 8.22%. La combinación de mapas temáticos generó un potencial mapa final, que indica que el 54% del terreno es apto para la recarga artificial de aguas subterráneas. Estas zonas se clasifican a su vez en buenas, moderadas y pobres, y abarcan superficies respectivas de 183,600, 125,800 y 30,600 ha. Estos lugares presentan un alto potencial de infiltración y una buena calidad del agua, lo que los hace favorables para la recarga artificial, sobre todo en regiones con una importante acumulación de agua pluvial. En general, esta investigación aporta ideas para abordar el agotamiento de las aguas subterráneas en las regiones áridas. La identificación de lugares adecuados para la recarga artificial ofrece una solución potencial para mejorar la gestión de los recursos hídricos a largo plazo, promover la conservación y mitigar los problemas de escasez de agua.

摘要

地下水资源在降雨有限和地表水匮乏的干旱和半干旱地区至关重要。然而,这些地区面临着高蒸发和地下水污染等挑战,导致危险的低地下水水位。本研究确定了地下水人工回灌的合适位点以应对这些挑战,改善长期的资源性能并促进水资源的保护与储存。根据各种标准,结合地理信息系统(GIS)方法以确定人工回灌位点,包括坡度,土壤类型,地质,地貌,土地覆盖,地下水深度,渗透系数,电导率和排水密度。每个标准通过层次分析法(AHP)评估,来自不同学科的专家通过两两比较做出了贡献。该研究聚焦在典型干旱区塔梅拉尔地区(摩洛哥)。AHP的分析结果表明,含水层导水系数是最重要的因素,占总影响力的16.08%,而补给部分只占8.22%。结合专题地图生成一个潜在的最终地图,发现54%的土地适合地下水人工回灌。这些区域进一步分为好、中等和差三类,分别占地183,600、125,800和30,600公顷。这些位置呈现高入渗潜能和良好的水质,有利于人工回灌,特别是在洪积水积累显著的地区。总的来说,本研究为解决干旱地区的地下水枯竭问题提供了见解。确定适合的人工回灌位点为加强长期的水资源管理保护和缓解水资源短缺的挑战提供了一个潜在的解决方法。

Resumo

Os recursos hídricos subterrâneos são cruciais em regiões áridas e semiáridas com chuvas limitadas e escassez de água superficial. No entanto, essas áreas enfrentam desafios, como alta evaporação e contaminação das águas subterrâneas, levando a níveis perigosamente baixos das águas subterrâneas. Esta pesquisa identifica locais adequados para recarga artificial de águas subterrâneas para enfrentar esses desafios, melhorar o desempenho dos recursos a longo prazo e promover a conservação e armazenamento de água. Os locais de recarga artificial foram identificados com base em vários critérios, em conjunto com os métodos do sistema de informação geográfica (SIG), incluindo inclinação, tipo de solo, geologia, geomorfologia, cobertura da terra, profundidade do lençol freático, condutividade hidráulica, condutividade elétrica e densidade de drenagem. Cada critério foi avaliado usando análise hierarquia se processos (AHP), e especialistas de diferentes disciplinas contribuíram por meio de comparações pareadas. O estudo enfoca a região de Tamellalt (Marrocos) como uma área árida representativa. Os resultados do AHP revelam que a transmissividade do aquífero é o fator mais significativo, respondendo por 16.08% da influência total, enquanto o componente de recarga representa apenas 8.22%. A combinação de mapas temáticos gerou um mapa final potencial, indicando que 54% da terra é adequada para recarga artificial de águas subterrâneas. Essas áreas são ainda categorizadas como boas, moderadas e pobres, cobrindo áreas respectivas de 183,600, 125,800 e 30,600 ha. Esses locais apresentam alto potencial de infiltração e boa qualidade da água, tornando-os propícios para recarga artificial, principalmente em regiões com acúmulo significativo de água pluvial. No geral, esta pesquisa fornece informações sobre como lidar com o esgotamento das águas subterrâneas em regiões áridas. A identificação de locais adequados para recarga artificial oferece uma solução potencial para melhorar a gestão de recursos hídricos de longo prazo, promover a conservação e mitigar os desafios de escassez de água.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aggarwaal E, Aggarwal R, Garg R, Garg P (2013) Delineation of groundwater potential zone: an AHP/ANP approach. J Earth Syst Sci 122(3):887–898

    Article  Google Scholar 

  • Aggarwal M, Saravanan S, Jennifer J, Abijith D (2019) Advances in remote sensing and geo informatics applications. Springer, New York

  • Ahmed R, Sajjad H (2018) Analyzing factors of groundwater potential and its relation with population in the lower Barpani watershed. Nat Resour Res 27(4):503–515

    Article  Google Scholar 

  • Anbarasu S, Brindha K, Elongo L (n.d.) Multi-influencing factor method for delineation of groundwater potential zones using remote sensing and GIS techniques in the western part of Perambalur district, southern India. Earth Sci Inform 10(100)

