Skip to main content

Advertisement

Log in

Characterising groundwater and surface-water interconnections using hydrogeology, hydrochemistry and stable isotopes in the Ouémé Delta, southern Benin

Caractérisation des relations entre les eaux souterraines et les eaux de surface en utilisant l’hydrogéologie, l’hydrochimie et les isotopes stables dans le delta de l’Ouémé, sud du Bénin

Caracterización de la interrelación entre las aguas subterráneas y superficiales a partir de la hidrogeología, la hidroquímica y los isótopos estables en el delta del Ouémé, en el sur de Benín

使用水文地质学、水文化学和稳定同位素表征Benin南部Ouémé三角洲地区地下水和地表水之间的相互联系

Caracterização das interconexões de águas subterrâneas e superficiais usando hidrogeologia, hidroquímica e isótopos estáveis no Delta de Ouémé, sul do Benin

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Mio-Pliocene aquifer of the coastal sedimentary basin of Benin is the most exploited aquifer for water supply to the urbanised region in the southern part of the country. The population explosion is putting increasing pressure on quantitative and qualitative aspects of the groundwater resources. Preventing groundwater contamination caused by surface waters requires a thorough understanding of surface-water/groundwater interactions, especially the interactions between the Mio-Pliocene aquifer and surface waters. This study aimed to investigate the interactions between groundwater and surface waters along the major rivers (Sô River and Ouémé Stream) and brooks in the Ouémé Delta. Field campaigns identified 75 springs located in the valleys which feed the rivers, and thus maintain their base flow. The piezometric results indicated, through flow direction assessment, that the Mio-Pliocene aquifer feeds Ouémé Stream and Sô River. Chemical analyses of groundwater and surface waters show similar chemical facies, and changes in the chemical composition in groundwater are also observed in the surface waters. Moreover, the isotopic signatures of surface waters are similar to those of the groundwater and springs, which led to the identification of potential groundwater discharge areas. As a result of groundwater discharge into surface waters, the fraction of groundwater in the surface water is more than 66% in the brooks, regardless of the season. In the Ouémé Stream and Sô River, the fraction of groundwater is 0–21% between June and September, while from October to March it is 47–100%.

Résumé

L’aquifère du Mio-Pliocène du bassin sédimentaire côtier de Bénin est l’aquifère le plus exploité pour l’alimentation en eau de la région urbanisée du sud du pays. L’explosion démographique exerce une pression croissante sur les aspects quantitatifs et qualitatifs des ressources en eau souterraine. La prévention de la contamination des eaux souterraines par les eaux de surface nécessite une compréhension approfondie des interactions entre les eaux de surface et les eaux souterraines, en particulier les interactions entre l’aquifère du Mio-Pliocène et les eaux de surface. Cette étude a pour objectif d’évaluer les interactions entre les eaux souterraines et les eaux de surface le long des principaux cours d’eau (rivière Sô et fleuve Ouémé) et des ruisseaux du delta de l’Ouémé. Des campagnes de terrain ont permis d’identifier 75 sources situées dans les vallées, alimentant les rivières et permettant ainsi le maintien de leur débit de base. Les données piézométriques indiquent, grâce à l’évaluation de la direction de l’écoulement, que l’aquifère du Mio-Pliocène alimente le fleuve Ouémé et la rivière Sô. Les analyses chimiques des eaux souterraines et de surface montrent un faciès chimique similaire, et les changements de composition chimique des eaux souterraines sont également observées dans les eaux de surface. De plus, les signatures isotopiques des eaux de surface sont similaires à celles des eaux souterraines et des sources, ce qui amène à l’identification d’aires de décharge potentielle des eaux souterraines. En raison de la décharge des eaux souterraines dans les eaux de surface, on estime à 66% la part d’eau souterraine dans les ruisseaux, quelques soit la saison. Dans le fleuve Ouémé et la rivière Sô, la fraction d’eau souterraine est de 0 à 21% entre juin et septembre et de 47–100% d’octobre à mars.

