Skip to main content

Advertisement

Log in

Hydrogeological classification of municipal solid waste landfill sites in China and correlation with groundwater contaminant migration

Classification hydrogéologique des sites de dépôts de déchets municipaux solides en Chine et corrélation avec la migration des contaminants vers les eaux souterraines

Clasificación hidrogeológica de los vertederos municipales de residuos sólidos en China y correlación con la migración de contaminantes a las aguas subterráneas

中国生活垃圾填埋场的水文地质分类及与地下水污染物迁移的关联性

Classificação hidrogeológica de aterros municipais de resíduos sólidos na China e correlação com a migração da contaminação da água subterrânea

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Tens of thousands of municipal solid waste (MSW) landfill sites worldwide hold a high risk of contaminating groundwater. This study aimed to establish a practical hydrogeological classification system for MSW landfill sites and explores the correlation between the classification and the risk of groundwater contamination. Hydrogeological information and groundwater contamination data from 80 MSW landfill sites in China were collected and analyzed, and a general hydrogeological model was proposed. The key hydrogeological parameters in the model were identified and analyzed, including the relative depth to the water table, the ratio of the length of the MSW site’s recharge boundary to the combined length of the discharge boundary and hydrobalance boundary, the hydraulic conductivity of the bearing layer, and the background hydraulic gradient. On the basis of the general model, hydrogeological conditions at the landfill sites were categorized into seven subtypes. By using chloride, ammoniacal nitrogen and chemical oxygen demand as the characteristic contaminants, the migration features of groundwater contaminants within the seven subtypes of landfill sites were revealed. It was found that the maximum contaminant migration distance could be 2,000 and 300 m at the landfill sites with ‘plain and intensive runoff’ type and ‘valley and weak runoff’ type, respectively, and the corresponding concentration gradients of the characteristic contaminants were less than 10 mg/(L × m) and greater than 10 mg/(L × m). This work provides a guide for implementing cost-effective site investigation and environmental risk management at landfill sites with different types of hydrogeological conditions.

Résumé

Des dizaines de milliers de sites de dépôts de déchets solides municipaux (MSW) dans le monde ont un haut risque de contaminer les eaux souterraines. Cette étude a pour objectif d’établir un système pratique de classification hydrogéologique des sites de dépôts de MSW et d’explorer la corrélation entre cette classification et le risque de contamination des eaux souterraines. Les informations hydrogéologiques et données de contamination des eaux souterraines de 80 sites de dépôts de MSW en Chine ont été collectées et analysées et un modèle hydrogéologique général a été proposé. Les paramètres hydrogéologiques clés du modèle ont été identifiés et analysés, notamment la profondeur relative de la nappe phréatique, le rapport entre la longueur de la limite de recharge des sites de MSW et la longueur combinée de la limite de décharge et de la limite d'équilibre hydrologique, la conductivité hydraulique de la couche portante et le gradient hydraulique de fond. Sur la base du modèle général, les conditions hydrogéologiques des sites de dépôts ont été catégorisées en sept sous-types. En considérant le chlorure, l’ammonium et la demande chimique en oxygène comme caractéristiques des contaminations, les schémas de migration des contaminants des eaux souterraines pour les sept sous-types ont été déterminés. Il a été montré que la distance maximum de migration des contaminants peut-être de 2000 m et 300 m du site de dépôts respectivement pour le type “ruissellement intensif de plaine” et le type “ruissellement faible de vallée” et le gradient de concentration des contaminants caractéristiques est inférieur à 10 mg/( L × m) et supérieur à 10 mg/( L × m). Ce travail fournit un guide pour la mise en œuvre d'une investigation rentable et d'une gestion des risques environnementaux sur les sites de décharge présentant différents types de conditions hydrogéologiques.

