Skip to main content
Log in

Impact of reactive mineral facies distributions on radionuclide sorption properties in multiscale heterogeneous granite rocks

Impact de la distribution des faciès minéraux réactifs sur les propriétés de sorption des radionucléides dans les roches granitiques hétérogènes à plusieurs échelles

Impacto de las distribuciones de facies minerales reactivas en las propiedades de sorción de radionucleidos en una escala múltiple de rocas graníticas heterogéneas

多尺度非均质花岗岩中反应性矿物相分布对放射性核素吸附特性的影响

Impacto das distribuições de fácies minerais reativas nas propriedades de sorção de radionuclídeos em rochas graníticas heterogêneas multiescala

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Modeling radionuclide reactive transport in host rocks is one of the major challenges with respect to the performance and safety assessment of high-level radioactive repositories. The rock heterogeneity has a significant impact on the scale effects of flow and solute-transport parameters such as the sorption coefficient. The scaling of the radionuclide sorption coefficient is related to the reactive mineral facies (RMF) distributions in fractured rocks, which can be simulated with transition probability-based geostatistical methods. Geostatistical and geochemical analyses of the RMF distributions are performed on granite samples taken from the Beishan site in northwest China. This paper presents an approach to identifying RMF by using a deep-learning-based mineral identification model. The volume proportions and mean lengths of the RMF are accurately estimated in this way compared to the results of X-ray diffraction analysis. This approach overcomes the limitations of traditional methods which are subjective and have lower accuracy. The results show that the composite covariance model of sorption coefficients is related to the volume proportion and mean length of the RMF. The effective sorption coefficient obtained by the upscaling model is greater than the geometric average and smaller than the arithmetic average. Furthermore, through global sensitivity analysis, it is found that mean retardation factors have the most significant effect on the effective sorption coefficient. The results of this study provide substantial information that contributes to improving understanding of radionuclide transport in fractured granite.

Résumé

La modélisation du transport réactif des radionucléides dans les roches d′accueil est l′un des principaux défis en ce qui concerne l′évaluation de la performance et de la sécurité des dépôts de déchets radioactifs de haute activité. L′hétérogénéité de la roche a un impact significatif sur les effets d′échelle des paramètres d′écoulement et de transport de soluté tels que le coefficient de sorption. La mise à l′échelle du coefficient de sorption des radionucléides est liée à la distribution des faciès minéraux réactifs (FMR) dans les roches fracturées, qui peut être simulée à l′aide de méthodes géostatistiques basées sur les probabilités de transition. Des analyses géostatistiques et géochimiques des distributions des FMR sont effectuées sur des échantillons de granite prélevés sur le site de Beishan, dans le nord-ouest de la Chine. Cet article présente une approche de l′identification des FMR à l′aide d′un modèle d′identification des minéraux basé sur l′apprentissage profond. Les proportions de volume et les longueurs moyennes des FMR sont ainsi estimées avec précision par rapport aux résultats de l′analyse par diffraction des rayons X. Cette approche permet de surmonter les limites des méthodes traditionnelles, qui sont subjectives et moins précises. Cette approche permet de surmonter les limites des méthodes traditionnelles, qui sont subjectives et moins précises. Les résultats montrent que le modèle de covariance composite des coefficients de sorption est lié à la proportion de volume et à la longueur moyenne des FMR. Le coefficient de sorption effectif obtenu par le modèle d′extrapolation est supérieur à la moyenne géométrique et inférieur à la moyenne arithmétique. En outre, l′analyse de sensibilité globale montre que les facteurs de retard moyens ont l′effet le plus significatif sur le coefficient de sorption effectif. Les résultats de cette étude fournissent des informations importantes qui contribuent à améliorer la compréhension du transport des radionucléides dans le granite fracturé.