  • Aneesh R, Deka P (2015) Groundwater potential recharge zonation of Bengaluru urban district: a GIS based analytic hierarchy process (AHP) technique approach. Int Adv Res J Sci Eng Technol 2(6):129–136

    Google Scholar 

  • Arulbalaji P, Padmalal D, Sreelash K (2019) GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Sci Rep 9(1):1–17

    Article  Google Scholar 

  • Bataillard P, Guerin V, Guezennec A (2008) Les sédiments de cours d’eau: source ou puits de contaminants [River sediments: source or sink of contaminants]? Environ Tech 274:33–39

    Google Scholar 

  • Blancada S (2014) Identifying potential artificial groundwater recharge sites in metro Manila for stormwater disposal using GIS techniques. Thesis, University of the Philippines Diliman, Quezon City, Philippines

  • Chaudhry A, Kumar K, Alam M (2019) Mapping of groundwater potential zones using the fuzzy analytic hierarchy process and geospatial technique. Geocarto Int 36(6):1–22

  • Chitsazan M, Akhtari Y (2009) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kherran plain, Khuzestan, Iran. Water Resour Manag 23(6):1137–1155. https://doi.org/10.1007/s11269-008-9319-8

    Article  Google Scholar 

  • Dar T, Rai N, Bhat A (2020) Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geol Ecol Landsc 5(4):1–16

  • Das B, Pal S (2019) Combination of GIS and fuzzy-AHP for delineating groundwater recharge potential zones in the critical Goghat-II block of West Bengal. India HydroRes 2:21–30

    Article  Google Scholar 

  • Das S, Caballero M, Kolesnikova T, Zhimulev I, Koren A, Nordman J (2021) Replication timing analysis in polyploid cells reveals Rif1 uses multiple mechanisms to promote underreplication in drosophila. https://doi.org/10.25386/genetics.15135105.v1

  • Earle S (2015) Physical geology. UBC Campus, Vancouver, BC

  • Agriinfo.in (2003) Factors affecting runoff. My Agriculture Information Bank. AgriInfo. https://agriinfo.in/factors-affecting-runoff-59/. Accessed July 28, 2023

  • Fitts CR (2002) Groundwater science. Elsevier, Amsterdam

  • Fondriest Environmental (2014) Fundamentals of environmental measurements. Fondriest Environmental. https://www.fondriest.com/environmental-measurements/parameters/water-quality/conductivity-salinity-TDS/. Accessed August 14, 2023

  • Gdoura K, Anane M, Jellali S (2015) Geospatial and AHP-multicriteria analyses to locate and rank suitable sites for groundwater recharge with reclaimed water. Resour Conserv Recycl 104:19–30

    Article  Google Scholar 

  • Ghosh B (2021) Spatial mapping of groundwater potential using data-driven evidential belief function, knowledge-based analytic hierarchy process and an ensemble approach. Environ Earth Sci 80:625. https://doi.org/10.1007/s12665-021-09921-y

    Article  Google Scholar 

  • Gnanachandrasamy GZ, Gnanachandrasamy G, Zhou Y, Bagyaraj M, Venkatramanan S, Ramkumar T, Wang S (2018) Remote sensing and GIS based groundwater potential zone mapping in Ariyalur District, Tamil Nadu. J Geol Soc India 92(4):484–490

    Article  Google Scholar 

  • Gogate N, Rawal P (2015) Identification of potential stormwater recharge zones in dense urban context: a case study from Pune city. Int J Environ Res 9(4):1259–1268. https://doi.org/10.22059/IJER.2015.1017

    Article  Google Scholar 

  • Gu H, Xu J (2011) Grey relational model based on AHP weight for evaluating groundwater resources carrying capacity of irrigation district. In: 2011 International Symposium on Water Resource and Environmental Protection IEEE, vol 1, Xi’an, China, May 2011, pp 308–310

  • Gupta P, Mehlawat M, Aggarwal U, Charles V (2018) An integrated AHP-DEA multi-objective optimization model for sustainable transportation in mining industry. Resour Pol 74(C)

  • Hammouri N, Al-Amoush H, Al-Raggad M, Harahsheh HG (2013) Groundwater recharge zones mapping using GIS: a case study in southern part of Jordan valley, Jordan. Saudi Soc Geosci 7(7):2815–2829

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56(3):275–370

    Article  Google Scholar 

  • Hossein A, Ardakani H, Ekhtesasi M (n.d.) Groundwater potentiality through analytic hierarchy process (AHP) using remote sensing and geographic information system (GIS). JGeope 6:75–88

  • Jasrotia A, Kumar A, Singh R (2016) Integrated remote sensing and GIS approach for delineation of groundwater potential zones using aquifer parameters in Devak and Rui watershed of Jammu and Kashmir India. Arabian J Geosci 9(304). https://doi.org/10.1007/s12517-016-2326-9

  • Khan A, Govil H, Taloor A, Kumar G (2020) Identification of artificial groundwater recharge sites in parts of Yamuna River basin India based on remote sensing and geographical information system. Groundwater Sustain Dev 11, Art no. 100415

