Skip to main content

Advertisement

Log in

Review: Assessment and modeling of seawater intrusion in coastal aquifers of the Arabian Peninsula

Revue: Évaluation et modélisation de l’intrusion d’eau de mer dans les aquifères côtiers de la péninsule arabique

Revisión: Evaluación y modelado de la intrusión de agua marina en los acuíferos costeros de la Península Arábiga

阿拉伯半岛沿海含水层海水入侵评估和模拟综述

Revisão: Avaliação e modelagem da intrusão de água do mar em aquíferos costeiros da Península Arábica

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Significant urbanization and industrialization, combined with strong population growth, have been witnessed in the Arabian Peninsula (Oman, United Arab Emirates, Saudi Arabia, Qatar, Bahrain, Kuwait, and Yemen). This has placed tremendous pressure on authorities to meet rising demands for water in urban areas that have minimal water supplies available. This study deals with groundwater sustainability in the arid Arabian Peninsula in terms of quality, which has deteriorated due to overpumping, resulting in seawater intrusion. Relevant literature is reviewed specifically in connection with groundwater quality measurements or numerical modeling. Most of the studies reviewed here have confirmed the alarming pace of the decline of water tables and increasing seawater intrusion in the coastal aquifers of all the countries in the Arabian Peninsula. This has resulted in more dependency on desalination, increased cost of farming, increased poverty, and abandonment of vast areas of precious agricultural land, leading to population migration from the affected regions. If appropriately supported with the existing data on observed hydraulic head, pumping rates, hydrogeological parameters, boundary conditions, and so on, the numerical model is an accurate and cost-effective instrument for simulating and predicting the head and quality of groundwater in coastal aquifers. Due to lack of the relevant data required for a thorough model run, there are few numerical modeling studies to assess the groundwater quality in all these countries. This study summarizes important aquifer parameters in the region to help researchers and practicing engineers in the modeling of groundwater quality and quantity in the Arabian Peninsula.

Résumé

La péninsule arabique (Oman, Émirats arabes unis, Arabie Saoudite, Qatar, Bahreïn, Koweït et Yémen) a connu une urbanisation et une industrialisation importantes, associées à une forte croissance démographique. Cette situation a exercé une pression considérable sur les autorités pour qu’elles répondent à la demande croissante d’eau dans les zones urbaines où les réserves d’eau disponibles pour l’alimentation en eau potable sont minimes. Cette étude traite de la durabilité des eaux souterraines dans la péninsule arabique aride en termes de qualité, qui s’est détériorée en raison de pompages excessifs, entraînant l’intrusion de l’eau de mer. La littérature pertinente est passée en revue, notamment en ce qui concerne les mesures de la qualité des eaux souterraines ou la modélisation numérique. La plupart des études examinées ici ont confirmé le rythme alarmant du déclin des nappes phréatiques et de l’intrusion croissante de l’eau de mer dans les aquifères côtiers de tous les pays de la péninsule arabique. Il en résulte une dépendance accrue à l’égard du dessalement, une augmentation du coût de l’agriculture, une aggravation de la pauvreté et l’abandon de vastes zones de terres agricoles précieuses, ce qui entraîne une migration de la population des régions touchées. S’il est correctement étayé par les données existantes sur la charge hydraulique observée, les taux de pompage, les paramètres hydrogéologiques, les conditions limites, etc., le modèle numérique est un instrument précis et rentable pour simuler et prédire la charge et la qualité des eaux souterraines dans les aquifères côtiers. En raison du manque de données pertinentes nécessaires à l’exécution d’un modèle complet, il existe peu d’études de modélisation numérique pour évaluer la qualité des eaux souterraines dans tous ces pays. Cette étude résume les paramètres aquifères importants dans la région afin d’aider les chercheurs et les ingénieurs praticiens à modéliser la qualité et la quantité des eaux souterraines dans la péninsule arabique.

