Skip to main content

Advertisement

Log in

Age distribution of groundwater in fractured aquifers of the St. Lawrence Lowlands (Canada) determined by environmental tracers (3H/3He, 85Kr, SF6, CFC-12, 14C)

Distribution des âges des eaux souterraines dans des aquifères fracturés des Basses terres du Saint-Laurent (Canada) déterminée par des traceurs environnementaux (3H/3He, 85Kr, SF6, CFC-12, 14C)

Distribución de la edad de las aguas subterráneas en acuíferos fracturados de St. Lawrence Lowlands (Canadá) determinada por trazadores ambientales (3H/3He, 85Kr, SF6, CFC-12, 14C)

加拿大St. Lawrence低地裂隙含水层根据环境示踪物 (3H/3He, 85Kr, SF6, CFC-12, 14C) 确定的年龄分布

Distribuição das idades da água subterrânea em aquíferos fraturados na Terras Baixas de St. Lawrence (Canadá) determinadas por traçadores ambientais (3H/3He, 85Kr, SF6, CFC-12, 14C)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Information about the age distribution of groundwater provides unique and particularly relevant insights about groundwater flow and mixing conditions, as well as about the vulnerability and sustainability of the resource. Constraining flow paths in heterogeneous and fractured aquifers requires spatially distributed and depth-related observations. Where multiple wellbores are not available, depth-specific samples from individual long open-borehole wells may provide useful information. In this study, results from depth-specific sampling of environmental tracers (3H, 85Kr, SF6, CFC-12, noble gases, 13C, 14C) are reported from seven long open-borehole wells (depths ≤100 m below the surface) in the area of the St Lawrence Lowlands (Quebec, Canada). The multitracing approach allowed for the determination of the groundwater mixing conditions within the fractured-rock aquifers. The results indicate that fracture networks induce complex groundwater mixing patterns, without any evidence that the residence times significantly increase with the depth. Under unstressed conditions, the investigated aquifers contain 20–50% “modern” water (less than 60 years old) and 50–80% “old” water with residence times of ~4–11,000 years. The observed groundwater bi-modal age distribution is caused by fast flows through interconnected fractures and slow flows through poorly connected fractures or the primary porosity of the rock. Within the catchment of the wellfields, the pumped groundwater becomes essentially “modern” because of the preferential draining of productive fractures, while the water within the less transmissive volumes cannot be leaked out as fast. Thus, groundwater abstraction increases the aquifer’s intrinsic vulnerability to anthropogenic pollution.

Résumé

L’information sur la distribution des âges des eaux souterraines apporte une information unique et particulièrement pertinente sur les flux d’eau souterraine et les conditions de mélange, de même que sur la vulnérabilité et la durabilité de la ressource. La détermination des trajectoires d’écoulement dans les aquifères hétérogènes et fracturés nécessite des observations spatialisées et en relation avec les profondeurs. Lorsque des forages multiniveaux ne sont pas disponibles, des échantillons à différentes profondeurs dans des foragesouverts dans le roc peut apporter des informations utiles. Dans cette étude, les résultats des échantillonnages à des profondeurs spécifiques pour les traceurs environnementaux (3H, 85Kr, SF6, CFC-12, gaz nobles, 13C, 14C) sont rapportés pour sept forages (profondeurs ≤ 100 m sous la surface) dans la zone des Basses Terres du Saint Laurent (Québec, Canada). L’approche multitraceur permet de déterminer les conditions de mélange au sein de l’aquifère rocheux fracturé. Les résultats indiquent que le réseau de fractures induit des schémas de mélange complexe, sans que les temps de séjour augmentent de manière significative avec la profondeur. Quand ils ne sont par exploités, les aquifères étudiés contiennent entre 20 et 50% d’eau « moderne» (moins de 60 ans) et 50 à 80% d’eau « ancienne» avec des temps de résidence d’environ 4–11,000 ans. La distribution bimodale des âges observée dans les eaux souterraines est causée par les flux rapides par les fractures interconnectées et des flux lents par les fractures mal connectées ou via la porosité primaire des roches. Dans le secteur des champs de captage, les eaux des aquifères exploités deviennent essentiellement « moderne» du fait du drainage préférentiel par les fractures productives, alors que l’eau contenue dans les volumes moins transmissifs ne peut pas s’écouler aussi rapidement. Ainsi, l’exploitation des aquifères augmente la vulnérabilité intrinsèque aux pollutions anthropiques.

