Skip to main content
Log in

A reduced-order framework for three-dimensional-equivalent confined groundwater modeling with emphasis on well-boundary implementation

Un environnement d’ordre réduit pour la modélisation tridimensionnelle équivalente des eaux souterraines confinées, avec un accent mis sur la mise en oeuvre des conditions aux limites de puits

Un método de orden reducido para el modelado tridimensional-equivalente de aguas subterráneas confinadas, con especial atención a la aplicación en los límites del pozo

一种关注井边界的三维等效承压地下水建模的简化框架

Uma estrutura de ordem reduzida para modelagem de águas subterrâneas confinadas tridimensionalmente equivalentes com ênfase na implementação de limites de poço

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater management frameworks rely on budget-friendly mathematical groundwater flow models for identifying sustainable policies. Such models should be capable of modeling well-flow hydraulics and aquifer dynamics simultaneously. A robust well-flow model considers the finite well radius to estimate the hydraulic head distribution in and around a pumping well, considering the effects of partial well penetration, well-bore storage, and well-bore skin. This paper introduces the concept of well-boundary to develop a three-dimensional (3D)-equivalent 2D confined groundwater flow modeling framework for monitoring natural aquifer systems. The developed OpenFOAM®-based model—modFlowFOAM—implements the analytical solution of the well-hydraulics problem for confined aquifer systems as a Dirichlet boundary condition on the well boundary to account for the vertical flow in the neighborhood of the pumping well. To minimize the computational burden (CPU time and usage) involved in modeling large-scale confined aquifer systems, a reduced-order modeling solver for the modFlowFOAM library has also been developed. The numerical results of modFlowFOAM depict excellent correspondence with the MODFLOW results and other numerical results presented in the literature for various well-hydraulics and confined-aquifer flow problems involving regional and synthetic aquifer systems. The accuracy and efficiency of modFlowFOAM ensure its potential applicability to characterize the dynamics of confined aquifer systems.

Résumé

Les cadres de gestion des eaux souterraines s’appuient sur des modèles mathématiques d’écoulement des eaux souterraines faciles à budgétiser pour identifier des politiques durables. Ces modèles doivent être capables de modéliser simultanément l’hydraulique de l’écoulement de puits et la dynamique de l’aquifère. Un modèle robuste d’écoulement de puits prend en compte le rayon fini du puits pour estimer la distribution de la charge hydraulique à l’intérieur et autour d’un puits de pompage, en considérant les effets de la pénétration partielle du puits, l’effet capacitif du puits et les effets de skin au puits. Cet article introduit le concept de conditions aux limites au puits pour développer un cadre de modélisation de l’écoulement des eaux souterraines confinées en trois dimensions (3D)— équivalent 2D—pour la surveillance des systèmes aquifères naturels. Le modèle développé basé sur OpenFOAM®—modFlowFOAM—met en œuvre la solution analytique du problème de l’hydraulique des puits pour les systèmes aquifères captifs en tant que condition à la limite de Dirichlet sur la limite du puits pour tenir compte de l’écoulement vertical dans le voisinage du puits de pompage. Afin de minimiser la charge de calcul (temps CPU et utilisation) liée à la modélisation de systèmes aquifères captifs à grande échelle, un solveur de modélisation d’ordre réduit pour la bibliothèque modFlowFOAM a également été développé. Les résultats numériques de modFlowFOAM présentent une excellente correspondance avec les résultats de MODFLOW et d’autres résultats numériques présentés dans la littérature pour divers problèmes d’hydraulique des puits et d’écoulement dans des aquifères captifs impliquant des systèmes aquifères régionaux et synthétiques. La précision et l’efficacité de modFlowFOAM garantissent son applicabilité potentielle pour caractériser la dynamique des systèmes aquifères captifs.