Resumen

En la Península Arábiga (Omán, Emiratos Árabes Unidos, Arabia Saudí, Qatar, Bahréin, Kuwait y Yemen) se han producido importantes procesos de urbanización e industrialización, combinados con un fuerte crecimiento demográfico. Esto ha ejercido una enorme presión sobre las autoridades para satisfacer la creciente demanda de agua en zonas urbanas que disponen de un suministro mínimo. Este estudio aborda la sostenibilidad de las aguas subterráneas en la árida Península Arábiga en términos de calidad, que se ha deteriorado debido al bombeo excesivo, lo que ha provocado la intrusión de agua marina. La bibliografía pertinente se revisa específicamente en relación con las mediciones de la calidad de las aguas subterráneas o el modelado numérico. La mayoría de los estudios analizados confirman el alarmante ritmo de descenso de las capas freáticas y la creciente intrusión de agua marina en los acuíferos costeros de todos los países de la península arábiga. El resultado ha sido una mayor dependencia de la desalinización, un aumento del coste de la agricultura, un incremento de la pobreza y el abandono de vastas zonas de valiosas tierras agrícolas, lo que ha provocado la emigración de la población de las regiones afectadas. Si se apoya adecuadamente con los datos existentes sobre la altura hidráulica observada, las tasas de bombeo, los parámetros hidrogeológicos, las condiciones de contorno, etc., el modelo numérico es un instrumento preciso y rentable para simular y predecir la altura y la calidad del agua subterránea en acuíferos costeros. Debido a la falta de los datos pertinentes necesarios para una ejecución minuciosa del modelo, existen escasos estudios de modelado numérico para evaluar la calidad de las aguas subterráneas en todos estos países. Este estudio resume importantes parámetros de los acuíferos de la región para ayudar a los investigadores e ingenieros en ejercicio a modelizar la calidad y cantidad de las aguas subterráneas en la Península Arábiga.

摘要

阿拉伯半岛(阿曼、阿拉伯联合酋长国、沙特阿拉伯、卡塔尔、巴林、科威特和也门)经历了显著的城市化和工业化以及人口快速增长。这给当局带来了巨大压力,因为城市地区的可利用的供水量很小,需求却不断增长。本研究针对干旱的阿拉伯半岛地区的地下水可持续性,特别是水质的问题进行了探讨。由于过度开采,地下水质量恶化,导致海水入侵。文献评述了具体涉及地下水质量的评价或数值模拟。在此回顾的大部分研究中,都确认了阿拉伯半岛所有国家沿海含水层的地下水位急剧下降和海水入侵的加剧的令人担忧的速度。这导致更多依赖海水淡化、农业成本上升、贫困加剧和大量宝贵的农业土地被废弃,从而导致受影响地区的人口迁移。如果适当支持现有的观测水头、开采量、水文地质参数、边界条件等数据,数值模型是模拟和预测沿海含水层地下水水头和水质的准确和经济有效的工具。由于缺乏所需的相关数据进行全面模拟,目前在所有这些国家评估地下水质量的数值模拟研究较少。本研究总结了该地区重要的含水层参数,以帮助研究人员和管理工程师模拟阿拉伯半岛地区地下水质量和数量。

