Skip to main content

Advertisement

Log in

Multi-technique approach for estimating groundwater transit time through the saturated zone of an unconfined granular aquifer in Quebec, Canada

Approche multi-technique pour l’estimation du temps de transit des eaux souterraines dans la zone saturée d’un aquifère libre granulaire au Québec, Canada

Enfoque de técnicas múltiples para estimar el tiempo de tránsito del agua subterránea a través de la zona saturada de un acuífero granular no confinado en Quebec, Canadá

多技术方法用于估算加拿大魁北克州潜水砾石含水层饱和区地下水的流动时间

Abordagem multitécnica para estimar o tempo de trânsito de águas subterrâneas através da zona saturada de um aquífero granular não confinado em Quebec, Canadá

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Agricultural activities can generate contaminants that enter underlying granular aquifers and become transported within the groundwater to adjacent streams. This paper reports on estimation of the transit time of groundwater through a saturated granular unconfined aquifer in an agricultural region of Saguenay-Lac-Saint-Jean, Quebec (Canada). A multi-technique approach is applied, integrating analytical, hydrogeochemical, and numerical methods—to determine groundwater flow from a recharge (wetland) to discharge zone (groundwater seep). Fieldwork observations, including borehole drilling, soil/groundwater sampling, and piezometers, were combined with laboratory measurements of soil hydrogeological properties and stable (δ18OH2O and δ2HH2O)/radioactive (3H) isotopes in the collected groundwater. The Dupuit–Forchheimer-based analytical method used here estimated a groundwater transit time of 7.75 years, whereas the hydrogeochemical-based and three-dimensional FEFLOW numerical method produced estimates of 7.34 and 7.27 years, respectively. The similarity of the three estimates highlights the robustness of the approach, which integrates field data to produce accurate assessments of groundwater transit time. This multi-technique approach will help in the sustainable management of groundwater resources and for preparing effective environmental plans for agricultural practices in areas underlain by aquifers.

Résumé

Les activités agricoles peuvent générer des contaminants qui pénètrent dans les aquifères granulaires sous-jacents et qui sont transportés dans les eaux souterraines vers les cours d’eau adjacents. Cet article présente une estimation du temps de transit de l’eau souterraine à travers un aquifère libre granulaire saturé dans une région agricole du Saguenay-Lac-Saint-Jean, au Québec (Canada). Une approche multi-technique est appliquée—intégrant des méthodes analytiques, hydrogéochimiques et numériques—pour déterminer les modalités d’écoulement de l’eau souterraine depuis une zone de recharge (zone humide) vers une zone de décharge (suintement d’eau souterraine). Les observations sur le terrain, y compris réalisation de forages, échantillonnage du sol et des eaux souterraines et piézométrie, ont été combinées avec des mesures en laboratoire des propriétés hydrogéologiques du sol et des isotopes stables (δ18OH2O et δ2HH2O)/radioactifs (3H) dans les eaux souterraines collectées. La méthode analytique de Dupuit-Forchheimer utilisée ici a estimé le temps de transit des eaux souterraines à 7.75 ans, tandis que la méthode numérique tridimensionnelle FEFLOW et la méthode hydrogéochimique ont produit des estimations de 7.34 et 7.27 ans, respectivement. La similitude des trois estimations souligne la robustesse de l’approche, qui intègre les données de terrain pour produire des évaluations précises du temps de transit des eaux souterraines. Cette approche multi-technique contribuera à la gestion durable des ressources en eaux souterraines et à la préparation de plans environnementaux efficaces pour les pratiques agricoles dans les zones reposant sur des aquifères.