Resumen

El modelado del transporte reactivo de radionucleidos en las rocas que los albergan es uno de los principales retos en lo que respecta a la evaluación del rendimiento y la seguridad de los depósitos radiactivos de alto nivel. La heterogeneidad de la roca tiene un impacto significativo en los efectos de escala de los parámetros de flujo y transporte de solutos, como el coeficiente de sorción. La escala del coeficiente de sorción de radionucleidos está relacionada con las distribuciones de facies minerales reactivas (RMF) en rocas fracturadas, que pueden simularse con métodos geoestadísticos basados en probabilidades de transición. Se realizan análisis geoestadísticos y geoquímicos de las distribuciones de RMFs en muestras de granito tomadas del yacimiento de Beishan, en el noroeste de China. Este trabajo presenta una aproximación a la identificación de RMFs mediante el uso de un modelo de identificación de minerales basado en aprendizaje profundo. Las proporciones de volumen y las longitudes medias de los RMFs se estiman con precisión de esta manera en comparación con los resultados del análisis de difracción de rayos X. Este enfoque supera las limitaciones de los métodos tradicionales, que son subjetivos y tienen menor precisión. Los resultados muestran que el modelo de covarianza compuesta de los coeficientes de sorción está relacionado con la proporción de volumen y la longitud media de las RMF. El coeficiente de sorción efectivo obtenido mediante el modelo de escala ascendente es mayor que la media geométrica y menor que la media aritmética. Además, mediante un análisis de sensibilidad global, se constata que los factores medios de retardo tienen el efecto más significativo sobre el coeficiente de sorción efectivo. Los resultados de este estudio proporcionan información sustancial que contribuye a mejorar la comprensión del transporte de radionucleidos en granito fracturado.

摘要

模拟围岩中放射性核素的反应迁移是高放射性储藏库性能和安全评估方面的主要挑战之一。岩石的非均质性对流动和溶质运移参数(例如:吸附系数)的尺度效应有显著影响。放射性核素吸附系数的尺度与断裂岩体中反应性矿物相(RMF)的分布有关,可以通过基于转移概率的地统计学方法进行模拟。RMF分布的地统计学和地质化学分析应用在了中国西北部北山地区的花岗岩样品。本文提出一个基于深度学习的矿物识别模型来识别RMF的方法。与X射线衍射分析法的结果相比,这种方法可以准确地估量RMF的体积比例和平均长度,克服了传统方法主观性和低精确度的缺点。结果表明吸附系数的复合协方差模型与RMFs的体积比例和平均长度有关。由升尺度模型得到的有效吸附系数高于几何平均值,且低于算术平均值。此外,通过全局敏感性分析发现,平均阻滞系数对有效吸附的影响最为显著。本研究的结果为提高对断裂花岗岩中放射性核素运移的理解提供了实质性信息。

Resumo

A modelagem do transporte reativo de radionuclídeos em rochas hospedeiras é um dos maiores desafios no que diz respeito à avaliação de desempenho e segurança de repositórios de alto nível radioativo. A heterogeneidade da rocha tem um impacto significativo nos efeitos de escala dos parâmetros de fluxo e transporte de soluto, como por exemplo o coeficiente de sorção. A escala do coeficiente de sorção de radionuclídeos está relacionada às distribuições de fácies minerais reativas (FMRs) em rochas fraturadas, que podem ser simuladas com métodos geoestatísticos baseados em probabilidade de transição. Análises geoestatísticas e geoquímicas das distribuições de FMRs são realizadas em amostras de granito retiradas do local de Beishan, no noroeste da China. Este artigo apresenta uma abordagem para identificar FMRs usando um modelo de identificação mineral baseado em aprendizado profundo. As proporções de volume e os comprimentos médios dos FMRs são estimados precisamente dessa maneira em comparação com os resultados da análise de difração de raios-X. Esta abordagem supera as limitações dos métodos tradicionais que são subjetivos e têm menor precisão. Os resultados mostram que o modelo de covariância composta dos coeficientes de sorção está relacionado com a proporção de volume e comprimento médio dos FMRs. O coeficiente de sorção efetivo obtido pelo modelo de covariância composta é maior que a média geométrica e menor que a média aritmética. Além disso, por meio da análise de sensibilidade global, descobriu-se que os fatores médios de retardo têm o efeito mais significativo no coeficiente de sorção efetivo. Os resultados deste estudo fornecem informações substanciais que contribuem para melhorar a compreensão do transporte de radionuclídeos em granito fraturado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Allen-King RM, Halket RM, Gaylord DR, Robin MJL (1998) Characterizing the heterogeneity and correlation of perchloroethene sorption and hydraulic conductivity using a facies-based approach. Water Resour Res 34(3):385–396