Resumen

Los métodos de gestión de las aguas subterráneas se basan en modelos matemáticos de su flujo que se ajusten a los presupuestos y permitan definir políticas sostenibles. Estos modelos deben ser capaces de modelizar simultáneamente la hidráulica del flujo de pozos y la dinámica del acuífero. Un modelo robusto de flujo de pozos tiene en cuenta el radio finito del pozo para estimar la distribución de la carga hidráulica dentro y alrededor de un pozo de bombeo, considerando los efectos de la penetración parcial del pozo, el almacenamiento en el pozo y la piel del pozo. Este trabajo introduce el concepto de pozo-límite para desarrollar un marco de modelización tridimensional (3D)-equivalente 2D del flujo de aguas subterráneas confinadas para el monitoreo de sistemas acuíferos naturales. El modelo desarrollado basado en OpenFOAM®—modFlowFOAM—implementa la solución analítica del problema de hidráulica de pozos para sistemas acuíferos confinados como una condición de contorno Dirichlet en el límite del pozo para dar cuenta del flujo vertical en la vecindad del pozo de bombeo. Para minimizar la carga computacional (tiempo de CPU y uso) que supone modelar sistemas acuíferos confinados a gran escala, también se ha desarrollado un solucionador de modelado de orden reducido para la biblioteca modFlowFOAM. Los resultados numéricos de modFlowFOAM muestran una excelente correspondencia con los resultados de MODFLOW y otros resultados numéricos presentados en la literatura para varios problemas de hidráulica de pozos y de flujo de acuíferos confinados que implican sistemas acuíferos regionales y sintéticos. La precisión y eficiencia de modFlowFOAM aseguran su potencial aplicabilidad para caracterizar la dinámica de sistemas acuíferos confinados.

摘要

地下水管理框架依赖于经济实惠的数学地下水流模型来确定可持续的政策。这些模型应能够同时建模井流运动和含水层动力学。一个健壮的井流模型考虑有限的井半径,以估算抽水井内和周边的水头分布,考虑到部分井穿透、井筒储存和井筒壁效应。本文引入井边界的概念,以开发一个三维(3D)等效的二维承压地下水流建模框架用于监测自然含水层系统。开发的基于OpenFOAM®的模型——modFlowFOAM将承压含水层系统的井水力学问题的解析解作为Dirichlet边界条件应用于井边界,以考虑抽水井附近的垂向流动。为了减少对建模大规模承压含水层系统所涉及的计算负荷(CPU时间和使用量),还开发了modFlowFOAM库的降阶建模求解器。modFlowFOAM的数值结果与MODFLOW结果和文献中针对各种涉及区域性和合成含水层系统的井水力学和承压含水层流动问题的其他数值结果表现出良好的一致性。modFlowFOAM的准确性和高效性确保了它对表征承压含水层系统动力学的潜在适用性。

Resumo

As estruturas de gerenciamento de águas subterrâneas dependem de modelos matemáticos de fluxo de águas subterrâneas econômicos para identificar políticas sustentáveis. Esses modelos devem ser capazes de modelar a hidráulica de fluxo de poço e a dinâmica do aquífero simultaneamente. Um modelo robusto de fluxo de poço considera o raio finito do poço para estimar a distribuição da carga hidráulica dentro e ao redor de um poço de bombeamento, considerando os efeitos da penetração parcial do poço, armazenamento do poço e pele do poço. Este artigo apresenta o conceito de limite de poço para desenvolver uma estrutura de modelagem de fluxo de água subterrânea confinada tridimensional (3D) equivalente em 2D para monitorar sistemas aquíferos naturais. O modelo baseado em OpenFOAM® desenvolvido— modFlowFOAM—implementa a solução analítica do problema de poço-hidráulica para sistemas aquíferos confinados como uma condição de contorno de Dirichlet no contorno do poço para levar em conta o fluxo vertical na vizinhança do poço de bombeamento. Para minimizar a carga computacional (tempo e uso da CPU) envolvida na modelagem de sistemas aquíferos confinados em larga escala, um solucionador de modelagem de ordem reduzida para a biblioteca modFlowFOAM também foi desenvolvido. Os resultados numéricos do modFlowFOAM representam uma excelente correspondência com os resultados do MODFLOW e outros resultados numéricos apresentados na literatura para vários problemas de poços hidráulicos e fluxos de aquíferos confinados envolvendo sistemas aquíferos regionais e sintéticos. A precisão e eficiência do modFlowFOAM garantem sua potencial aplicabilidade para caracterizar a dinâmica de sistemas aquíferos confinados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Code availability

The source code for modFlowFOAM can be downloaded from the link: https://github.com/gwres/modFlowFOAM.