Resumo

Urbanização e industrialização significativas, combinadas com forte crescimento populacional, foram testemunhadas na Península Arábica (Omã, Emirados Árabes Unidos, Arábia Saudita, Catar, Bahrein, Kuwait e Iêmen). Isso colocou uma enorme pressão sobre as autoridades para atender à crescente demanda por água em áreas urbanas que têm um suprimento mínimo de água disponível. Este estudo trata da sustentabilidade das águas subterrâneas na árida Península Arábica em termos de qualidade, que se deteriorou devido ao bombeamento excessivo, resultando na intrusão da água do mar. A literatura relevante é revisada especificamente em conexão com medições de qualidade de águas subterrâneas ou modelagem numérica. A maioria dos estudos revisados aqui confirmou o ritmo alarmante do declínio dos lençóis freáticos e o aumento da intrusão de água do mar nos aquíferos costeiros de todos os países da Península Arábica. Isso resultou em maior dependência da dessalinização, aumento do custo da agricultura, aumento da pobreza e abandono de vastas áreas de preciosas terras agrícolas, levando à migração da população das regiões afetadas. Se devidamente apoiado com os dados existentes sobre carga hidráulica observada, taxas de bombeamento, parâmetros hidrogeológicos, condições de contorno e assim por diante, o modelo numérico é um instrumento preciso e econômico para simular e prever a carga e a qualidade das águas subterrâneas em aquíferos costeiros. Devido à falta de dados relevantes necessários para uma execução completa do modelo, existem poucos estudos de modelagem numérica para avaliar a qualidade das águas subterrâneas em todos esses países. Este estudo resume importantes parâmetros de aquíferos na região para ajudar pesquisadores e engenheiros na modelagem da qualidade e quantidade das águas subterrâneas na Península Arábica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdalla F (2016) Ionic ratios as tracers to assess seawater intrusion and to identify salinity sources in Jazan coastal aquifer, Saudi Arabia. Arab J Geosci 9:40. https://doi.org/10.1007/s12517-015-2065-3

    Article  Google Scholar 

  • Abderrahman WA, Rasheeduddin M (2001) Management of groundwater resources in a coastal belt aquifer system of Saudi Arabia. Water Int 26(1):40–50. https://doi.org/10.1080/02508060108686885

  • Akhtar J, Sana A, Tauseef SM (2022a) Using MODFLOW to investigate the effect of persistent water deficit in Al-Jizi coastal aquifer, Sultanate of Oman. Arab J Geosci 15:1448. https://doi.org/10.1007/s12517-022-10717-y

    Article  Google Scholar 

  • Akhtar J, Sana A, Tauseef SM, Tanaka H (2022b) Numerical modeling of seawater intrusion in Wadi Al-Jizi coastal aquifer in the Sultanate of Oman. Hydrology. https://doi.org/10.3390/hydrology9120211

  • Akhtar J, Sana A, Tauseef SM, Javed S (2022c) Modeling the effect of climate changes on coastal aquifers in Oman. Proc. 12th International Conf. – GEOMATE (2022) Geotechnique, Construction Materials and Environment, Bangkok, Thailand, 22–24 November 2022

  • Al-Asbahi QYAM (2005) Water resources information in Yemen. IWG-Env, International Work Session on Water Statistics, Vienna, 20–22 June 2005. https://unstats.un.org/unsd/environment/envpdf/pap_wasess3a3yemen.pdf. Accessed 18 Dec 2021

  • Al-Barwani A, Helmi T (2006) Seawater intrusion in coastal aquifer: a case study for the area between as Seeb and as Suwaiq (1984–2005). In: International conference on economic incentives and water demand management. UNESCO, Paris

  • Al-Damkhi AM, Al-Fares RA, Al-Khalifa KA, Abdul-Wahab SA (2009) Water issues in Kuwait: a future sustainable vision. Int J Environ Stud 66(5):619–636. https://doi.org/10.1080/00207230903097552

    Article  Google Scholar 

  • Al-Hashmi S, Gunawardhana L, Sana A, Baawain M (2020) Application of groundwater flow model in assessing aquifer layers interaction in arid catchment area. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-02805-x

  • Al-Hassoun SA, Mohammad TA (2011) Prediction of water table in an alluvial aquifer using MODFLOW. Pertanika J Sci Technol 19(1):45–55

    Google Scholar 

  • Al-Maktoumi A, Zekri S, El-Rawy M, Abdalla O, Al-Wardy M, Al-Rawas G, Charabi Y (2018) Assessment of the impact of climate change on coastal aquifers in Oman. Arab J Geosci 11:501. https://doi.org/10.1007/s12517-018-3858-y

    Article  Google Scholar 

  • Almuhaylan MR, Ghumman AR, Al-Salamah IS, Ahmad A, Ghazaw YM, Haider H, Shafiquzzaman M (2020) Evaluating the impacts of pumping on aquifer depletion in arid regions using MODFLOW, ANFIS and ANN. Water 12:2297. https://doi.org/10.3390/w12082297