    Google Scholar 

  • Allen-King RM, Divine DP, Robin MJL, Alldredge JR, Gaylord DR (2006) Spatial distributions of perchloroethylene reactive transport parameters in the Borden aquifer. Water Resour Res 42(1)

  • Carle SF (1999) T-PROGS: transition probability geostatistical software. Version 2:1. Lawrence livermore national laboratory, Livermore, CA

  • Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28(4):453–476

    Google Scholar 

  • Carle SF, Fogg GE (1997) Modeling spatial variability with one and multidimensional continuous-lag Markov chains. Math Geol 29:891–918

    Google Scholar 

  • Chen J, Dai Z, Yang Z, Pan Y, Zhang X, Wu J, Reza Soltanian M (2021) An improved tandem neural network architecture for inverse modeling of multicomponent reactive transport in porous media. Water Resour Res 57(12):e2021WR030595

    Google Scholar 

  • Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Google Scholar 

  • Chen S, Yue Z, Tham L (2004) Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. Int J Rock Mech Min Sci 41(6):939–957

    Google Scholar 

  • Cheng G, Guo W (2017) Rock images classification by using deep convolution neural network. J Phys Conf Ser 887 (1):012089

    Google Scholar 

  • Dagan G (1984) Solute transport in heterogeneous porous formations. J Fluid Mech 145:151–177

    Google Scholar 

  • Dai Z, Ritzi RW, Huang C, Rubin YN, Dominic DF (2004) Transport in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales. J Hydrol 294(1–3):68–86

    Google Scholar 

  • Dai Z, Ritzi RW, Dominic DF (2005) Improving permeability semivariograms with transition probability models of hierarchical sedimentary architecture derived from outcrop analog studies. Water Resour Res 41(7)

  • Dai Z, Wolfsberg A, Lu Z, Reimus P (2007) Upscaling matrix diffusion coefficients for heterogeneous fractured rocks. Geophys Res Lett 34(7)

  • Dai Z, Wolfsberg A, Lu Z, Deng H (2009) Scale dependence of sorption coefficients for contaminant transport in saturated fractured rock. Geophys Res Lett 36(1)

  • Dai Z, Stauffer PH, Carey JW, Middleton RS, Lu Z, Jacobs JF, Hnottavange-Telleen K, Spangler LH (2014) Pre-site characterization risk analysis for commercial-scale carbon sequestration. Environ Sci Technol 48(7):3908–3915

    Google Scholar 

  • Dai Z, Zhan C, Soltanian MR, Ritzi RW, Zhang X (2019) Identifying spatial correlation structure of multimodal permeability in hierarchical media with Markov chain approach. J Hydrol 568:703–715

    Google Scholar 

  • Dai Z, Xu L, Xiao T, McPherson B, Zhang X, Zheng L, Dong S, Yang Z, Soltanian MR, Yang C (2020) Reactive chemical transport simulations of geologic carbon sequestration: methods and applications. Earth Sci Rev 208:103265

    Google Scholar 

  • Deng H, Dai Z, Wolfsberg A, Lu Z, Ye M, Reimus P (2010) Upscaling of reactive mass transport in fractured rocks with multimodal reactive mineral facies. Water Resour Res 46(6)

  • Deng H, Dai Z, Wolfsberg A, Ye M, Stauffer PH, Lu Z, Kwicklis E (2013) Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies. Chemosphere 91(3):248–257