Resumen

El acuífero mioplioceno de la cuenca sedimentaria costera de Benín es el más explotado para el abastecimiento de agua a la región urbanizada del sur del país. La explosión demográfica ejerce una presión creciente sobre los aspectos cuantitativos y cualitativos de los recursos de aguas subterráneas. La prevención de la contaminación de las aguas subterráneas causada por las aguas superficiales requiere un conocimiento detallado de la interacción entre las aguas superficiales y las subterráneas, especialmente la interacción entre el acuífero mioplioceno y las aguas superficiales. El objetivo de este estudio fue investigar la interacción entre las aguas subterráneas y las aguas superficiales a lo largo de los principales ríos (río Sô y arroyo Ouémé) y arroyos del delta del Ouémé. Las campañas de campo identificaron 75 manantiales situados en los valles, que alimentan los ríos y mantienen así su caudal base. Los resultados piezométricos indicaron, mediante la evaluación de la dirección del flujo, que el acuífero mioplioceno alimenta el arroyo Ouémé y el río Sô. Los análisis químicos de las aguas subterráneas y superficiales muestran facies químicas similares, y los cambios en la composición química de las aguas subterráneas también se observan en las aguas superficiales. Además, las firmas isotópicas de las aguas superficiales son similares a las de las aguas subterráneas y los manantiales, lo que permitió identificar posibles zonas de descarga de aguas subterráneas. Como resultado de la descarga de aguas subterráneas en las aguas superficiales, la fracción de aguas subterráneas en las aguas superficiales es superior al 66% en los arroyos, independientemente de la estación del año. En el arroyo Ouémé y el río Sô, la fracción de agua subterránea es del 0–21% entre junio y septiembre, mientras que de octubre a marzo es del 47–100%.

摘要

Benin沿海沉积盆地的Mio-Pliocene含水层是该国南部城市化地区供水最多的含水层。人口爆炸正在对地下水资源的数量和质量方面施加越来越大的压力。防止地下水受到地表水污染的问题需要深入了解地表水/地下水相互作用,特别是Mio-Pliocene含水层与地表水之间的相互作用。本研究旨在调查Ouémé三角洲主要河流(Sô河和Ouémé溪)和小溪河流与地下水之间的相互作用。野外调查确定了位于河谷中的75个泉眼,这些泉眼提供了河流的水源并维持其基流。压力计结果表明,Mio-Pliocene含水层通过流向评估向Ouémé溪和Sô河供水。地下水和地表水的化学分析显示相似的化学相,地下水的化学组成的变化也在地表水中观察到。此外,地表水的同位素特征与地下水和泉眼的相似,这导致了潜在的地下水排泄区域的识别。由于地下水向地表水的排泄,小溪中地下水的比例在任何季节都超过66%。在Ouémé溪和Sô河中,6月至9月期间地下水的比例为0–21%,而10月至3月期间为47–100%。