    Article  Google Scholar 

  • Al-Naeem AA (2014) Effect of excess pumping on groundwater salinity and water level in hail region of Saudi Arabia. Res J Environ Toxicol 8(3):124–135. https://doi.org/10.3923/rjet.2014.124.135

    Article  Google Scholar 

  • Al-Qubatee W, Ritzema H, Al-Weshali A, van Steenbergen F, Hellegers PJGJ (2017) Participatory rural appraisal to assess groundwater resources in Al-Mujaylis, Tihama coastal plain, Yemen. Water Int 42(7):810–830. https://doi.org/10.1080/02508060.2017.1356997

    Article  Google Scholar 

  • Al-Salamah IS, Ghazaw YM, Ghumman AR (2011) Groundwater modeling of Saq aquifer Buraydah Al Qassim for better water management strategies. Environ Monit Assess 173:851–860. https://doi.org/10.1007/s10661-010-1428

    Article  Google Scholar 

  • Al-Taani AA, Batayneh A, Mogren S, Nazzal Y, Ghrefat H, Zaman H, Elawadi E (2013) Groundwater quality of coastal aquifer Systems in the Eastern Coast of the Gulf of Aqaba, Saudi Arabia. J Appl Sci Agric 8(6):768–778

  • Alwathaf Y, El-Mansouri B (2012) Hydrodynamic modelling for groundwater assessment in Sana’a Basin, Yemen. Hydrogeol J. https://doi.org/10.1007/s10040-012-0879-6

  • Al-Weshah RA, Yihdego Y (2016) Flow modelling of strategically vital freshwater aquifers in Kuwait. Environ Earth Sci 75:1315. https://doi.org/10.1007/s12665-016-6132-1

    Article  Google Scholar 

  • Awadh SM, Al-Mimar H, Yaseen ZM (2021) Groundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of Iraq. Environ Dev Sustain 23:1–21. https://doi.org/10.1007/s10668-019-00578-z

    Article  Google Scholar 

  • Baalousha HM (2016) Development of a groundwater flow model for the highly parameterized Qatar aquifers. Model Earth Syst Environ 2:67. https://doi.org/10.1007/s40808-016-0124-8

    Article  Google Scholar 

  • Baalousha HM, Fahs M, Ramasomanana F, Younes A (2019) Effect of pilot-points location on model calibration: application to the northern karst aquifer of Qatar. Water 11:679. https://doi.org/10.3390/w11040679

    Article  Google Scholar 

  • Bear J (1999) Conceptual and mathematical modeling, in seawater intrusion in coastal aquifers concepts, methods and practices. Springer, Amsterdam, pp 127–161

  • Bhandary H, Sabarathinam C, Al-Khalid A (2018) Occurrence of hypersaline groundwater along the coastal aquifers of Kuwait. Desalination 436:15–27. https://doi.org/10.1016/j.desal.2018.02.004

    Article  Google Scholar 

  • Bolster DT, Tartakovsky DM, Dentz M (2007) Analytical models of contamination transport in coastal aquifers. Adv Water Resour 30:1962–1972

    Article  Google Scholar 

  • Chitrakar P, Sana A (2015) Ground water flow and solute transport simulation in eastern Al Batinah coastal plain, Oman: case study. J Hydrol Eng. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001284

  • Dale RH (1983) Salinity survey of the Batinah. Ref. no. GDRMEWRNB, Library of the General Directorate of Regional Municipality, Environment and Water Resources in North of Al Batinah, Sohar, Oman. 9 pp

  • Davison DW Jr (1986) Change in groundwater quality along the Batinah coast, 1983 to 1986. Council for Conservation of Environment and Water Resources (CCEWR). Ref. no. 157, Library of the General Directorate of Regional Municipality, Environment and Water Resources in North of Al Batinah, Sohar, Oman