Resumen

Decenas de miles de vertederos de residuos sólidos urbanos (MSW) de todo el mundo presentan un alto riesgo de contaminación de las aguas subterráneas. El objetivo de este estudio es definir un sistema práctico de clasificación hidrogeológica de los vertederos de MSW y estudiar la correlación entre la clasificación y el riesgo de contaminación de las aguas subterráneas. Se recopiló y analizó información hidrogeológica y datos de contaminación de aguas subterráneas de 80 vertederos de MSW de China, y se propuso un modelo hidrogeológico general. Se identificaron y analizaron los parámetros hidrogeológicos clave del modelo, incluida la profundidad relativa a la capa freática, la relación entre la longitud del límite de recarga del vertedero de MSW y la longitud combinada del límite de descarga y el límite de balance hídrico, la conductividad hidráulica de la capa portante y el gradiente hídrico de fondo. Sobre la base del modelo general, las condiciones hidrogeológicas de los vertederos se clasificaron en siete subtipos. Utilizando el cloruro, el nitrógeno amoniacal y la demanda química de oxígeno como contaminantes característicos, se revelaron las características de migración de los contaminantes de las aguas subterráneas dentro de los siete subtipos de vertederos. Se descubrió que la distancia máxima de migración de contaminantes podía ser de 2000 m y 300 m en los vertederos de tipo “llanura y escorrentía intensiva” y “valle y escorrentía débil”, respectivamente, y los gradientes de concentración correspondientes de los contaminantes característicos eran inferiores a 10 mg/(L × m) y superiores a 10 mg/(L × m). Este trabajo proporciona una guía para llevar a cabo una investigación rentable del emplazamiento y una gestión del riesgo medioambiental en vertederos con diferentes tipos de condiciones hidrogeológicas.

摘要

全世界数以万计的生活垃圾(MSW)填埋场是污染地下水的高风险源。本研究旨在为MSW填埋场地建立一个实用的水文地质分类系统,并探讨该分类与地下水污染风险之间的关联性。收集并分析了中国80个MSW填埋场地的水文地质信息和地下水污染数据,并提出了一个通用的水文地质模型。确定并分析了模型中的关键水文地质参数,包括潜水位相对埋深、堆体补给边界长度与排泄边界加和水力平衡边界长度之比、堆体下游下卧层的渗透系数和堆体上游背景地下水水力坡度。在一般模型的基础上,垃圾填埋场地的水文地质条件被分为七个子类型。选取氯化物、氨氮和化学需氧量作为特征污染物,揭示了地下水污染物在填埋场地七个亚类型中的迁移特征。研究发现,在 “平原-强径流 ”型和“山谷-弱径流”型的垃圾填埋场地,污染物的最大迁移距离分别为2000 m和300 m,相应的特征污染物的浓度梯度绝对值分别小于10 mg/(L × m)和大于10 mg/(L × m)。这项工作为在具有不同类型水文地质条件的垃圾填埋场地实施经济有效的场地调查和环境风险管理提供了指导。

Resumo

Dezenas de milhares de aterros municipais de resíduos sólidos (MRS) no mundo representam alto risco de contaminação das águas subterrâneas. Este estudo visou estabelecer um sistema prático de classificação hidrogeológica para aterros MRS e explora a correlação entre a classificação e o risco de contaminação da água subterrânea. Informações hidrogeológicas e dados de contaminação de águas subterrâneas de 80 aterros MRS na China foram coletados e analisados, e um modelo hidrogeológico geral foi proposto. Os parâmetros hidrogeológicos chave no modelo foram identificados e analisados, incluindo a profundidade relativa do nível d’água, a razão do comprimento do limite da zona de recarga com o comprimento combinado da zona de recarga e de hidrobalanço, condutividade hidráulica da camada aquífera, e o gradiente hidráulico histórico. Com base no modelo geral, as condições hidrogeológicas dos aterros foram categorizadas em sete subtipos. Usando cloreto, nitrogênio amoniacal e demanda química de oxigênio como característicos da contaminação, os aspectos dos contaminantes nas águas subterrâneas dos sete subtipos de aterros foram revelados. Verificou-se que a distância máxima de migração de contaminantes poderia ser de 2000 m e 300 m nos aterros do tipo “escoamento simples e intensivo” e do tipo “vale e escoamento fraco”, respectivamente, e os gradientes de concentração correspondentes dos contaminantes característicos eram inferiores a 10 mg/(L × m) e superiores a 10 mg/(L × m). Este trabalho fornece um guia para a implementação de investigação local econômica e gestão de riscos ambientais em aterros com diferentes tipos de condições hidrogeológicas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Buss SR, Herbert AW, Morgan P, Thornton SF, Smith JWN (2004) A review of ammonium attenuation in soil and groundwater. Q J Eng Geol Hydrogeol 37:347–359

    Article  Google Scholar 

  • Cai BF, Lou ZY, Wang JN, Geng Y, Sarkis J, Liu JG, Gao QX (2018) CH4 mitigation potentials from China landfills and related environmental co-benefits. Sci Adv 4(7):aar8400

    Article  Google Scholar 

  • Calaforra J, Gázquez F (2017) Gypsum speleogenesis: a hydrogeological classification of gypsum caves. Int J Speleol 46:251–265