Resumen

Las actividades agrícolas pueden generar contaminantes que penetran en los acuíferos granulares subyacentes y son transportados por las aguas subterráneas hasta los cursos de agua cercanos. En este trabajo se presenta una estimación del tiempo de tránsito del agua subterránea a través de un acuífero granular saturado no confinado en una región agrícola de Saguenay-Lac-Saint-Jean, Quebec (Canadá). Se aplica un enfoque de técnicas múltiples -integrando métodos analíticos, hidrogeoquímicos y numéricos- para determinar el flujo de agua subterránea desde una zona de recarga (humedal) hasta una zona de descarga (filtración de agua subterránea). Las observaciones de campo, incluyendo la perforación de pozos, el muestreo de suelo/agua subterránea y los piezómetros, se combinaron con mediciones de laboratorio de las propiedades hidrogeológicas del suelo y de los isótopos estables (δ18OH2O y δ2HH2O)/radioactivos (3H) en el agua subterránea recogida. El método analítico basado en Dupuit-Forchheimer utilizado aquí estimó un tiempo de tránsito del agua subterránea de 7.75 años, mientras que el método basado en la hidrogeoquímica y el método numérico tridimensional FEFLOW produjeron estimaciones de 7.34 y 7.27 años, respectivamente. La similitud de las tres estimaciones pone de manifiesto la solidez del planteamiento, que integra datos de campo para producir evaluaciones precisas del tiempo de tránsito en las aguas subterráneas. Este enfoque de múltiples técnicas ayudará a la gestión sostenible de los recursos hídricos subterráneos y a la preparación de planes medioambientales eficaces para las prácticas agrícolas en áreas con acuíferos.

摘要

农业活动可能产生污染物,进入底部的砾石含水层并通过地下水传输至相邻的河流。本文报告了对加拿大魁北克省Saguenay-Lac-Saint-Jean地区的一个农业区域中饱和砾石潜水含水层内地下水流动时间的估计。采用了多技术方法,包括分析方法、水文地球化学方法和数值方法,以确定从湿地补给区到地下水渗出的排泄区的地下水流动条件。现场观测包括钻孔、土壤/地下水采样和压力计等,与实验室测量的土壤水文地质特性以及收集的地下水中稳定同位素(δ18OH2O和δ2HH2O)和放射性同位素(3H)进行了结合。本文所使用的基于Dupuit-Forchheimer分析方法估计地下水流动时间为7.75年,而基于水文地球化学和三维FEFLOW数值方法的估计分别为7.34年和7.27年。这三个估计结果的相似性凸显了该方法的可靠性,该方法将现场数据整合起来,能够准确评估地下水流动时间。这种多技术方法有助于可持续管理地下水资源,并为区域下伏含水层下农业实践的有效环境计划提供参考。

Resumo

As atividades agrícolas podem gerar contaminantes que entram nos aquíferos granulares subjacentes e são transportados pelas águas subterrâneas para os córregos adjacentes. Este trabalho relata a estimativa do tempo de trânsito das águas subterrâneas através de um aquífero granular saturado não confinado em uma região agrícola de Saguenay-Lac-Saint-Jean, Quebec (Canadá). Uma abordagem multitécnica integrando métodos analíticos, hidrogeoquímicos e numéricos foi aplicada para determinar o fluxo da água subterrânea de uma zona de recarga (área úmida) para uma zona de descarga (nascente). Observações de campo, incluindo perfuração de poços, amostragem de solo/água subterrânea e piezômetros, foram combinadas com medições laboratoriais de propriedades hidrogeológicas do solo e isótopos estáveis (δ18OH2O e δ2HH2O)/isótopos radioativos (3H) nas águas subterrâneas coletadas. O método analítico baseado na solução de Dupuit-Forchheimer aqui utilizado estimou um tempo de trânsito de águas subterrâneas de 7.75 anos, enquanto o método numérico tridimensional FEFLOW baseado em hidrogeoquímica produziu estimativas de 7.34 anos e 7.27 anos, respectivamente. A similaridade das três estimativas destaca a robustez da abordagem, que integra dados de campo para produzir avaliações precisas do tempo de trânsito das águas subterrâneas. Esta abordagem multitécnica ajudará na gestão sustentável dos recursos hídricos subterrâneos e na preparação de planos ambientais eficazes para as práticas agrícolas em áreas com aquíferos subjacentes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggarwal PK, Araguás-Araguás LJ, Groening M, Kulkarni KM, Kurttas T, Newman BD, Vitvar T (2010) Global hydrological isotope data and data networks. In: Isoscapes. pp 33–50. https://doi.org/10.1007/978-90-481-3354-3_2

  • Anderson MP, Woessner WW, Hunt RJ (2015) Particle tracking. chap 8. In: Applied groundwater modeling: simulation of flow and advective transport. Academic, San Diego, CA

  • Basu NB, Jindal P, Schilling KE, Wolter CF, Takle ES (2012) Evaluation of analytical and numerical approaches for the estimation of groundwater travel time distribution. J Hydrol 475:65–73