  • FAO (2009) Groundwater Management in Oman. Draft synthesis report. Food and Agriculture Organization of the United Nations, Rome

  • Foppen JWA (2002) Impact of high-strength wastewater infiltration on ground water quality and drinking water supply: the case of Sana’a, Yemen. J Hydrol 263:198–216. https://doi.org/10.1016/S0022-1694(02)00051-3

    Article  Google Scholar 

  • Ghazaw YM, Gumman AR, Al-Salamah I, Khan QUZ (2014) Investigations of impact of recharge wells on groundwater in Buraydah by numerical modeling. Arab J Sci Eng 39:713–724. https://doi.org/10.1007/s13369-013-0690-2

    Article  Google Scholar 

  • Grundmann J, Schutze N, Schmitz GH, Al-Shaqsi S (2012) Towards an integrated arid zone water management using simulation based optimization. Environ Earth Sci 65(5):1381–1394. https://doi.org/10.1007/s12665-011-1253-z

    Article  Google Scholar 

  • Hamoda MF (2001) Desalination and water resource management in Kuwait. Desalination 138(2001):385–393. https://doi.org/10.1016/S0011-9164(01)00259-4

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, U.S. Geological Survey modular ground-water model: user guide to modularization concept and the ground water flow process. US Geol Surv Open-File Rep 00-92, 121 pp. https://pubs.er.usgs.gov/publication/ofr200092. Accessed 10 Dec 2021

  • Helweg OJ (1992) Water resources-planning and management. Krieger, Malabar, FL

  • Hussain MS, Javadi AA, Sherif MM (2015) Three-dimensional simulation of seawater intrusion in a regional coastal aquifer in UAE. Proced Eng 119:1153–1160. https://doi.org/10.1016/j.proeng.2015.08.965

    Article  Google Scholar 

  • Hussain MS, Elhamid HFA, Javadi AA, Sherif MM (2019) Management of seawater intrusion in coastal aquifers: a review. Water 11, 2467. https://doi.org/10.3390/w11122467

  • Hydroconsult (1985) Preliminary soil and groundwater survey in the Batinah region, part 1 groundwater. Ministry of Agriculture and Fisheries (MAF), Oman. Ref.3549, Library of the General Directorate of Regional Municipality, Environment and Water Resources, Ruwi, Muscat

  • Japan International Cooperation Agency (JICA) (1986) Hydrologic Observation Project in the Batinah Coast, vol 1. Library of the General Directorate of Regional Municipality, Environment and Water Resources in North of Al Batinah, Sohar, Oman

  • Kacimov AR, Sherif MM, Perret JS, Al–Mushikhi, A. (2009) Control of seawater intrusion by saltwater pumping: coast of Oman. Hydrogeol J 17:541–558. https://doi.org/10.1007/s10040-008-0425-8

    Article  Google Scholar 

  • Khori J (2003) Sustainable development and management of water resources in the Arab region. Dev Water Sci 50:199–220. https://doi.org/10.1016/S0167-5648(03)80018-7

    Article  Google Scholar 

  • Khublaryan MG, Frolov AP, Yushmanov IO (2008) Seawater intrusion into coastal aquifers. Water Resour 35(3):274–286. https://doi.org/10.1134/S0097807808030032

    Article  Google Scholar 

  • Kumar CP (2013) Numerical modelling of ground water flow using MODFLOW. Indian J Sci 2:4

  • Kumar KSA, Prijub CP, Prasad NBN (2015) Study on saline water intrusion into the shallow coastal aquifers of Periyar River basin, Kerala using hydrochemical and electrical resistivity methods. In: International conference on water resources, coastal and ocean engineering (ICWRCOE 2015). Aquatic Procedia 4:32–40. https://doi.org/10.1016/j.aqpro.2015.02.006

  • Kwarteng AY, Dorvlo AS, Kumar GTV (2009) Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman. Int J Climatol 29(4):605–617. https://doi.org/10.1002/joc.1727