Resumen

La información sobre la distribución de la edad de las aguas subterráneas proporciona conocimientos únicos y especialmente relevantes sobre el flujo de las aguas subterráneas y las condiciones de mezcla, así como sobre la vulnerabilidad y la sostenibilidad del recurso. La determinación de las trayectorias de flujo en acuíferos heterogéneos y fracturados requiere observaciones distribuidas espacialmente y relacionadas con la profundidad. Cuando no se dispone de múltiples pozos, las muestras específicas de profundidad de pozos individuales de sondeo abierto de gran longitud pueden proporcionar información útil. En este estudio se presentan los resultados del muestreo en profundidad de trazadores ambientales (3H, 85Kr, SF6, CFC-12, gases nobles, 13C, 14C) de siete pozos profundos abiertos (profundidades ≤ 100 m por debajo de la superficie) en la zona de St Lawrence Lowlands (Quebec, Canadá). El enfoque multitrazado permitió determinar las condiciones de mezcla de las aguas subterráneas dentro de los acuíferos de roca fracturada. Los resultados indican que las redes de fracturas inducen patrones complejos de mezcla de las aguas subterráneas, sin que haya pruebas de que los tiempos de residencia aumenten significativamente con la profundidad. En condiciones normales, los acuíferos investigados contienen entre un 20% y un 50% de agua “moderna” (menos de 60 años) y entre un 50 y un 80% de agua “antigua” con tiempos de residencia de entre 4 y 11,000 años. La distribución bimodal de la edad del agua subterránea observada se debe a flujos rápidos a través de fracturas interconectadas y flujos lentos a través de fracturas mal conectadas o a la porosidad primaria de la roca. Dentro de la cuenca de los campos de pozos, el agua subterránea bombeada se vuelve esencialmente“moderna” debido al drenaje preferente de las fracturas productivas, mientras que el agua dentro de los volúmenes menos transmisivos no puede filtrarse tan rápidamente. Así pues, la extracción de agua subterránea aumenta la vulnerabilidad intrínseca del acuífero a la contaminación antropogénica.

摘要

地下水年龄分布的信息提供了关于地下水流动和混合条件、资源的脆弱性和可持续性的独特而相关的信息。在非均质和断裂的含水层中限制流动路径需要具有空间分布和深度相关观测。如果没有多个井眼可用, 则来自个别长裸眼钻井的深度特定样品可能提供有用的信息。本研究报道了在加拿大魁北St Lawrence低地的七个长裸眼钻井 (深度在地表以下100 m) 进行的环境示踪剂 (3H、85Kr、SF6、CFC-12、惰性气体、13C、14C) 深度特定采样的结果。多示踪方法确定了岩石裂隙含水层内的地下水混合条件。结果表明, 裂缝网络引起复杂的地下水混合模式, 没有证据表明滞留时间随深度显著增加。在无应力条件下, 研究区的含水层含有20%到50%的 “现代”水 (不到60年) 和50%到80%的 “古老”水, 滞留时间约为4,000到11,000年。观察到的地下水双峰年龄分布是由于通过相互连接的裂缝快速流动和通过连接较差的裂缝或岩石的主要孔隙的慢速流动。在水源地的集水区内, 由于优先排干出水量大的裂缝, 抽取的地下水基本上成为 “现代”水, 而较低渗透性区域内的水无法被迅速泄漏。因此, 地下水开采增加了含水层对人为污染的固有脆弱性。

Resumo

A informação sobre a distribuição da idade das águas subterrâneas fornece uma compreensão única e particularmente relevante sobre o fluxo das águas subterrâneas e suas condições de mistura, como também sobre a vulnerabilidade e sustentabilidade do recurso. Caminhos de fluxo limitados em aquíferos heterogêneos e fraturados requer observações espacialmente distribuídas e relacionadas a profundidade. Onde múltiplos poços não estão disponíveis, amostras de profundidades específicas em furos individuais profundos podem fornecer informações úteis. Neste estudo, resultados sobre a amostragem em profundidades específicas de isótopos ambientais (3H, 85Kr, SF6, CFC-12, gases nobres, 13C, 14C) são descritas em sete poços profundos (profundidades ≤ 100 m abaixo da superfície) na área da Terras Baixas de St. Lawrence (Quebec, Canadá). A proposta de utilizar múltiplos traçadores permitiu a determinação da condição de mistura da água subterrânea em aquíferos de rocha fraturada. Os resultados indicam que os sistemas de fraturas induzem padrões de mistura complexa das águas subterrâneas, sem nenhuma evidência de que os tempos de residência aumentam significativamente com a profundidade. Sob condições sem estresse, os aquíferos investigados contêm de 20 a 50% de água “moderna” (menor que 60 anos) e de 50 a 90% de água “antiga”, com tempos de residência entre 4 e 11,000 anos. A distribuição de idade bimodal observada da água subterrânea é causada por fluxos rápidos através de fraturas interconectadas e fluxos lentos através de fraturas mal conectadas, ou pela porosidade primária da rocha. Na captação da água do poço, a água subterrânea torna-se essencialmente “moderna” por conta da drenagem preferencial de fraturas produtivas, sendo que a água de volumes menos transmissivos não drena tão rápido quanto. Portanto, a captação da água subterrânea aumenta a vulnerabilidade intrínseca do aquífero a poluição antropogênica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahlswede J, Hebel S, Ross JO, Schoetter R, Kalinowski MB (2013) Update and improvement of the global krypton-85 emission inventory. J Environ Radioact 115:34–42. https://doi.org/10.1016/j.jenvrad.2012.07.006