    Article  Google Scholar 

  • Bear J (1972a) Dynamics of fluids in porous media, part 1. Elsevier, New York

  • Bear J (1972b) Dynamics of fluids in porous media, part 2. Elsevier, New York

  • Bear J (1988) Dynamics of fluids in porous media. Courier, Chelmsford, MA

  • Bethke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci 36:121–152

    Article  Google Scholar 

  • Beyer W (1964) Zur Beschreibung der Wasserdurchlässigkeit von Kiesen und Sanden [To describe the water permeability of gravel and sand]. Zeitschr Wasserwirtsch-Wassertechn 14:165–168

  • Black CA (ed) (1965) Methods of soil analysis, part 1: physical and mineralogical properties, including statistics of measurement and sampling. American Society of Agronomy, Madison, WI

  • Boumaiza L (2008) Caractérisation hydrogéologique des hydrofaciès dans le paléodelta de la rivière Valin au Saguenay [Hydrogeological characterization of hydrofacies in the Valin River paleodelta at Saguenay]. Université du Québec à Chicoutimi, Chicoutimi, QC

  • Boumaiza L, Rouleau A, Cousineau P (2015) Estimation de la conductivité hydraulique et de la porosité des lithofaciès identifiés dans les dépôts granulaires du paléodelta de la rivière Valin dans la région du Saguenay au Québec [Estimation of hydraulic conductivity and porosity of lithofacies identified in Valin River paleodelta granular deposits in the Saguenay region of Quebec]. In: Proceedings of the 68th Canadian Geotechnical Conference, vol 9, Quebec City, Quebec, Canada, September 2015

  • Boumaiza L, Rouleau A, Cousineau P (2017) Determining hydrofacies in granular deposits of the Valin River paleodelta in the Saguenay region of Quebec. In: Proceedings of the 70th Canadian Geotechnical Conference and the 12th Joint CGS/IAH-CNC Groundwater Conference, vol 8, Ottawa, ON, October 2017

  • Boumaiza L, Rouleau A, Cousineau P (2019) Combining shallow hydrogeological characterization with borehole data for determining hydrofacies in the Valin River paleodelta. In: Proceedings of the 72nd Canadian Geotechnical Conference, vol 8, St-John’s, NL

  • Boumaiza L, Chesnaux R, Walter J, Stumpp C (2020a) Assessing groundwater recharge and transpiration in a humid northern region dominated by snowmelt using vadose-zone depth profiles. Hydrogeol J 28:2315-2329

  • Boumaiza L, Chesnaux R, Walter J, Stumpp C (2020b) Assessing groundwater recharge and transpiration in a humid northern region dominated by snowmelt using vadose-zone depth profiles. Hydrogeol J 28:2315-2329. https://doi.org/10.1007/s10040-020-02204-z

  • Boumaiza L, Chesnaux R, Drias T, Walter J, Huneau F, Garel E, Knoeller K, Stumpp C (2020c) Identifying groundwater degradation sources in a Mediterranean coastal area experiencing significant multi-origin stresses. Sci Total Environ 746:141203

    Article  Google Scholar 

  • Boumaiza L, Chesnaux R, Walter J, Stumpp C (2021a) Constraining a flow model with field measurements to assess water transit time through a vadose zone. Groundwater 59:417–427

    Article  Google Scholar 

  • Boumaiza L, Chesnaux R, Walter J, Meghnefi F (2021b) Assessing response times of an alluvial aquifer experiencing seasonally variable meteorological inputs. Groundw Sustain Dev 14:100647

    Article  Google Scholar 

  • Boumaiza L, Walter J, Chesnaux R, Brindha K, Elango L, Rouleau A, Wachniew P, Stumpp C (2021c) An operational methodology for determining relevant DRASTIC factors and their relative weights in the assessment of aquifer vulnerability to contamination. Environ Earth Sci 80:1–19

    Article  Google Scholar 

  • Boumaiza L, Chesnaux R, Walter J, Lenhard RJ, Hassanizadeh SM, Dokou Z, Alazaiza MY (2022a) Predicting vertical LNAPL distribution in the subsurface under the fluctuating water table effect. Groundwater Monit Remediat 42:47–58

    Article  Google Scholar 

  • Boumaiza L, Walter J, Chesnaux R, Lambert M, Jha MK, Wanke H, Brookfield A, Batelaan O, Galvão P, Laftouhi NE (2022b) Groundwater recharge over the past 100 years: regional spatiotemporal assessment and climate change impact over the Saguenay-Lac-Saint-Jean region Canada. Hydrol Processes 36:e14526