    Article  Google Scholar 

  • Carlier C, Wirth SB, Cochand F, Hunkeler D, Brunner P (2019) Exploring geological and topographical controls on low flows with hydrogeological models. Groundwater 57(1):48–62

    Article  Google Scholar 

  • CEPA (China’s Environmental Protection Administration), CSBTS (China State Bureau of Quality and Technical Supervision) (2002) Environmental quality standards for surface water. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml. Accessed Jan 2023

  • Chen MX, Gong YH, Li Y, Lu DD, Zhang H (2016) Population distribution and urbanization on both sides of the Hu Huanyong Line: answering the Premier’s question. J Geogr Sci 26(11):1593–1610

    Article  Google Scholar 

  • Chen YM, Xu WJ, Ling DS, Zhan LT, Gao W (2020) A degradation–consolidation model for the stabilization behavior of landfilled municipal solid waste. Comput Geotech 118:103341

    Article  Google Scholar 

  • Chinamaps.org (2016) Maps of China. https://www.chinamaps.org/china/china- map-of-precipitation.html. Accessed Jan 2023

  • Christensen TH, Kjeldsen P, Albrechtsen HJ, Heron G, Nielsen PH, Bjerg PL, Holm PE (1994) Attenuation of landfill leachate pollutants in aquifers. Crit Rev Environ Sci Technol 24(2):119–202

    Article  Google Scholar 

  • CMEP (China Ministry of Environment Protection), CSBTS (China State Bureau of Quality and Technical Supervision) (2008) Standard for pollution control on the landfill site of municipal solid waste. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthw/gtfwwrkzbz/200804/t20080414_121136.shtml. Accessed Jan 2023

  • Cozzarelli IM, Böhlke JK, Masoner J, Breit GN, Lorah MM, Tuttle MLW, Jaeschke JB (2011) Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma. Groundwater 49(5):663–687

    Article  Google Scholar 

  • CSBTS (China State Bureau of Quality and Technical Supervision), CSA (China’s Standardization Administration) (2017) Standard for groundwater quality. http://www.yzx.gov.cn/5/149/3131/content_2208055.html. Accessed Jan 2023

  • DWER (Department of Water and Environmental Regulation) (2019) Landfill waste classification and waste definitions. https://www.der.wa.gov.au/images/documents/our-work/licences-and-works-approvals/WasteDefinitions-revised.pdf. Accessed Jan 2023

  • EPA (Environmental Protection Agency) (2002) Groundwater attenuation zones. https://www.epa.vic.gov.au/-/media/epa/files/publications/841.pdf. Accessed Jan 2023

  • 33USC, 42USC (1991) 40 CFR part 258: Criteria for municipal solid waste landfills. https://www.ecfr.gov/current/title-40/chapter-I/subchapter-I/part-258. Accessed Feb 2023

  • Evert KJ, Ballard EB, Elsworth DJ, Oquiñena I, Schmerber JM, Stipe RE (2010) Water conservation area [UK]. In: Encyclopedic dictionary of landscape and urban planning. Springer, Berlin

    Chapter  Google Scholar 

  • FLG (Federal Law Gazette) (2010) Ordinance on the protection of groundwater (Groundwater Ordinance) of 9 November, (BGBl.) I, p. 1513, last amended by article 1 of the ordinance of 4 May 2017, (Federal Legal Gazette I, p. 1044). Federal Ministry of Justice and Consumer Protection, Berlin, Germany

  • Grisey E, Aleya L (2016) Assessing the impact of leachate plumes on groundwater quality in the Etueffont landfill (Belfort, France). Environ Earth Sci 75(10):1–18

    Article  Google Scholar 

  • Halim AA, Aziz HA, Johari M, Ariffin KS (2010) Comparison study of ammonia and cod adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination 262(1–3):31–35

    Article  Google Scholar 

  • Han ZY, Ma HN, Shi GZ, He L, Wei LY, Shi QQ (2016) A review of groundwater contamination near municipal solid waste landfill sites in China. Sci Total Environ 569–570:1255–1264

    Article  Google Scholar 

  • Hussein M, Yoneda K, Zaki ZM, Othman NA, Amir A (2019) Leachate characterizations and pollution indices of active and closed unlined landfills in Malaysia. Environ Nanotech, Monit Manag 12:100232

    Google Scholar 

  • Huysmans M, Dassargues A (2005) Review of the use of Peclet numbers to determine the relative importance of advection and diffusion in low permeability environments. Hydrogeol J 13(5–6):895–904