    Article  Google Scholar 

  • Alikhani J, Deinhart AL, Visser A, Bibby RK, Purtschert R, Moran JE, Massoudieh A, Esser BK (2016) Nitrate vulnerability projections from Bayesian inference of multiple groundwater age tracers. J Hydrol 543:167–181. https://doi.org/10.1016/j.jhydrol.2016.04.028

    Article  Google Scholar 

  • Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends. J Hydrol 41:233–252

    Article  Google Scholar 

  • Aoki N, Makide Y (2005) The concentration of krypton in the atmosphere: its revision after half a century. Chem Lett 34:1396–1397. https://doi.org/10.1246/cl.2005.1396

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Leiden, The Netherlands, 649 pp

    Google Scholar 

  • Beaudry C, Lefebvre R, Rivard C, Cloutier V (2018) Conceptual model of regional groundwater flow based on hydrogeochemistry (Montérégie Est, Québec, Canada). Can Water Resour J/Rev Can Ressour Hydriques 43:152–172. https://doi.org/10.1080/07011784.2018.1461579

    Article  Google Scholar 

  • Benoit N, Nastev M, Blanchette D, Molson J (2014) Hydrogeology and hydrogeochemistry of the Chaudière River watershed aquifers, Québec, Canada. Can Water Resour J/Rev Can Ressour Hydriques 39:32–48. https://doi.org/10.1080/07011784.2014.881589

    Article  Google Scholar 

  • Blanchette D, Lefebvre R, Nastev M, Cloutier V (2010) Groundwater quality, geochemical processes and groundwater evolution in the Chateauguay River Watershed, Quebec, Canada. Can Water Resour J 35:503–526. https://doi.org/10.4296/cwrj3504503

    Article  Google Scholar 

  • Bollhöfer A, Schlosser C, Schmid S, Konrad M, Purtschert R, Krais R (2019) Half a century of Krypton-85 activity concentration measured in air over Central Europe: trends and relevance for dating young groundwater. J Environ Radioact 205–206:7–16. https://doi.org/10.1016/j.jenvrad.2019.04.014

    Article  Google Scholar 

  • Bondu R, Cloutier V, Rosa E, Roy M (2020) An exploratory data analysis approach for assessing the sources and distribution of naturally occurring contaminants (F, Ba, Mn, As) in groundwater from southern Quebec (Canada). Appl Geochem 114:104500. https://doi.org/10.1016/j.apgeochem.2019.104500

    Article  Google Scholar 

  • Boucher C, Pinti DL, Roy M, Castro MC, Cloutier V, Blanchette D, Larocque M, Hall CM, Wen T, Sano Y (2015) Groundwater age investigation of eskers in the Amos region, Quebec, Canada. J Hydrol 524:1–14. https://doi.org/10.1016/j.jhydrol.2015.01.072

    Article  Google Scholar 

  • Brinkmann R, Münnich KO, Vogel JC (1959) C14-Altersbestimmung von Grundwasser [C14 dating of groundwater]. Naturwissenschaften 46:10–12

    Article  Google Scholar 

  • Bullister JL, Wisegarver PD, Menzia FA (2002) The solubility of sulfur hexafluoride in water and seawater. Deep-Sea Res 49:175–187

    Article  Google Scholar 

  • Busenberg E, Plummer LN (1992) Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system of central Oklahoma. Water Resour Res 28:2257–2283. https://doi.org/10.1029/92WR01263

    Article  Google Scholar 

  • Busenberg E, Plummer LN (2000) Dating young groundwater with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resour Res 36:3011–3030. https://doi.org/10.1029/2000wr900151

    Article  Google Scholar 

  • Cane G, Clark ID (1999) Tracing ground water recharge in an agricultural watershed with isotopes. Groundwater 37:133–139

    Article  Google Scholar 

  • Chaillou G, Touchette M, Buffin-Bélanger T, Cloutier CA, Hétu B, Roy MA (2018) Hydrogeochemical evolution and groundwater mineralization of shallow aquifers in the Bas-Saint-Laurent region, Québec, Canada. Can Water Resour J/Rev Can Ressour Hydriques 43:136–151. https://doi.org/10.1080/07011784.2017.1387817