Resumo

O aquífero Mio-Pliocénico da bacia sedimentar costeira do Benin é o aquífero mais explorado para o abastecimento de água à região urbanizada da parte sul do país. A explosão populacional está pressionando cada vez mais os aspectos quantitativos e qualitativos dos recursos hídricos subterrâneos. Prevenir a contaminação das águas subterrâneas causada por águas superficiais requer uma compreensão completa das interações águas superficiais/águas subterrâneas, especialmente as interações entre o aquífero Mio-Plioceno e as águas superficiais. Este estudo teve como objetivo investigar as interações entre as águas subterrâneas e superficiais ao longo dos principais rios (Rio Sô e Ribeira de Ouémé) e riachos no Delta de Ouémé. Campanhas de campo identificaram 75 nascentes localizadas nos vales, que alimentam os rios e assim mantêm sua vazão de base. Os resultados piezométricos indicaram, através da avaliação da direção do fluxo, que o aquífero Mio-Pliocénico alimenta a Ribeira de Ouémé e o Rio Sô. As análises químicas das águas subterrâneas e superficiais mostram fácies químicas semelhantes, e mudanças na composição química das águas subterrâneas também são observadas nas águas superficiais. Além disso, as assinaturas isotópicas das águas superficiais são semelhantes às das águas subterrâneas e nascentes, o que levou à identificação de potenciais áreas de descarga de águas subterrâneas. Como resultado da descarga das águas subterrâneas nas águas superficiais, a fração das águas subterrâneas nas águas superficiais é superior a 66% nos riachos, independentemente da estação. Na Ribeira de Ouémé e no Rio Sô, a fração de água subterrânea é de 0–21% entre junho e setembro, enquanto de outubro a março é de 47–100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achidi JB, Bourguet L, Elsaesser R, Legier A, Paulve E, Tribouillard N (2012) Evaluation de l’impact d’une baisse de la pluviométrie sur la recharge de l’aquifère du Mio-Pliocene du plateau d’Allada [Evaluation of the impact of a decrease in rainfall on recharge of the Mio-Pliocene aquifer of the Allada plateau]. GIZ Bonn, Germany, 62 pp

  • AGIRES (2022) Actions pour une Gestion Intégrée des Ressources en Eau Souterraines, AGIRES [Action for integrated water resource management]. Final report, Omidelta, National Institute of Water, University of Abomey-Calavi, Abomey-Calavi, Benin

  • Alassane A (2004) Etude hydrogéologique du Continental Terminal et des formations de la plaine littorale dans la région de Porto Novo (Sud du Bénin) : identification des aquifères et vulnérabilité de la nappe superficielle [Hydrogeological study of the Continental Terminal and coastal plain formations in the Porto Novo region (southern Benin): identification of aquifers and vulnerability of shallow water table] Thèse de Doctorat de 3ème cycle. UCAD, 145p + Ann. Dakar, Sénégal

  • Alassane A (2018) Apports des outils géochimiques et isotopiques pour l’amélioration des connaissances sur le fonctionnement du système aquifère du Continental Terminal dans le bassin sédimentaire côtier du Bénin [Contribution of geochemical and isotopic tools to improve knowledge on the functioning of the Continental Terminal aquifer system in the coastal sedimentary basin of Benin]. PhD thesis, Université d’Abomey-Calavi, Abomey-Calavi, Benin, 147 pp

  • Boukari M (1998) Fonctionnement du système aquifère exploite pour l’approvisionnement en eau de la ville de Cotonou sur le littoral béninois. Impact du développement urbain sur la qualité des ressources [Functioning of the aquifer system used to supply water to the city of Cotonou on the Beninese coast. Impact of urban development on the quality of the resources]. PhD Thesis, Université Cheikh Anta Diop de Dakar, Dakar, Senegal, 275 pp

  • Dossou PM, Zevounou C, Alassane A, Kaki C, Boukari M, Mama D (2021) Physico-chemical characteristics of gushing water aquifers in the coastal sedimentary basin of Benin (West Africa). J Geosci Environ Prot. https://doi.org/10.4236/gep.2021.97010

  • Edmund WM, Cook JM (1987) Baseline geochemical condition in the chalk aquifer, Berkshire, UK: a basis for groundwater quality management. Appl Geochem 2:251–274

    Article  Google Scholar 

  • Ette OJ, Okuofu CA, Adie DB, Igboro SB, Alagbe SA, Etteh CC (2017) Application of environmental isotope to access the renewability of groundwater of continental intercalaire aquifer of Sokoto basin in Northweastern Nigeria. Groundw. For Sustain Dev 4:35–41

  • Ganiyu SA, Badmus BS, Olurin OT, Ojekunle ZO (2018) Evaluation of seasonal variation of water quality using multivariate statistical analysis and irrigation parameter indices in Ajakanga area, Ibadan, Nigeria. Appl Water Sci 8:35

    Article  Google Scholar 

  • García GM, Hidalgo MDV, Blesa MA (2001) Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeol J 9(6):597–610