    Article  Google Scholar 

  • Bradley P (2013) Current perspectives in contaminant hydrology and water resources sustainability. InTech, Rijeka, Croatia

  • Cartwright I, Morgenstern U (2015) Transit times from rainfall to baseflow in headwater catchments estimated using tritium: the Ovens River, Australia. Hydrol Earth Syst Sci 19:3771–3785

    Article  Google Scholar 

  • Cartwright I, Morgenstern U (2016) Using tritium to document the mean transit time and sources of water contributing to a chain-of-ponds river system: implications for resource protection. Appl Geochem 75:9–19

    Article  Google Scholar 

  • CERM-PACES (2013) Résultats du programme d’acquisition de connaissances sur les eaux souterraines du Saguenay-Lac-Saint-Jean. Université du Québec à Chicoutimi, Chicoutimi, QC

  • Chapuis RP (2004) Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can Geotech J 41:787–795

    Article  Google Scholar 

  • Chesnaux R (2013) Regional recharge assessment in the crystalline bedrock aquifer of the Kenogami Uplands, Canada. Hydrol Sci J 58:421–436

    Article  Google Scholar 

  • Chesnaux R, Stumpp C (2018) Advantages and challenges of using soil water isotopes to assess groundwater recharge dominated by snowmelt at a field study located in Canada. Hydrol Sci J 63:679–695

    Article  Google Scholar 

  • Chesnaux R, Molson J, Chapuis R (2005) An analytical solution for ground water transit time through unconfined aquifers. Groundwater 43:511–517

    Article  Google Scholar 

  • Chesnaux R, Marion D, Boumaiza L, Richard S, Walter J (2021) An analytical methodology to estimate the changes in fresh groundwater resources with sea-level rise and coastal erosion in strip-island unconfined aquifers: illustration with Savary Island, Canada. Hydrogeol J 29:1355–1364

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Routledge, Abingdon, UK, 328 pp

  • Cook PG, Böhlke J-K (2000) Determining timescales for groundwater flow and solute transport. In: Environmental tracers in subsurface hydrology. Springer, Heidelberg, Germany, pp 1–30

  • Cook PG, Herczeg AL (2012) Environmental tracers in subsurface hydrology. Springer, Heidelberg, Germany

  • Cornaton F (2003) Deterministic models of groundwater age, life expectancy and transit time distributions in advective-dispersive systems. Université de Neuchâtel, Neuchâtel, Switzerland

  • Courchesne C (2019) Caractérisation hydrogéologique de la bleuetière d’enseignement et de recherche Secteur Normandin, Québec [Hydrogeological characterization of the teaching and research blueberry farm Secteur Normandin, Québec]. Université du Québec à Chicoutimi, Chicoutimi, QC

  • Diersch H-JG (2013) FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Heidelberg, Germany

  • Dupuit JE (1863) Etudes théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables avec des considérations relatives au régime des grandes eaux, au débouché à leur donner, et à la marche des des alluvions dans les rivières à fond mobile [Theoretical and practical studies on the movement of water in open canals and through permeable terrain with considerations relating to the regime of large waters, the outlet to be given to them, and the movement of alluvial deposits in rivers with mobile bottoms]. Dunod, Paris

  • Ekwurzel B, Schlosser P, Smethie WM Jr, Plummer LN, Busenberg E, Michel RL, Weppernig R, Stute M (1994) Dating of shallow groundwater: comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resour Res 30:1693–1708

    Article  Google Scholar 

  • Etcheverry D, Perrochet P (2000) Direct simulation of groundwater transit-time distributions using the reservoir theory. Hydrogeol J 8:200–208

    Article  Google Scholar 

  • Fontes J-C (1992) Chemical and isotopic constraints on 14 C dating of groundwater. In: Radiocarbon after four decades. Springer, Heidelberg, Germany, pp 242–261

  • Forchheimer P (1886) Uber die Ergiebigkeit von Brunnenanlagen and Sickershlitzen [About the yield of wells and seepage systems]. Z. Arch. Ing. Verein, Hannover, 32

  • Gardner WH (1965) Water content. In: Methods of soil analysis: part 1, physical and mineralogical properties, including statistics of measurement and sampling. Agronomy Monographs Series 9, Wiley, Chichester, UK, pp 82–127