    Article  Google Scholar 

  • Chambers LA, Gooddy DC, Binley AM (2018) Use and application of CFC-11, CFC-12, CFC-113 and SF 6 as environmental tracers of groundwater residence time: a review. Geosci Front. https://doi.org/10.1016/j.gsf.2018.02.017

    Article  Google Scholar 

  • Clark I (2015) Groundwater geochemistry and isotopes. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Clarke WB, Jenkins WJ, Top Z (1976) Determination of tritium by mass spectrometric measurement of 3He. Int J Appl Radiat Isot 27:515–522

    Article  Google Scholar 

  • Cloutier V, Lefebvre R, Savard MM, Bourque E, Therrien R (2006) Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada. Hydrogeol J 14:573–590. https://doi.org/10.1007/s10040-005-0002-3

    Article  Google Scholar 

  • Cook PG, Herczeg AL (2000) Environmental tracers in subsurface hydrology. Kluwer, Dordrecht, The Netherlands, 529 pp

  • Cook PG, Solomon DK (1997) Recent advances in dating young groundwater: chlorofluorocarbons, 3H 3He and 85Kr. J Hydrol 191:245–265. https://doi.org/10.1016/S0022-1694(96)03051-X

    Article  Google Scholar 

  • Corcho-Alvarado JA, Purtschert R, Barbecot F, Chabault C, Rueedi J, Schneider V, Aeschbach-Hertig W, Kipfer R, Loosli HH (2007) Constraining the age distribution of highly mixed groundwater using39Ar: a multiple environmental tracer (3H/3He, 85Kr, and14) study in the semiconfined Fontainebleau Sands Aquifer (France). Water Resour Res 43:W03427. https://doi.org/10.1029/2006wr005096

    Article  Google Scholar 

  • Corcho Alvarado JA, Barbecot F, Purtschert R (2008) Ambient vertical flow in long-screen wells: a case study in the Fontainebleau Sands Aquifer (France). Hydrogeol J 17:425–431. https://doi.org/10.1007/s10040-008-0383-1

    Article  Google Scholar 

  • Craig H (1981) Helium-3 and mantle volatiles in the ocean and oceanic crust. The Sea 7:391–428

    Google Scholar 

  • Crow HL, Ladevèze P, Laurencelle M, Benoît N, Rivard C, Lefebvre R (2013) Downhole geophysical logging and preliminary analyses of bedrock structural data for groundwater applications in the Montérégie Est area, Québec. Natural Resources Canada, Ottawa

  • Delbart C, Barbecot F, Valdes D, Tognelli A, Fourre E, Purtschert R, Couchoux L, Jean-Baptiste P (2014) Investigation of young water inflow in karst aquifers using SF6–CFC–3H/He–85Kr–39Ar and stable isotope components. Appl Geochem 50:164–176. https://doi.org/10.1016/j.apgeochem.2014.01.011

    Article  Google Scholar 

  • Dubois E, Larocque M, Gagné S, Meyzonnat G (2021) Simulation of long-term spatiotemporal variations in regional-scale groundwater recharge: contributions of a water budget approach in cold and humid climates. Hydrol Earth Syst Sci 25:6567–6589. https://doi.org/10.5194/hess-25-6567-2021

    Article  Google Scholar 

  • Dunkle-Shapiro S, Rowe G, Schlosser P, Ludin A, Stute M (1998) Tritium-helium 3 dating under complex conditions in hydraulically stressed areas of a buried-valley aquifer. Water Resour Res 34:1165–1180

    Article  Google Scholar 

  • Eriksson E (1963) Atmospheric tritium as a tool for the study of certain hydrologic aspects of river basins. Tellus 15:303–308. https://doi.org/10.1111/j.2153-3490.1963.tb01391.x

    Article  Google Scholar 

  • Fontes JC (1992) Chemical and isotopic constraints on14C dating of groundwater. In: Radiocarbon after four decades. Springer, New York, pp 242–261

  • Fontes JC, Garnier J (1979) Determination of the initial14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15:399–413

    Article  Google Scholar 

  • Gagné S, Larocque M, Pinti DL, Saby M, Meyzonnat G, Méjean P (2017) Benefits and limitations of using isotope-derived groundwater travel times and major ion chemistry to validate a regional groundwater flow model: example from the Centre-du-Québec region, Canada. Can Water Resour J. https://doi.org/10.1080/07011784.2017.1394801

  • Gardner P, Solomon DK (2009) An advanced passive diffusion sampler for the determination of dissolved gas concentrations. Water Resour Res 45:W06423. https://doi.org/10.1029/2008wr007399