    Article  Google Scholar 

  • Guggenmos MR, Daughney CJ, Jackson BM, Morgenstern U (2011) Regional-scale identification of groundwater-surface water interaction using hydrochemistry and multivariate statistical methods, Wairarapa Valley, New Zealand. Hydrol Earth Syst Sci 15:3383–3398

    Article  Google Scholar 

  • Huang P, Han S (2016) Assessment by multivariate analysis of groundwater–surface water interactions in the coal-mining exploring district. China Earth Sci Res J 20:1–8

    Article  Google Scholar 

  • Huneau F (2000) Fonctionnement hydrodynamique et archives paleoclimatiques d’un aquifere profond mediterraneen: etude geochimique et isotopique du bassin Miocene de Valreas (Sud-Est de la France) [Hydrodynamic functioning and paleoclimatic archives of a deep Mediterranean aquifer: geochemical and isotopic study of the Miocene basin of Valreas]. PhD Thesis, Universite d’Avion, France, 192 pp

  • INSAE (2016) Effectifs de la population des villages et quartiers de ville du Bénin [Population size of villages and city districts in Benin]. RGPH-4, 2013, Final report, National Institute of Statistics and Economic Analysis, Contonou, Benin

  • IRB (1987) Etude de cartographie géologique et prospection minérale de reconnaissance au Sud du 9ème parallèle [Geological mapping study and reconnaissance mineral prospecting south of the 9th parallel]. Report. Istituto Recerche Breda, FED-OBEMINES

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater and surface water interactions. Hydrol Earth Syst Sci 10:873–887. https://doi.org/10.5194/hess-10-873

    Article  Google Scholar 

  • Klaus J, McDonnell JJ (2013) Hydrograph separation using stable isotopes: review and evaluation. J Hydrol 505(2013):47–64. https://doi.org/10.1016/j.jhydrol.2013.09.006

    Article  Google Scholar 

  • Kpegli KAR (2020) Flow characterization and modelling of a South Benin artesian aquifer system: effects of hydraulic and storage properties and recharge on simulated heads across the artesian zone. PhD Thesis. Wageningen University, Wageningen, The Netherlands. https://doi.org/10.18174/526095, 160 pp

  • Kpegli KAR, Alassane A, Trabelsi R, Zouari K, Boukari M, Mama D, Dovonon FL, Yoxi YV, Toro-Espitia LE (2015) Geochemical processes in Kandi Basin, Benin, West Africa: a combined hydrochemistry and stable isotopes approach. Quat Int 369:99–109

    Article  Google Scholar 

  • Kpegli KAR, Alassane A, van der Zeea SEATM, Boukari M, Mama D (2018) Development of a conceptual groundwater flow model using a combined hydrogeological, hydrochemical and isotopic approach: a case study from southern Benin. J Hydrol: Regional Stud 18:50–67. https://doi.org/10.1016/j.ejrh.2018.06.002

    Article  Google Scholar 

  • Kumar M, Ramanathan A, Keshari AK (2009) Understanding the extent of interactions between groundwater and surface water through major ion chemistry and multivariate statistical techniques. Hydrol Process 23:297–310

    Article  Google Scholar 

  • Lee KS, Kim Y (2007) Determining the seasonality of groundwater recharge using water isotopes: a case study from the upper North Han River basin. Korea Environ Geol 52:853–859

    Article  Google Scholar 

  • MacDonald AM, Bonsor HC, Calow RC, Taylor RG, Lapworth DJ, Maurice L, Tucker J, Dochartaigh Ó, BÉ (2011) Groundwater resilience to climate change in Africa. Brit Geol Surv Open Report OR/11/031:25, BGS, Keyworth, UK

  • McLean W, Jankowski J, Lavitt N (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. In: Groundwater, past achievements and future challenges. Balkema, Rotterdam, The Netherlands, pp 567–573

  • Menció A, Mas-Pla J (2008) Assessment by multivariate analysis of groundwater-surface water interactions in urbanized Mediterranean streams. J Hydrol 352:355–366