    Article  Google Scholar 

  • Lachaal F, Gana S (2016) Groundwater flow modeling for impact assessment of port dredging works on coastal hydrogeology in the area of Al-Wakrah (Qatar). Model Earth Syst Environ 2:201. https://doi.org/10.1007/s40808-016-0252-1

  • Lakey R, Easton P, Hinai AH (1995) Eastern Batinah water resources assessment. In: Proc. of the international conference on water resources management in arid countries. Muscat, Oman. Library of the General Directorate of Regional Municipality, Environment and Water Resources in North of Al Batinah, Sohar, Oman

  • Lathashri UA, Mahesha A (2015) Simulation of saltwater intrusion in a coastal aquifer in Karnataka, India. International conference on water resources, coastal and ocean engineering (ICWRCOE). Aquatic Procedia 4:700–705. https://doi.org/10.1016/J.aqpro.2015.02.090

  • Mas-Pla J, Giorgio G, Gabriele U (2014) Seawater intrusion and coastal groundwater resources management: examples from two Mediterranean regions: Catalonia and Sardinia. Contrib Sci 10:171–184. https://doi.org/10.2436/20.7010.01.201

    Article  Google Scholar 

  • Mazzoni A, Heggy E, Scabbia G (2018) Forecasting water budget deficits and groundwater depletion in the main fossil aquifer systems in North Africa and the Arabian Peninsula. Glob Environ Chang 53:157–173. https://doi.org/10.1016/j.gloenvcha.2018.09.009

    Article  Google Scholar 

  • Mogren S (2015) Saltwater intrusion in Jizan coastal zone, Southwest Saudi Arabia, inferred from geoelectric resistivity survey. Int J Geosci 6:286–297. https://doi.org/10.4236/ijg.2015.63022

    Article  Google Scholar 

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite difference groundwater flow model technique of water resources investigations of United States geological survey, vol 6. US Geological Survey, Denver, CO, 586 pp. https://pubs.usgs.gov/twri/twri6a1/. Accessed 19 Dec 2021

  • Ministry of Agriculture and Fisheries (MAF) and International Center for Biosaline Agriculture (ICBA) (2012) Oman salinity strategy: assessment of salinity problem—Annex-1. MAF, Muscat, Sultanate of Oman. https://www.academia.edu/31512481/OMAN_SALINITY_STRATEGY_OSS. Accessed 19 Dec 2021

  • Ministry of Regional Municipalities and Water Resources (MRMWR) (2008) Water resources in Oman, Oman. https://mrmwr.gov.om/web/mrmwr/downloads. Accessed 19 Dec 2021

  • Ministry of Water Resources (MWR) (1996) Seawater intrusion beneath the Batinah Coast. The Batinah Coast Salinity Intrusion Periodical Monitoring Results 1983–1995. Library of the General Directorate of Regional Municipality, Environment and Water Resources in North of Al Batinah, Sohar, Oman

  • Ministry of Water Resources (MWR) (2000) Al-Batinah salinity report 97-99. Library of the General Directorate of Regional Municipality, Environment and Water Resources in North of Al Batinah, Sohar, Oman

  • Nasher G, Al-Sayyaghi A, Al-Matary A (2013) Identification and evaluation of the hydrogeochemical processes of the lower part of Wadi Siham catchment area, Tihama plain, Yemen. Arab J Geosci 6:2131–2146. https://doi.org/10.1007/s12517-011-0471-8

    Article  Google Scholar 

  • National Centre for Statistics and Information (2022) Data portal. Sultanate of Oman. https://data.gov.om/. Accessed 20 Jan 2022

  • Nations Online Project (2023) Map of Arabian Peninsula, Middle East. https://www.nationsonline.org/oneworld/map/Arabia-Map.htm. Accessed 25 May 2023

  • Planning and Statistics Authority, Qatar (PSAQ) (2017) Water statistics in the state of Qatar, 2017, Doha-Qatar. https://www.psa.gov.qa/en/statistics/Statistical%20Releases/Environmental/Water/2017/Water-Statistics-2017-EN.pdf. Accessed 18 Dec 2021