  • Krishnamurthy J, Srinivas G (1995) Role of geological and geomorphological factors in ground water exploration: a study using IRS LISS data. Int J Remote Sens 16(14):2595–2618

    Article  Google Scholar 

  • Lakshmi S, Reddy Y (2018) Identification of groundwater potential zones using GIS and remote sensing. Int J Pure Appl Math 119(17):3195–3210

    Google Scholar 

  • Mary River Catchment Coordinating Committee (2013). Water quality standards. http://mrccc.org.au/wp-content/uploads/2013/10/Water-Quality-Salinity-Standards.pdf. Accessed  17 Oct 2022

  • McCurry G, Oyne D (2022) Planning for managed aquifer recharge projects. Groundwater 60. https://doi.org/10.1111/gwat.13226

  • Muniraj K, Jesudhas C, Chinnasamy A (2019) Delineating the groundwater potential zone in TirunelveliTaluk, South Tamil Nadu, India, using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Proc Natl Acad Sci, India, Sect. A Phys Sci 90:661–676

  • Murmu P, Kumar M, Lal D, Sonker I, Singh S (2019) Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Environ Devel Sustain 9:1002

    Google Scholar 

  • National Ocean Service (2009) What is the difference between land cover and land use? https://oceanservice.noaa.gov/facts/lclu.html. Accessed July 28, 2023

  • Navane VS, Sahoo S (2021) Identification of groundwater recharge sites in Latur district of Maharashtra in India based on remote sensing, GIS and multi-criteria decision tools. Water Environ J 35(2):544–559

    Article  Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072

    Article  Google Scholar 

  • Ourarhi S, Barkaoui A, Zarhloule Y (2022) Assessment of the agricultural intensification impact on groundwater quality: a case study of the Triffa plain. Water Air Soil Poll 233:342. https://doi.org/10.1007/s11270-022-05810-7

    Article  Google Scholar 

  • Ourarhi S, Barkaoui A, Zarhloule Y (2023) Mapping groundwater’s susceptibility to pollution in the Triffa Plain (eastern Morocco) using a modified method based on the DRASTIC, RIVA, and AHP models. Environ Develop Sustain. https://link.springer.com/article/10.1007/s10668-023-03262-5.

  • Pinto D, Shrestha S, Babel M, Ninsawat S (2017) Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Appl Water Sci 7(1):503–519

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

  • Saaty TL (1988) What is the analytic hierarchy process? Springer Berlin Heidelberg, p 109–121

  • Saaty TL (1990) How to make a decision: The analytic hierarchy process. Eur J Oper Res 48(1):9–26

  • Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98

    Google Scholar 

  • Sandoval JA, Tiburan Jr CL (2019) Identification of potential artificial groundwater recharge sites in Mount Makiling Forest Reserve, Philippines using GIS and Analytical Hierarchy Process. Appl Geogr 105:73–85

  • Saranya T, Saravanan S (2020) Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Model Earth Syst Environ 6:1105–1122

  • Sedhuraman M, Revathy S, Badu S (2014) Integration of geology and geomorphology for groundwater assessment using remote sensing and GIS techniques. Int J Innov Res Sci Eng Technol 3(3):7

    Google Scholar 

  • Sener E, Davraz A (2013) Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeol J 21(3):701–714

    Article  Google Scholar 

  • Sethupathi A, Lakshmi Narahimhan C, Vasanthamohan V, Mohan S, Anbazhagan (2010) An integrated remote sensing and GIS based approached for the identification of artificial recharge sites in Bargur – Mathur sub-watersheds, Ponnaiyar bassin, India. Int J Earth Sci Eng 3(2):188–206

    Google Scholar 

  • Shekhar S, Pandey A (2015) Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto Int 30(4):402–442

    Article  Google Scholar 

  • Singhal A, Buckley C, Mitra M (2017) Pivoted document length normalization. ACM SIGIR Forum 51(2):176–184

  • Sirinivasa Rao Y, Jugran D (2003) Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS. Hydrol Sci J 48:821–834. https://doi.org/10.1623/hysj.48.5.821.51452

    Article  Google Scholar 

  • Waikar M, Nilawar A (2014) Identification of groundwater potential zone using remote sensing and GIS technique. Int J Innov Res Sci Eng Technol 3(5):12163–12174

    Google Scholar 

  • Yu H, Wu Q, Zeng Y, Zheng L, Xu L, Liu S, Wang D (2022) Integrated variable weight model and improved DRASTIC model for groundwater vulnerability assessment in a shallow porous aquifer. J Hydrol 608, Art. no. 127538

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Kadiri.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadiri, M., Zarhloule, Y., Barkaoui, Ae. et al. Identification of potential artificial groundwater recharge sites using GIS and the analytical hierarchy process: case study of Tamellalt plain, Morocco. Hydrogeol J 31, 1813–1828 (2023). https://doi.org/10.1007/s10040-023-02701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02701-x

Keywords

Navigation