References

  • Agarwal RG, Al-Hussainy R, Ramey HJ (1970) An investigation of well-bore storage and skin effect in unsteady liquid flow: I. analytical treatment. Soc Pet Eng J 10(03):279–290

    Article  Google Scholar 

  • Barenblatt GI, Zheltov IP, Kochina IN (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J Appl Math Mech 24(5):1286–1303

    Article  Google Scholar 

  • Barua G, Bora SN (2010) Hydraulics of a partially penetrating well with skin zone in a confined aquifer. Adv Water Resour 33(12):1575–1587

    Article  Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York

    Google Scholar 

  • Boyce SE, Yeh WW-G (2014) Parameter-independent model reduction of transient groundwater flow models: application to inverse problems. Adv Water Resour 69:168–180

    Article  Google Scholar 

  • Boyce SE, Nishikawa T, Yeh WW-G (2015) Reduced order modeling of the Newton formulation of MODFLOW to solve unconfined groundwater flow. Adv Water Resour 83:250–262

  • Cau P, Lecca G, Putti M, Paniconi C (2002) The influence of a confining layer on saltwater intrusion under surface recharge and groundwater extraction conditions. Dev Water Sci 47:493–500

  • Clifton PM, Neuman SP (1982) Effects of kriging and inverse modeling on conditional simulation of the Avra Valley Aquifer in southern Arizona. Water Resour Res 18(4):1215–1234

    Article  Google Scholar 

  • Dey S, Dhar A (2020) On proper orthogonal decomposition (POD) based reduced-order modeling of groundwater flow through heterogeneous porous media with point source singularity. Adv Water Resour 144(10):103703

    Article  Google Scholar 

  • Dey S, Dhar A (2022) Generalized mass-conservative finite volume framework for unified saturated unsaturated subsurface flow. J Hydrol 605:127309

  • Dougherty DE, Babu DK (1984) Flow to a partially penetrating well in a double-porosity reservoir. Water Resour Res 20(8):1116–1122

    Article  Google Scholar 

  • Fan Z, Parashar R (2020) Transient flow to a finite-radius well with well-bore storage and skin effect in a poroelastic confined aquifer. Adv Water Resour 142:103604

    Article  Google Scholar 

  • Haasdonk B, Ohlberger M (2011) Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition. Math Comput Model Dyn Syst 17(2):145–161

    Article  Google Scholar 

  • Hantush MS (1961) Drawdown around a partially penetrating well. J Hydraul Div 87(4):83–98

    Article  Google Scholar 

  • Hantush MS (1964) Hydraulics of wells. Adv Hydrosci 1:281–432

    Article  Google Scholar 

  • Harbaugh AW (2005) MODFLOW-2005, The U.S. Geological Survey modular ground-water model: the ground-water flow process. US Geological Survey Techniques Methods 6-A16

  • Hasenauer J, Löhning M, Khammash M, Allgöwer F (2012) Dynamical optimization using reduced order models: a method to guarantee performance. J Process Control 22(8):1490–1501

    Article  Google Scholar 

  • Horgue P, Soulaine C, Franc J, Guibert R, Debenest G (2015) An opensource toolbox for multiphase flow in porous media. Comput Phys Commun 187:217–226

    Article  Google Scholar 

  • Jasak H, Jemcov A, Tukovic Z, et al. (2007) OpenFOAM: A C++ library for complex physics simulations. In: International Workshop on Coupled Methods in Numerical Dynamics, vol 1000. IUC Dubrovnik Croatia, August 2007, pp 1–20

  • Konikow LF, Hornberger GZ, Halford KJ, Hanson RT (2009) Revised multi-node well (MNW2) package for MODFLOW ground-water flow model. US Geol Surv Tech Methods 6-A30

  • Liu X (2013) Parallel modeling of three-dimensional variably saturated groundwater flows with unstructured mesh using open source finite volume platform OpenFOAM. Eng Appl Comput Fluid Mech 7(2):223–238

    Google Scholar 

  • Lohman SW (1972) Ground-water hydraulics, vol 708. US Gov Print Off, Washington, DC

  • Orgogozo L (2015) RichardsFoam2: a new version of RichardsFoam devoted to the modelling of the vadose zone. Comput Phys Commun 196:619–620

  • Orgogozo L (2022) RichardsFoam3: a new version of RichardsFoam for continental surfaces hydrogeology modelling. Comput Phys Commun 270:108182

  • Orgogozo L, Renon N, Soulaine C, Hénon F, Tomer SK, Labat D, Pokrovsky OS, Sekhar M, Ababou R, Quintard M (2014) An open source massively parallel solver for Richards’ equation: mechanistic modelling of water fluxes at the watershed scale. Comput Phys Commun 185:3358–3371