  • Praveena SM, Aris AZ (2010) Groundwater resources assessment using numerical model: a case study in low-lying coastal area. Int J Environ Sci Technol 7(1):135–146. https://doi.org/10.1007/BF03326125

    Article  Google Scholar 

  • Rajmohan N, Milad HZ, Masoud MHZ, Niyazia BAM (2021), Impact of evaporation on groundwater salinity in the arid coastal aquifer, Western Saudi Arabia. CATENA, vol 196, 104864. https://doi.org/10.1016/j.catena.2020.104864

  • Ranjan P, Kazama S, Sawamoto M, Sana A (2008) Global scale evaluation of coastal fresh ground water resources. Ocean Coast Manag 52:197–206. https://doi.org/10.1016/j.ocecoaman.2008.09.006

    Article  Google Scholar 

  • Rodiger T, Magri F, Geyer S, Morandage ST, Ali Subah HE, Alraggad M, Siebert C (2017) Assessing anthropogenic impacts on limited water resources under semi-arid conditions: three-dimensional transient regional modelling in Jordan. Hydrogeol J 25:2139–2149. https://doi.org/10.1007/s10040-017-1601-5

    Article  Google Scholar 

  • Sabarathinam C, Rashid T, Al-Qallaf H, Hadi K, Bhandary H (2020) Paleoclimatic investigation using isotopic signature of Late Pleistocene-Holocene groundwater of the stratified aquifer in Kuwait. J Hydrol 588:12511. https://doi.org/10.1016/j.jhydrol.2020.125111

  • Sallam O (2014) Groundwater modeling to evaluate impact of deep foundations on flow in shallow aquifers (case study: the Holy Mosque Area, Makkah City, KSA). Arab J Geosci 8(7):5189–5202. https://doi.org/10.1007/s12517-014-1557-x

    Article  Google Scholar 

  • Sana A, Al-Shibli SH (2003) Modeling of seawater intrusion into a coastal aquifer in the Sultanate of Oman. Proceedings of 30th congress of International Association for Hydro-Environment Research (IAHR 2003), Thessaloniki, Greece, pp 581-588

  • Sana, A, Baawain, M. (2011) Assessment of seawater quality along the northern coast of Oman. Proceedings of the 6th international conference on Asian and Pacific and coasts (APAC 2011), Hong Kong, pp 2002–2009

  • Sana A, Baawain M (2014) Ground water modeling of coastal plain aquifer in southern Oman. Proceedings of 19th IAHR – APD Congress 2014, Hanoi, Vietnam

  • Sana A, Baawain M, Al Sabti A (2013) Feasibility study of using treated wastewater to mitigate seawater intrusion along northern coast of Oman. Int J Water Resour Arid Environ 3(2):56-63. https://www.psipw.org/attachments/article/340/IJWRAE_2(2)056-63.pdf. Accessed 19 Dec 2021

  • Sathish S, Mohamed MM (2018) Assessment of aquifer storage and recovery (ASR) feasibility at selected sites in the emirate of Abu Dhabi, UAE. Environ Earth Sci 77:112. https://doi.org/10.1007/s12665-018-7251-7

    Article  Google Scholar 

  • Shammas MI (2008) The effectiveness of artificial recharge in combating seawater intrusion in Salalah coastal aquifer, Oman. Environ Geol 55:191–204. https://doi.org/10.1007/s00254-007-0975-4

    Article  Google Scholar 

  • Shammas MI, Jacks G (2007) Seawater intrusion in the Salalah plain aquifer, Oman. Environ Geol J. https://doi.org/10.1007/s00254-007-0673-2

  • Shammas MI, Thunvik R (2009) Predictive simulation of flow and solute transport for managing the Salalah coastal aquifer, Oman. Water Resour Manag 23(14):2941–2963. https://doi.org/10.1007/s11269-009-9417-2