    Google Scholar 

  • Fernàndez-Garcia D (2005) Differences in the scale dependence of dispersivity and retardation factors estimated from forced-gradient and uniform flow tracer tests in three-dimensional physically and chemically heterogeneous porous media. Water Resour Res 43(3)

  • Fernàndez-Garcia D, Gómez-Hernández J (2007) Impact of upscaling on solute transport: Traveltimes, scale dependence of dispersivity, and propagation of uncertainty. Water Resour Res 43(2)

  • Ferreira A, Giraldi G (2017) Convolutional neural network approaches to granite tiles classification. Expert Syst Appl 84:1–11

    Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19(1):1–67

    Google Scholar 

  • Garcia-Garcia, A, Orts-Escolano, S, Oprea, S, Villena-Martinez, V and Garcia-Rodriguez, J (2017) A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857

  • Giammar DE, Hering JG (2001) Time scales for sorption−desorption and surface precipitation of uranyl on goethite. Environ Sci Technol 35(16):3332–3337

    Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. arXiv arXiv:1512.03385, pp 770–778

  • Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Safety 81(1):23–69

    Google Scholar 

  • Hu BX, Huang H, Zhang D (2002) Stochastic analysis of solute transport in heterogeneous, dual-permeability media. Water Resour Res 38(9)

  • Huang H, Hu BX (2001) Nonlocal reactive transport in heterogeneous dual-porosity media with rate-limited sorption and interregional mass diffusion. Water Resour Res 37(3):639–647

    Google Scholar 

  • Karimpouli S, Tahmasebi P (2019) Segmentation of digital rock images using deep convolutional autoencoder networks. Comput Geosci 126:142–150

    Google Scholar 

  • Lee SY, Carle SF, Fogg GE (2007) Geologic heterogeneity and a comparison of two geostatistical models: sequential Gaussian and transition probability-based geostatistical simulation. Adv Water Resour 30(9):1914–1932

    Google Scholar 

  • Li X, Eini P, Jussi I, Mervi S, Antero L, Stellan H, Andrew M, Marja SK (2018) Sorption of Se species on mineral surfaces, part I: batch sorption and multi-site modelling. Appl Geochem 95:147–157

    Google Scholar 

  • Liu H, Bodvarsson G, Zhang G (2004) Scale dependency of the effective matrix diffusion coefficient. Vadose Zone J 3(1):312–315

    Google Scholar 

  • Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. arXiv arXiv:1411.4038, pp 3431–3440

  • Lu Z, Wolfsberg AV, Dai Z, Zheng C (2010) Characteristics and controlling factors of dispersion in bounded heterogeneous porous media. Water Resour Res 46(12)

  • Ma F, Zhang X, Zhan C, Chen W, Qi L, Dai Z (2022) Upscaling of se (IV) sorption coefficients with hierarchical mineral characterization in multi-scale fractured granite. Stoch Env Res Risk A 1–11

  • Mckay MD, Conover RJBJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    Google Scholar 

  • Mckinley IG, Scholits A (1993) A comparison of radionuclide sorption databases used in recent performance assessments. J Contam Hydrol 13(1–4):347–363

    Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Google Scholar 

  • Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294

    Google Scholar 

  • Prêt D, Sammartino S, Beaufort D, Fialin M, Sardini P, Cosenza P, Meunier A (2010) A new method for quantitative petrography based on image processing of chemical element maps: part II, semi-quantitative porosity maps superimposed on mineral maps. Am Mineral 95(10):1389–1398

    Google Scholar 

  • Rajaram H (1997) Time and scale dependent effective retardation factors in heterogeneous aquifers. Adv Water Resour 20(4):217–230

    Google Scholar 

  • Reimus P, Pohll G, Mihevc T, Chapman J, Haga M, Lyles B, Kosinski S, Niswonger R, Sanders P (2003) Testing and parameterizing a conceptual model for solute transport in a fractured granite using multiple tracers in a forced-gradient test. Water Resour Res 39(12):285–295