    Article  Google Scholar 

  • Gardner P, Hokr M, Shao H, Balvin A, Kunz H, Wang Y (2016) Investigating the age distribution of fracture discharge using multiple environmental tracers, Bedrichov Tunnel, Czech Republic. Environ Earth Sci 75(20):1374. https://doi.org/10.1007/s12665-016-6160

    Article  Google Scholar 

  • Ghesquière O, Walter J, Chesnaux R, Rouleau A (2015) Scenarios of groundwater chemical evolution in a region of the Canadian Shield based on multivariate statistical analysis. J Hydrol Reg Stud 4:246–266

    Article  Google Scholar 

  • Gillon M, Barbecot F, Gibert E, Corcho-Alvarado JA, Marlin C, Massault M (2009) Open to closed system transition traced through the TDIC isotopic signature at the aquifer recharge stage, implications for groundwater14C dating. Geochim Cosmochim Acta 73:6488–6501. https://doi.org/10.1016/j.gca.2009.07.032

    Article  Google Scholar 

  • Globensky Y (1987) Géologie des Basses-Terres du Saint-Laurent [Geology of the St. Lawrence Lowlands]. Report MM85-02, Direction générale de l’exploitation géologique et minérale, Québec, 70 pp

  • Government of Canada (2021) 1981–2010 climate normals station data. Government of Canada, Ottawa

  • Han LF, Wassenaar LI (2021) Principles and uncertainties of 14C age estimations for groundwater transport and resource evaluation. Isot Environ Health Stud 57(2):111–141

    Article  Google Scholar 

  • Han LF, Plummer LN, Aggarwal P (2012) A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating. Chem Geol 318:88–112

    Article  Google Scholar 

  • Höhener P, Werner D, Balsiger C, Pasteris G (2003) Worldwide occurrence and fate of chlorofluorocarbons in groundwater. Crit Rev Environ Sci Technol 33:1–29. https://doi.org/10.1080/10643380390814433

    Article  Google Scholar 

  • IAEA (1999) Use of isotopes for analyses of flow and transport dynamics in groundwater systems: results of a co-ordinated research project 1996–1999. International Atomic Energy Agency, Vienna, 388 pp

  • IAEA (2006) Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, 291 pp

  • IAEA (2013) Isotope methods for dating old groundwater. STI/PUB/1587, IAEA, Vienna, 376 pp

  • Ingerson E, Pearson FJ (1964) Estimation of age and rate of motion of groundwater by the14C-method. In: Recent researches in the fields of atmosphere, hydrosphere and nuclear geochemistry. Maruzen, Tokyo, pp 263–283

  • Jasechko S, Perrone D, Befus KM, Bayani Cardenas M, Ferguson G, Gleeson T, Luijendijk E, McDonnell JJ, Taylor RG, Wada Y, Kirchner JW (2017) Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nat Geosci 10:425–429. https://doi.org/10.1038/ngeo2943

    Article  Google Scholar 

  • Jung M, Aeschbach W (2018) A new software tool for the analysis of noble gas data sets from (ground)water. Environ Model Softw 103:120–130. https://doi.org/10.1016/j.envsoft.2018.02.004

    Article  Google Scholar 

  • Jurgens BC, Böhlke JK, Kauffman LJ, Belitz K, Esser BK (2016) A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells. J Hydrol 543:109–126. https://doi.org/10.1016/j.jhydrol.2016.05.011

    Article  Google Scholar 

  • Jurgens BC, Böhlke JK, Eberts SM (2012) TracerLPM (version 1): an Excel® workbook for interpreting groundwater age distributions from environmental tracer data. US Geological Survey, Reston, VA, 72 pp

  • Kazemi GA, Lehr JH, Perrochet P (2006) Groundwater age. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Keith ML, Weber JN (1964) Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim Cosmochim Acta 28:1787–1816. https://doi.org/10.1016/0016-7037(64)90022-5

    Article  Google Scholar 

  • Kipfer R, Aeschbach-Hertig W, Peeters F, Stute M (2002) Noble gases in lakes and ground waters. Rev Mineral Geochem 47:615–700. https://doi.org/10.2138/rmg.2002.47.14

    Article  Google Scholar 

  • Kolbe T, Marçais J, Thomas Z, Abbott BW, de Dreuzy JR, Rousseau-Gueutin P, Aquilina L, Labasque T, Pinay G (2016) Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer. J Hydrol 543:31–46. https://doi.org/10.1016/j.jhydrol.2016.05.020

    Article  Google Scholar 

  • Lamothe M (1989) A new framework for the Pleistocene stratigraphy of the central St. Lawrence Lowland, southern Québec. Géogr phys Quatern 43(2):119–129