  • Gillon M, Barbecot F, Gibert E, Plain C, Corcho-Alvarado J-A, Massault M (2012) Controls on 13C and 14C variability in soil CO2. Geoderma 189:431–441

    Article  Google Scholar 

  • Goode DJ (1996) Direct simulation of groundwater age. Water Resour Res 32:289–296

    Article  Google Scholar 

  • Gorelick SM, Freeze RA, Donohue D, Keely JF (1993) Groundwater contamination: optimal capture and containment. Lewis, New York

  • Government of Quebec (2022) Normales climatiques du Québec 1981–2010. https://www.environnement.gouv.qc.ca/climat/normales/climat-qc.htm. Accessed October 2021

  • Haitjema HM (1995) Analytic element modeling of groundwater flow. Elsevier, Amsterdam

    Google Scholar 

  • Hazen A (1983) Some physical properties of sand and gravel with special reference to their use in filtration. 24th Ann. Rep., Mass. State Board of Health, Boston

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109

    Article  Google Scholar 

  • Hudon-Gagnon E, Chesnaux R, Cousineau PA, Rouleau A (2011) A methodology to adequately simplify aquifer models of quaternary deposits: preliminary results. GeoHydro 2011

  • Labrecque Gv, Chesnaux R, Boucher M-Al (2020) Water-table fluctuation method for assessing aquifer recharge: application to Canadian aquifers and comparison with other methods. Hydrogeol J 28:521–533

  • Lanini S, Caballero Y (2021) ESPERE, a tool for multimethod aquifer recharge estimation: what’s new with version 2? Groundwater 59:5–6

    Article  Google Scholar 

  • Lanini S, Caballero Y, Seguin J-J, Maréchal J-C (2016) ESPERE: a multiple-method Microsoft Excel application for estimating aquifer recharge. Groundwater 54:155–156

    Article  Google Scholar 

  • Larocque M, Levison J, Martin A, Chaumont D (2019) A review of simulated climate change impacts on groundwater resources in Eastern Canada. Can Water Resour J/Rev Can Ressour Hydri 44:22–41

    Article  Google Scholar 

  • LaSalle P, Tremblay G (1978) Dépôts meubles Saguenay-Lac-Saint-Jean [Saguenay-Lac-Saint-Jean granular deposits]. Report 19, Ministry of Natural Resources, Quebec, QC

  • Lefebvre K, Barbecot F, Larocque M, Gillon M (2015) Combining isotopic tracers (222Rn and δ13C) for improved modelling of groundwater discharge to small rivers. Hydrol Process 29:2814–2822

    Article  Google Scholar 

  • Leray S, De Dreuzy J-R, Bour O, Labasque T, Aquilina L (2012) Contribution of age data to the characterization of complex aquifers. J Hydrol 464:54–68

    Article  Google Scholar 

  • Lévesque Y, Chesnaux R, Walter J (2023) Using geophysical data to assess groundwater levels and the accuracy of a regional numerical flow model. Hydrogeol J 31:351–370

    Article  Google Scholar 

  • Małoszewski P, Rauert W, Stichler W, Herrmann A (1983) Application of flow models in an alpine catchment area using tritium and deuterium data. J Hydrol 66:319–330

    Article  Google Scholar 

  • Mazariegos JG, Walker JC, Xu X, Czimczik CI (2017) Tracing artificially recharged groundwater using water and carbon isotopes. Radiocarbon 59:407–421

    Article  Google Scholar 

  • Mazor E (2003) Chemical and isotopic groundwater hydrology. CRC, Boca Raton, FL

    Book  Google Scholar 

  • McCarthy J, Zachara J (1989) ES&T Features: Subsurface transport of contaminants. Environ Sci Technol 23:496–502

    Google Scholar 

  • McGuire KJ, McDonnell JJ (2006) A review and evaluation of catchment transit time modeling. J Hydrol 330:543–563

    Article  Google Scholar 

  • Michel RL (2005) Tritium in the hydrologic cycle. In: Isotopes in the water cycle. Springer, Heidelberg, Germany, pp 53–66

  • Milan V, Andjelko S (1992) Determination of hydraulic conductivity of porous media from grain-size composition. No. 551.49 V 986, Water Resources, Littleton, CO

  • Morgenstern U, Stewart MK, Stenger R (2010) Dating of streamwater using tritium in a post nuclear bomb pulse world: continuous variation of mean transit time with streamflow. Hydrol Earth Syst Sci 14:2289–2301