    Google Scholar 

  • Ritzi RW (2000) Behavior of indicator variograms and transition probabilities in relation to the variance in lengths of hydrofacies. Water Resour Res 36(11):3375–3381

    Google Scholar 

  • Ritzi RW, Dai Z, Dominic DF, Rubin YN (2004) Spatial correlation of permeability in cross-stratified sediment with hierarchical architecture. Water Resour Res 40(3)

  • Rubin Y (1995) Flow and transport in bimodal heterogeneous formations. Water Resour Res 31(10):2461–2468

    Google Scholar 

  • Sardini P, Moreau E, Sammartino S, Touchard G (1999) Primary mineral connectivity of polyphasic igneous rocks by high-quality digitisation and 2D image analysis. Comput Geosci 25(5):599–608

    Google Scholar 

  • Soltanian MR, Ritzi R, Dai Z, Huang C, Dominic D (2014) Transport of kinetically sorbing solutes in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales. Stoch Env Res Risk A 29(3):709–726

    Google Scholar 

  • Soltanian MR, Ritzi RW (2014) A new method for analysis of variance of the hydraulic and reactive attributes of aquifers as linked to hierarchical and multiscaled sedimentary architecture. Water Resour Res 50(12):9766–9776

    Google Scholar 

  • Soltanian MR, Ritzi R, Huang CC, Dai Z, Deng H (2015a) A note on upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies. Transp Porous Media 108(2):355–366

    Google Scholar 

  • Soltanian MR, Ritzi RW, Dai Z, Chao CH (2015b) Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: the Lagrangian approach. Chemosphere 122(March):235–244

    Google Scholar 

  • Soltanian MR, Ritzi RW, Huang CC, Dai Z (2015c) Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 2, particle displacement variance. Water Resour Res 51(3):1601–1618

    Google Scholar 

  • Soltanian MR, Ritzi RW, Huang CC, Dai Z (2015d) Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 1. time-dependent effective retardation factor. Water Resour Res 51(3):1586–1600

    Google Scholar 

  • Soltanian MR, Sun A, Dai Z (2017) Reactive transport in the complex heterogeneous alluvial aquifer of Fortymile Wash, Nevada. Chemosphere 179:379–386

    Google Scholar 

  • Soltanian MR, Dai Z, Yang C, Amooie MA, Moortgat J (2018) Multicomponent competitive monovalent cation exchange in hierarchical porous media with multimodal reactive mineral facies. Stoch Env Res Risk A 32(1):295–310

    Google Scholar 

  • Soltanian MR, Behzadi F, de Barros FP (2020) Dilution enhancement in hierarchical and multiscale heterogeneous sediments. J Hydrol 587:125025

    Google Scholar 

  • Song S, Gao T (2021) Research on image segmentation algorithm based on threshold. 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), IEEE, Piscataway, NJ, pp 306–308

    Google Scholar 

  • Sudicky EA, Frind EO (1982) Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures. Water Resour Res 17(3):555–564

    Google Scholar 

  • Tang DH, Frind EO, Sudicky EA (1981) Contaminant transport in fractured porous media: analytical solution for a single fracture. Water Resour Res 18(7):1634–1642

    Google Scholar 

  • Tong C (2015) PSUADE reference manual (version 1.7). Lawrence livermore national laboratory, Livermore, CA

  • Tong C (2017) Handbook of uncertainty quantification. Springer, Heidelberg, Germany, pp 1695–1731

    Google Scholar 

  • Triay IR, Cotter CR, Kraus SM, Huddleston MH (1996) Radionuclide sorption in Yucca Mountain tuffs with J-13 well water: neptunium, uranium, and plutonium. Yucca Mountain site characterization program milestone 3338. Office of Scientific and Technical Information Technical Reports, US DOE, Washington, DC

  • Wang J, Chen L, Su R, Zhao X (2018) The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: planning, site selection, site characterization and in situ tests. J Rock Mech Geotech Eng 10(3):411–435