    Article  Google Scholar 

  • Panday S, Langevin CD, Niswonger RG, Ibaraki M, Hughes JD (2013) MODFLOW–USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation. US Geol Surv Tech Methods 6-A45

  • Park HM, Cho DH (1996) Low dimensional modeling of flow reactors. Int J Heat Mass Trans 39(16):3311–3323

    Article  Google Scholar 

  • Park HM, Chung OY, Lee JH (1999) On the solution of inverse heat transfer problem using the Karhunen-Loeve Galerkin method. Int J Heat Mass Trans 42(1):127–142

    Article  Google Scholar 

  • Pasetto D, Guadagnini A, Putti M (2011) POD-based Monte Carlo approach for the solution of regional scale groundwater flow driven by randomly distributed recharge. Adv Water Resour 34(11):1450–1463

    Article  Google Scholar 

  • Pasetto D, Putti M, Yeh WW-G (2013) A reduced-order model for groundwater flow equation with random hydraulic conductivity: application to Monte Carlo methods. Water Resour Res 49(6):3215–3228

    Article  Google Scholar 

  • Petersen JS, Rohwer C, Albertson ML (1955) Effect of well screens on flow into wells. Trans Am Soc Civ Eng 120(1):563–585

    Article  Google Scholar 

  • Siade AJ, Putti M, Yeh WW-G (2012) Reduced order parameter estimation using quasilinearization and quadratic programming. Water Resour Res 48(6):W06502

    Article  Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. I. coherent structures. Q Appl Math 45(3):561–571

    Article  Google Scholar 

  • Stanko ZP, Boyce SE, Yeh WW-G (2016) Nonlinear model reduction of unconfined groundwater flow using POD and DEIM. Adv Water Resour 97:130–143

  • Stehfest H (1970) Algorithm 368: numerical inversion of Laplace transforms [D5]. Commun ACM 13(1):47–49

    Article  Google Scholar 

  • Streltsova-Adams TD (1978) Well hydraulics in heterogeneous aquifer formations. Adv Hydrosci 11:357–423

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. EOS Trans Am Geophys Union 16(2):519–524

    Article  Google Scholar 

  • Tsai FT-C (2006) Enhancing random heterogeneity representation by mixing the kriging method with the zonation structure. Water Resour Res 42, W08428

  • Ushijima TT, Yeh WW-G (2013) Experimental design for estimating unknown groundwater pumping using genetic algorithm and reduced order model. Water Resour Res 49(10):6688–6699

    Article  Google Scholar 

  • Vermeulen PTM, Heemink AW, Te Stroet CBM (2004) Lowdimensional modelling of numerical groundwater flow. Hydrol Process 18(8):1487–1504

    Article  Google Scholar 

  • Wen Z, Zhan H, Wang Q, Liang X, Ma T, Chen C (2017) Well hydraulics in pumping tests with exponentially decayed rates of abstraction in confined aquifers. J Hydrol 548:40–45

    Article  Google Scholar 

  • Yeh H-D, Chang Y-C (2013) Recent advances in modeling of well hydraulics. Adv Water Resour 51:27–51

    Article  Google Scholar 

  • Yeh H-D, Chen Y-J, Yang S-Y (2008) Semi-analytical solution for a slug test in partially penetrating wells including the effect of finite-thickness skin. Hydrol Proc 22(18):3741–3748

    Article  Google Scholar 

  • Zhan H, Park E (2003) Horizontal well hydraulics in leaky aquifers. J Hydrol 281(1–2):129–146

    Article  Google Scholar 

Download references

Acknowledgements

All the simulations were performed utilizing the resources and supercomputing facilities of ‘Param Shakti’ at the Indian Institute of Technology Kharagpur, established under the National Supercomputing Mission (NSM), supported by the Ministry of Electronics and Information Technology (MeitY) and Department of Science and Technology (DST), Government of India, and implemented by the Centre for Development of Advanced Computing (CDAC), Pune.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumava Dey.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Dhar, A. A reduced-order framework for three-dimensional-equivalent confined groundwater modeling with emphasis on well-boundary implementation. Hydrogeol J 31, 1883–1902 (2023). https://doi.org/10.1007/s10040-023-02674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02674-x

Keywords

Navigation