    Article  Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River, NJ, 600 pp

    Google Scholar 

  • Lefebvre K, Barbecot F (2022) Synthèse hydrogéochimique des régions couvertes par les projets d’acquisition de connaissances sur les eaux souterraines et développement d’un indice de résistance chimique des eaux souterraines du Québec [Hydrogeochemical synthesis of the regions covered by groundwater knowledge acquisition projects and development of a chemical resistance index for groundwater in Quebec]. Report to the Ministry of the Environment of Quebec (MELCC), Quebec, 194 pp

  • Loosli HH, Purtschert R (1983) Rare gases. In: Isotopes in the water cycle. Springer, Berlin, pp 91–96

  • Lu Z-T, Schlosser P, Smethie WM, Sturchio NC, Fischer TP, Kennedy BM, Purtschert R, Severinghaus JP, Solomon DK, Tanhua T, Yokochi R (2014) Tracer applications of noble gas radionuclides in the geosciences. Earth Sci Rev 138:196–214. https://doi.org/10.1016/j.earscirev.2013.09.002

    Article  Google Scholar 

  • Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of tritium. J Res Nat Inst Stand Technol 105(4):541

    Article  Google Scholar 

  • Małoszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers: 1. models and their applicability. J Hydrol 57(3–4):207–231

    Article  Google Scholar 

  • Manning AH, Solomon DK, Thiros SA (2005) 3H/ 3He age data in assessing the susceptibility of wells to contamination. Ground Water 43(3):353–367. https://doi.org/10.1111/j.1745-6584.2005.0028

    Article  Google Scholar 

  • Mattei A, Barbecot F, Goblet P, Guillon S (2020) Pore water isotope fingerprints to understand the spatiotemporal groundwater recharge variability in ungauged watersheds. Vadose Zone J 19. https://doi.org/10.1002/vzj2.20066

  • Mayo AL (2010) Ambient well-bore mixing, aquifer cross-contamination, pumping stress, and water quality from long-screened wells: what is sampled and what is not? Hydrogeol J 18:823–837

    Article  Google Scholar 

  • Méjean P, Pinti DL, Larocque M, Ghaleb B, Meyzonnat G, Gagné S (2016) Processes controlling 234 U and 238 U isotope fractionation and helium in the groundwater of the St. Lawrence Lowlands, Quebec: the potential role of natural rock fracturing. Appl Geochem 66:198–209. https://doi.org/10.1016/j.apgeochem.2015.12.015

    Article  Google Scholar 

  • Meyzonnat G, Barbecot F, Corcho-Alvarado JA, Pinti DL, Lauzon JM, McCormack R (2021) Depth-sequential investigation of major ions, δ18O, δ2H and δ13C in fractured aquifers of the St. Lawrence Lowlands (Quebec, Canada) using passive samplers. Water 13:1806. https://doi.org/10.3390/w13131806

    Article  Google Scholar 

  • Meyzonnat G, Barbecot F, Corcho-Alvarado JA, Lauzon JM, McCormack R, Tognelli A, Zeyen H, Alazard M (2019) Borehole heat budget calculator: a new tool for the quick exploitation of high-resolution temperature profiles by hydrogeologists. J Water Resour Prot 11:122–147. https://doi.org/10.4236/jwarp.2019.112008

    Article  Google Scholar 

  • Meyzonnat G, Barbecot F, Corcho-Alvarado JA, Tognelli A, Zeyen H, Mattei A, McCormack R (2018) High-resolution wellbore temperature logging combined with a borehole-scale heat budget: conceptual and analytical approaches to characterize hydraulically active fractures and groundwater origin. Geofluids 2018, 9461214. https://doi.org/10.1155/2018/9461214

    Article  Google Scholar 

  • Montcoudiol N, Molson J, Lemieux JM (2014) Groundwater geochemistry of the Outaouais Region (Québec, Canada): a regional-scale study. Hydrogeol J 23:377–396. https://doi.org/10.1007/s10040-014-1190-5

    Article  Google Scholar 

  • Mook WG (1972) On the reconstruction of the initial14C content of groundwater from the chemical and isotopic composition. 8th Int Conf Radiocarbon Dating 1:342–352

  • Musy S, Meyzonnat G, Barbecot F, Hunkeler D, Sültenfuss J, Solomon DK, Purtschert R (2021) In-situ sampling for krypton-85 groundwater dating. J Hydrol X 11:100075. https://doi.org/10.1016/j.hydroa.2021.100075

    Article  Google Scholar 

  • Nadeau S, Rosa E, Cloutier V (2018) Stratigraphic sequence map for groundwater assessment and protection of unconsolidated aquifers: a case example in the Abitibi-Témiscamingue region, Québec, Canada. Can Water Resour J/Rev Can Ressour Hydriques 43:113–135. https://doi.org/10.1080/07011784.2017.1354722