    Article  Google Scholar 

  • Mook WG (2006) Introduction to isotope hydrology. Taylor and Francis, London

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • NOEVA (2019) NOuvelle approche pour l’eau des villes Africaines, NOEVA [A new approach for improving the knowledge of groundwater resource for African cities]. Final report, VIA Water, IRD, Cotonou, Benin

  • Pathak DR, Yatabe R, Bhandary NP (2015) Identification of major affecting spatial and temporal variation of water quality in Kathmandu Basin, Nepal, using multivariate statistical analysis. Int J Water 9:209–225

    Article  Google Scholar 

  • Penna D, Stenni B, Wrede S, Bogaard TA, Gobbi A, Borga M, Fischer BMC, Bonazza M, Charova Z (2010) On the reproducibility and repeatability of laser absorption spectroscopy measurements for δ2H and δ18O isotopic analysis. Hydrol Earth Syst Sci 7:2975–3014

    Google Scholar 

  • Ramita B, Takashi N, Subesh G, Bijay MS, Naresh KT (2020) Identifying groundwater and river water interconnections using hydrochemistry, stable isotopes, and statistical methods in Hanumante River, Kathmandu Valley, central Nepal. Water 12:1524. https://doi.org/10.3390/w12061524

    Article  Google Scholar 

  • Rozanski K, Araguas-Araguas, L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Climate change in continental isotopic records. Geophys. Monogr. Seri., AGU, Washington, DC

  • Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji River basin. Japan Environ Model Softw 22:464–475

    Article  Google Scholar 

  • Sidle WC (1998) Environmental isotopes for resolution of hydrology problems. Environ Monit Assess 52:389–410

  • Slansky M (1968) Contribution à l’étude géologique du bassin sédimentaire côtier du Danhomey et du Togo [Contribution to the geological study of the coastal sedimentary basin of Danhomey and Togo]. Thesis, Univ. Nancy, Série 59, no. 165 et 1962, Mém. BRGM no. 11, BRGM, Orleans, France, 170 pp

  • Stichler W, Maloszewski P, Moser H (1986) Modelling of river water infiltration using oxygen-18 data. J Hydrol 83:355–365. https://doi.org/10.1016/0022-1694(86)90161-7

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water - a single resource. US Geol Surv Circ 1139

  • Zhang B, Song X, Zhang Y, Ma Y, Tang C, Yang L, Wang ZL (2016) The interaction between surface water and groundwater and its effect on water quality in the second Songhua River Basin, Northeast China. J Earth Syst Sci 125:1495–1507

    Article  Google Scholar 

  • Zhao D, Guangcai W, Fu L, Nuan Y, Wanjun J, Liang G, Chenglong L, Zheming S (2018) Groundwater-surface water interactions derived by hydrochemical and isotopic (222Rn, deuterium, oxygen-18) tracers in the Nomhon area, Qaidam Basin, NW China. J Hydrol 565:650–666. https://doi.org/10.1016/j.jhydrol.2018.08.066

    Article  Google Scholar 

  • Zhong M, Zhang H, Sun X, Wang Z, Tian W, Huang H (2018) Analyzing the significant environmental factors on the spatial and temporal distribution of water quality utilizing multivariate statistical techniques: a case study in the Balihe Lake. China Environ Sci Pollut Res 25:29418–29432

    Article  Google Scholar 

Download references

Acknowledgements

This research has been carried out in the framework of the Omidelta Project funded by Embassy of the Netherlands. Constructive comments received from the editor and two anonymous reviewers helped to significantly improve the original version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bio Guidah Chabi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 2378 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guidah Chabi, B., Alassane, A., Kpegli, K.A.R. et al. Characterising groundwater and surface-water interconnections using hydrogeology, hydrochemistry and stable isotopes in the Ouémé Delta, southern Benin. Hydrogeol J 31, 1229–1243 (2023). https://doi.org/10.1007/s10040-023-02645-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02645-2

Keywords

Navigation