    Google Scholar 

  • Wang Y, Liu H, Guo M, Shen X, Han B, Zhou Y (2021) Image recognition model based on deep learning for remaining oil recognition from visualization experiment. Fuel 291:120216

    Google Scholar 

  • Wen X-H, Gómez-Hernández JJ (1996) Upscaling hydraulic conductivities in heterogeneous media: an overview. J Hydrol 183(1–2):ix–xxxii

    Google Scholar 

  • Wolfsberg A, Dai Z, Zhu L, Reimus P, Xiao T, Ware D (2017) Colloid-facilitated plutonium transport in fractured tuffaceous rock. Environ Sci Technol 51(10):5582–5590

    Google Scholar 

  • Yu Q, Xiong Z, Du C, Dai Z, Soltanian MR, Soltanian M, Yin S, Liu W, Liu C, Wang C (2020) Identification of rock pore structures and permeabilities using electron microscopy experiments and deep learning interpretations. Fuel 268:117416

    Google Scholar 

  • Zhan C, Dai Z, Samper J, Yin S, Ershadnia R, Zhang X, Wang Y, Yang Z, Luan X, Soltanian MR (2022a) An integrated inversion framework for heterogeneous aquifer structure identification with single-sample generative adversarial network. J Hydrol 610:127844

    Google Scholar 

  • Zhan C, Dai Z, Soltanian MR, Zhang X (2022b) Stage-wise stochastic deep learning inversion framework for subsurface sedimentary structure identification. Geophys Res Lett 49(1):e2021GL095823

    Google Scholar 

  • Zhang X, Liu C, Hu BX, Zhang G (2014) Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. J Contam Hydrol 156:1–15

    Google Scholar 

  • Zhang X, Liu C, Hu BX, Hu Q (2016) Grain-size based additivity models for scaling multi-rate uranyl surface complexation in subsurface sediments. Math Geosci 48:511–535

    Google Scholar 

  • Zhang X, Ma F, Yin S, Wallace CD, Soltanian MR, Dai Z, Ritzi RW, Ma Z, Zhan C, Lü X (2021) Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media: a critical review. Appl Energy 303:117603

    Google Scholar 

  • Zhang X, Ma F, Dai Z, Wang J, Chen L, Ling H, Soltanian MR (2022a) Radionuclide transport in multi-scale fractured rocks: a review. J Hazard Mater 424:127550

    Google Scholar 

  • Zhang X, Wang Z, Reimus P, Ma F, Soltanian MR, Xing B, Zang J, Wang Y, Dai Z (2022b) Plutonium reactive transport in fractured granite: multi-species experiments and simulations. Water Res 224:119068

    Google Scholar 

  • Zheng L, Pan Q, Li G, Liang J (2009) Improvement of grayscale image segmentation based on PSO algorithm. IEEE, Piscataway, NJ, pp 442–446

    Google Scholar 

  • Zhou Q, Liu H-H, Molz FJ, Zhang Y, Bodvarsson GS (2007) Field-scale effective matrix diffusion coefficient for fractured rock: results from literature survey. J Contam Hydrol 93(1–4):161–187

    Google Scholar 

  • Ziegel ER (1998) Geostatistical software library and user′s guide. Technometrics 40(4):357

    Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the assistance of the guest editor J. Jaime Gómez-Hernández, the associate editor, and the anonymous reviewers for improving the quality of the paper significantly.

Funding

This work has been funded by the National Natural Science Foundation of China (NSFC: U2267217, 42141011) and the Spanish Ministry of Science and Innovation (Project PID2019-109544RB-I00).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javier Samper, Hui Ling or Xiaoying Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the special issue “Geostatistics and hydrogeology”

Appendix

Appendix

Table 9 List of terms in multiscale correlation models of RMF
Table 10 List of terms in MARS model

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Dai, Z., Samper, J. et al. Impact of reactive mineral facies distributions on radionuclide sorption properties in multiscale heterogeneous granite rocks. Hydrogeol J 31, 1581–1597 (2023). https://doi.org/10.1007/s10040-023-02672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02672-z

Keywords

Navigation