    Article  Google Scholar 

  • Painter S, Cvetkovic V, Mancillas J, Pensado O (2008) Time domain particle tracking methods for simulating transport with retention and first-order transformation. Water Resour Res 44(1)

  • Peeters F, Beyerle U, Werner Aeschbach-Aertig W, Holocher J, Brennwald MS, Kipfer R (2003) Improving noble gas based paleoclimate reconstruction and groundwater dating using20Ne/22Ne ratios. Geochim Cosmochim Acta 67:587–600

    Article  Google Scholar 

  • Pinti DL, Béland-Otis C, Tremblay A, Castro MC, Hall CM, Marcil JS, Lavoie JY, Lapointe R (2011) Fossil brines preserved in the St-Lawrence Lowlands, Québec, Canada as revealed by their chemistry and noble gas isotopes. Geochim Cosmochim Acta 75:4228–4243

    Article  Google Scholar 

  • Poulsen DL, Cook PG, Simmons CT, Solomon DK, Dogramaci S (2019) Depth-resolved groundwater chemistry by longitudinal sampling of ambient and pumped flows within long-screened and open borehole wells. Water Resour Res 55:9417–9435

    Article  Google Scholar 

  • Rajaram H (2021) Matrix diffusion as a mechanism contributing to fractal stream chemistry and long-tailed transit time distributions. Geophys Res Lett 48(18):e2021GL094292. https://doi.org/10.1029/2021GL094292

    Article  Google Scholar 

  • Roy J, Morin R, Chesnaux R, Richard S, Pino DS, Rouleau A, Roy DW, Walter J, Noël D (2011) Hydrogeological insight from geophysical water-well logging in hard rocks in the Saguenay region, Québec. Canada Proceedings Papers, DOC-2288, GeoHydro, Quebec, August 2011

  • Saby M, Larocque M, Pinti DL, Barbecot F, Sano Y, Castro MC (2016) Linking groundwater quality to residence times and regional geology in the St. Lawrence Lowlands, southern Quebec, Canada. Appl Geochem 65:1–13. https://doi.org/10.1016/j.apgeochem.2015.10.011

    Article  Google Scholar 

  • Sanford WE, Shropshire RG, Solomon DK (1996) Dissolved gas tracers in groundwater: simplified injection, sampling, and analysis. Water Resour Res 32:1635–1642. https://doi.org/10.1029/96wr00599

    Article  Google Scholar 

  • Sebol LA, Robertson WD, Busenberg E, Plummer LN, Ryan MC, Schiff SL (2007) Evidence of CFC degradation in groundwater under pyrite-oxidizing conditions. J Hydrol 347:1–12. https://doi.org/10.1016/j.jhydrol.2007.08.009

    Article  Google Scholar 

  • Shapiro AM (2001) Effective matrix diffusion in kilometer-scale transport in fractured crystalline rock. Water Resour Res 37:507–522. https://doi.org/10.1029/2000wr900301

    Article  Google Scholar 

  • Smethie WM, Solomon DK, Schiff SL, Mathieu GG (1992) Tracing groundwater flow in the Borden aquifer using krypton-85. J Hydrol 130:279–297. https://doi.org/10.1016/0022-1694(92)90114-B

    Article  Google Scholar 

  • Suckow A (2012) Lumpy: an interactive lumped parameter modeling code based on MS Access and MS Excel. Geophysical Research Abstracts, vol 14, EGU2012-2763, EGU General Assembly 2012, Vienna, April 2012

  • Suckow A, Deslandes A, Raiber M, Gerber C, Leaney F (2020) Reconciling contradictory environmental tracer ages in multi-tracer studies to characterize the aquifer and quantify deep groundwater flow: an example from the Hutton Sandstone, Great Artesian Basin, Australia. Hydrogeol J 28:75–87. https://doi.org/10.1007/s10040-019-02042-8

    Article  Google Scholar 

  • Szabo Z, Rice DE, Plummer LN, Busenberg E, Drenkard S, Schlosser P (1996) Age dating of shallow groundwater with chlorofluorocarbons, tritium/helium: 3, and flow path analysis, Southern New Jersey Coastal Plain. Water Resour Res 32:1023–1038

    Article  Google Scholar 

  • Taniguchi M (1993) Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles. Water Resour Res 29:2021–2026. https://doi.org/10.1029/93wr00541

    Article  Google Scholar 

  • Thompson GM, Hayes JM, Davis SN (1974) Fluorocarbon tracers in hydrology. Geophys Res Lett 4:177–180

    Article  Google Scholar 

  • Tolstikhin IN, Kamensky IL (1969) Determination of groundwater age by the T-3He method. Geochem Int 6:810–811