    Article  Google Scholar 

  • Navfac D (1974) Design manual: soil mechanics, foundations, and earth structures. US Government Printing Office, Washington, DC

    Google Scholar 

  • Nastev M, Rivera A, Lefebvre R, Martel R, Savard M (2005) Numerical simulation of groundwater flow in regional rock aquifers, southwestern Quebec, Canada. Hydrogeol J 13:835–848

    Article  Google Scholar 

  • Nimmo JR, Horowitz C, Mitchell L (2015) Discrete-storm water-table fluctuation method to estimate episodic recharge. Groundwater 53:282–292

    Article  Google Scholar 

  • Penna D, Stenni B, Šanda M, Wrede S, Bogaard T, Gobbi A, Borga M, Fischer B, Bonazza M, Chárová Z (2010) On the reproducibility and repeatability of laser absorption spectroscopy measurements for δ2H and δ18O isotopic analysis. Hydrol Earth Syst Sci 14:1551–1566

    Article  Google Scholar 

  • Ritter KS, Sibley P, Hall K, Keen P, Mattu G, Linton B, Len. (2002) Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. J Toxicol Environ Health A 65:1–142

    Article  Google Scholar 

  • Sauerbrey I (1932) On the problem and determination of the permeability coefficient. Proceedings B.E. Vedeneev All-Russia Research Institute Of Hydraulic Engineering (VNIIG), pp 115–145

  • Schwientek M, Maloszewski P, Einsiedl F (2009) Effect of the unsaturated zone thickness on the distribution of water mean transit times in a porous aquifer. J Hydrol 373:516–526

    Article  Google Scholar 

  • Seequent (2022) Leapfrog Geo 2021.2.5 help and support. https://www.seequent.com/help-support/leapfrog-geo/. Accessed January 2022

  • Sousa MR, Jones JP, Frind EO, Rudolph DL (2013) A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor. J Contam Hydrol 144:138–151

    Article  Google Scholar 

  • Taylor C (1976) Tritium enrichment of environmental waters by electrolysis: development of cathodes exhibiting high isotopic separation and precise measurement of tritium enrichment factors. Technical report no. INIS-XA-73, IAEA, Vienna

  • Tremblay R, Walter J, Chesnaux R, Boumaiza L (2021) Investigating the potential role of geological context on groundwater quality: a case study of the Grenville and St. Lawrence platform geological provinces in Quebec, Canada. Geosciences 11:503

  • Vitvar T, Balderer W (1997) Estimation of mean water residence times and runoff generation by 180 measurements in a Pre-Alpine catchment (Rietholzbach, eastern Switzerland). Appl Geochem 12:787–796

    Article  Google Scholar 

  • Vogel J (1967) Investigation of groundwater flow with radiocarbon: In: Isotopes in Hydrology. International Atomic Energy Agency, Vienna

  • Wang L, Stuart M, Bloomfield J, Butcher A, Gooddy D, McKenzie A, Lewis M, Williams A (2012) Prediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great Britain. Hydrol Process 26:226–239

    Article  Google Scholar 

  • Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392

    Article  Google Scholar 

  • Zappa G, Bersezio R, Felletti F, Giudici M (2006) Modeling heterogeneity of gravel-sand, braided stream, alluvial aquifers at the facies scale. J Hydrol 325:134–153

    Article  Google Scholar 

  • Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Annu Rev Environ Resour 30:39–74

    Article  Google Scholar 

  • Zoellmann K, Kinzelbach W, Fulda C (2001) Environmental tracer transport (3H and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J Hydrol 240:187–205

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank David Noël for his greatly appreciated help and guidance during field work and Mike Bellemare, Laura-Pier Perron Desmeules, and Pier-Olivier Gilbert for their assistance during field work.

Funding

The authors thank Mitacs Globalink Graduate Fellowship Program,Canada (IT17061), Fonds d’appui au rayonnement des régions (FARR), and Fondation de l’Université du Québec à Chicoutimi (FUQAC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaima Miled.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 563 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miled, C., Chesnaux, R., Walter, J. et al. Multi-technique approach for estimating groundwater transit time through the saturated zone of an unconfined granular aquifer in Quebec, Canada. Hydrogeol J 31, 1847–1861 (2023). https://doi.org/10.1007/s10040-023-02663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02663-0

Keywords

Navigation