    Article  Google Scholar 

  • Shamrukh M, Al-Muraikhi AA, Al-Hamar YI (2012) Exploring of deep groundwater in the southwest aquifer of Qatar. 10th Gulf Water Conf. https://doi.org/10.13140/2.1.3191.5521

  • Sherif M, Al-Mulla M, Shetty A (2013) Seawater intrusion assessment and mitigation in the coastal aquifer of Wadi ham. Groundwater Coastal Zones Asia-Pacific, Coastal Res Library 7. https://doi.org/10.1007/978-94-007-5648-9_13

  • Sherif MM, Kacimov A, Javadi AA, Ebraheem A (2012) Modelling groundwater flow and seawater intrusion in the coastal aquifer of Wadi ham, UAE. Water Resour Manag. https://doi.org/10.1007/s11269-011-9943-6

  • Singhal BBS, Gupta RP (2010) Applied hydrogeology of fractured rocks. Springer. https://doi.org/10.1007/978-90-481-8799-7_12

  • Sowe MA, Sadhasivam S, Mohamed MM, Sherif M (2019) Modeling the mitigation of seawater intrusion by pumping of brackish water from the coastal aquifer of Wadi ham, UAE. Sustain Water Resour Manag (5):1435–1451. https://doi.org/10.1007/s40899-018-0271-3

  • The Environment Agency - Abu Dhabi (EAD) (2018) Ground water atlas of Abu Dhabi emirates. EAD, Abu Dhabi, UAE

  • UN-ESCWA and BGR (United Nations Economic and Social Commission for Western Asia; Bundesanstalt für Geowissenschaften und Rohstoffe) (2013) Inventory of shared water resources in western Asia, ESCWA, Beirut

  • Walther M, Delfs JO, Grundmann J, Kolditz O, Liedl R (2012) Saltwater intrusion modeling: verification and application to an agricultural coastal arid region in Oman. J Comput Appl Math 236(18):4798–4809. https://doi.org/10.1016/j.cam.2012.02.008

    Article  Google Scholar 

  • Weyhenmeyer CE, Stephen JB, Niklaus WH (2002) Isotope study of moisture sources, recharge areas, and groundwater flow paths within the eastern Batinah coastal plain, Sultanate of Oman. Water Resour Res 38(10):1184. https://doi.org/10.1029/2000WR000149

    Article  Google Scholar 

  • World Health Organization (WHO) (1997) Comprehensive assessment of the freshwater resources of the world. WHO, Geneva, 34 pp. https://www.ircwash.org/resources/comprehensive-assessment-freshwater-resources-world. Accessed 19 Dec 2021

  • Young ME, de Bruijn RGM, Al-Ismaily AS (1998) Exploration of an alluvial aquifer in Oman by time-domain electromagnetic sounding. Hydrogeol J 6:383–393. https://doi.org/10.1007/s100400050161

    Article  Google Scholar 

  • Zheng C, Wang PP (1999) MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide, contract report SERDP-99-1, US Army Corps of Engineers, Washington DC. https://hydro.geo.ua.edu/mt3d/mt3dmanual.pdf. Accessed 18 Jun 2023

  • Zubari WK (1999) The Dammam aquifer in Bahrain: hydro chemical characterization and alternatives for management of groundwater quality. Hydrogeol J 7:197–208. https://doi.org/10.1007/s100400050192

    Article  Google Scholar 

  • Zubari WK (2005) Spatial and temporal trends in groundwater resources in Bahrain, 1992–2002. Emirates J Eng Res 10(1):57–67

    Google Scholar 

  • Zubari WK, Khater AR (1995) Brackish groundwater resources in Bahrain: current exploitation, numerical evaluation and prospect for utilization. Water Resour Manag 9:277–297. https://doi.org/10.1007/BF00872488

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Sana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, J., Sana, A. & Tauseef, S.M. Review: Assessment and modeling of seawater intrusion in coastal aquifers of the Arabian Peninsula. Hydrogeol J 31, 1121–1145 (2023). https://doi.org/10.1007/s10040-023-02655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02655-0

Keywords

Navigation