    Google Scholar 

  • USGS (2005) Determining age and vertical contribution of ground water pumped from wells in a small coastal river basin. US Geol Surv Open-File Rep 2005-1032, 5 pp

  • USGS (2019) Air curves CFCs SF6 and tritium. The Reston Groundwater Dating Laboratory. https://water.usgs.gov/lab/software/air_curve/. Accessed July 2023

  • Vautour G, Pinti DL, Méjean P, Saby M, Meyzonnat G, Larocque M, Castro MC, Hall CM, Boucher C, Roulleau E, Barbecot F, Takahata N, Sano Y (2015)3H/3He,14C and (U–Th)/He groundwater ages in the St. Lawrence Lowlands, Quebec, eastern Canda. Chem Geol 413:94–106. https://doi.org/10.1016/j.chemgeo.2015.08.003

    Article  Google Scholar 

  • Visser A, Broers HP, Bierkens MFP (2007) Dating degassed groundwater with3H/3He. Water Resour Res 43:W10434. https://doi.org/10.1029/2006WR005847

    Article  Google Scholar 

  • Visser A, Broers HP, Purtschert R, Sültenfuß J, de Jonge M (2013) Groundwater age distributions at a public drinking water supply well field derived from multiple age tracers (85Kr,3H/3He, and39Ar). Water Resour Res 49:7778–7796. https://doi.org/10.1002/2013wr014012

    Article  Google Scholar 

  • Visser A, Fourré E, Barbecot F, Aquilina L, Labasque T, Vergnaud V, Esser BK (2014) Intercomparison of tritium and noble gases analyses, 3H/3He ages and derived parameters excess air and recharge temperature. Appl Geochem 50:130–141. https://doi.org/10.1016/j.apgeochem.2014.03.005

    Article  Google Scholar 

  • Vogel JC (1967) Investigation of groundwater flow with radiocarbon. Isotopes in hydrology. Proceedings of a symposium. International Atomic Energy Agency, Viena, pp 355–369

  • Wachniew P, Zurek AJ, Stumpp C, Gemitzi A, Gargini A, Filippini M, Rozanski K, Meeks J, Kværner J, Witczak S (2016) Towards operational methods for the assessment of intrinsic groundwater vulnerability: a review. Environ Sci Technol 46:827–884. https://doi.org/10.1080/10643389.2016.1160816

    Article  Google Scholar 

  • Walter J, Chesnaux R, Cloutier V, Gaboury D (2017) The influence of water/rock–water/clay interactions and mixing in the salinization processes of groundwater. J Hydrol Reg Stud 13:168–188. https://doi.org/10.1016/j.ejrh.2017.07.004

    Article  Google Scholar 

  • Warner MJ, Weiss RF (1985) Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep Sea Res 32:1485–1497

    Article  Google Scholar 

  • Weise S, Moser H (1987) Groundwater dating with helium isotopes. In: Isotope techniques in water resources development. International Atomic Energy Agency, Vienna, pp 105–126

  • Wilske C, Suckow A, Mallast U, Meier C, Merchel S, Merkel B, Pavetich S, Rödiger T, Rugel G, Sachse A, Weise SM, Siebert C (2020) A multi-environmental tracer study to determine groundwater residence times and recharge in a structurally complex multi-aquifer system. Hydrol Earth Syst Sci 24:249–267. https://doi.org/10.5194/hess-24-249-2020

    Article  Google Scholar 

  • Zappala JC, Bailey K, Mueller P, O’Connor TP, Purtschert R (2017) Rapid processing of 85 Kr/Kr ratios using atom trap trace analysis. Water Resour Res 53:2553–2558. https://doi.org/10.1002/2016WR020082

    Article  Google Scholar 

  • Zuber A (1986) Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. In: Fritz P, Fontes JCH (eds) Handbook of environmental isotope geochemistry, vol 2, part B. Elsevier, Amsterdam, pp 1–59

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Quebec Ministry of Environment (Ministère de l’Environnement et de la Lutte contre les Changements Climatiques) as well as TechnoRem Inc. and Envir’Eau-Puits Inc. who kindly provided access to the sampling sites.

Funding

The authors also thank the Natural Sciences and Engineering Research Council of Canada from which this research was made possible through an industrial partnership and a collaborative grant with TechnoRem Inc. and Envir’Eau-Puits Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Meyzonnat.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyzonnat, G., Musy, S., Corcho-Alvarado, J.A. et al. Age distribution of groundwater in fractured aquifers of the St. Lawrence Lowlands (Canada) determined by environmental tracers (3H/3He, 85Kr, SF6, CFC-12, 14C). Hydrogeol J 31, 2139–2157 (2023). https://doi.org/10.1007/s10040-023-02671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02671-0

Keywords

Navigation