    Article  Google Scholar 

  • Idowu IA, Atherton W, Hashim K, Kot P, Alkhaddar R, Alo BI, Shaw A (2019) An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences. Waste Manag 87:761–771

    Article  Google Scholar 

  • Idris A, Nanc BI, Hassan MN (2004) Overview of waste disposal and landfills/dumps in Asian countries. J Mater Cycles Waste Manag 6(2):104–110

    Google Scholar 

  • Izquierdo T (2014) Conceptual hydrogeological model and aquifer system classification of a small volcanic island (La Gomera; Canary Islands). Catena 114:119–128

    Article  Google Scholar 

  • Jiang YH, Xi BD, Lian XY (2018) Investigation and assessment technology of groundwater contamination in landfills. China Environmental Science Press, Beijing, pp 10–100

    Google Scholar 

  • Kamaruddin MA, Yusoff MS, Rui LM, Isa AM, Zawawi MH, Alrozi R (2017) An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives. Environ Sci Pollut Res 24(35):26988–27020

    Article  Google Scholar 

  • Lee KS, Ko KS, Kim EY (2020) Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination. Environ Geochem Hlth 42:1387–1399

    Article  Google Scholar 

  • Liao (2016) Study on groundwater pollution risk and mass transportation prediction in simple landfill site. MSc Thesis, Southwest Jiaotong University, Chengdu, China

    Google Scholar 

  • MEE (Ministry of Ecology and Environment) (2020) Technical specifications for environmental monitoring of groundwater. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202012/t20201203_811333.shtml. Accessed Jan 2023

  • MHUD (Ministry of Housing and Urban-Rural Development) (2012) Technical code for geotechnical engineering of municipal solid waste sanitary landfill. China Architecture & Building Press, Beijing

    Google Scholar 

  • Mokarram M, Sathyamoorthy D (2018) A review of landform classification methods. Spat Inf Res 26(6):647–660

    Article  Google Scholar 

  • MWR (Ministry of Water Resources) (2008) Standards for classification and gradation of soil erosion. China Water Power Press, Beijing

    Google Scholar 

  • NASEM (National Academies of Sciences, Engineering, and Medicine) (2015) Characterization, modeling, monitoring, and remediation of fractured rocks. The National Academies Press, Washington, DC

    Google Scholar 

  • Naveen BP, Mahapatra DM, Sitharam TG, Sivapullaiah PV, Ramachandra TV (2017) Physico-chemical and biological characterization of urban municipal landfill leachate. Environ Pollut 220:1–12

    Article  Google Scholar 

  • Nigro A, Sappa G, Barbieri M (2017) Application of boron and tritium isotopes for tracing landfill contamination in groundwater. J Geochem Explor 172:101–108

    Article  Google Scholar 

  • Nigro A, Sappa G, Barbieri M (2018) Boron isotopes and rare earth elements in the groundwater of a landfill site. J Geochem Explor 190:200–206

    Article  Google Scholar 

  • Ololade OO, Mavimbela S, Oke SA, Makhadi R (2019) Impact of leachate from northern landfill site in Bloemfontein on water and soil quality: implications for water and food security. Sustain 11(15):1–19

    Google Scholar 

  • OME (Ontario Ministry of the Environment) (2012) Landfill standards: a guideline on the regulatory and approval requirements for new or expanding landfilling sites. https://www.ontario.ca/page/landfill-standards-guideline-regulatory-and-approval-requirements-newexpanding-land#section-1. Accessed Jan 2023

  • Pivato A, Raga R (2006) Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner. Waste Manag 26(2):123–132

    Article  Google Scholar 

  • Reible DD, Lampert DJ (2014) Capping for remediation of contaminated sediments. In: Reible DD (ed) Processes, assessment and remediation of contaminated sediments. SERDP and ESTCP Remediation Technology Monograph Series. Springer, New York, pp 325–363

  • Rezaeisabzevar Y, Bazargan A, Zohourian B (2020) Landfill site selection using multi criteria decision making: influential factors for comparing locations. J Environ Sci 93(07):170–184

    Article  Google Scholar 

  • Sara MN (2003) Site assessment and remediation handbook, 2nd edn. CRC, Boca Raton, FL

  • Sharma KD, Jain S (2020) Municipal solid waste generation, composition, and management: the global scenario. Soc Responsib J 16(6):917–948

    Article  Google Scholar 

  • Smakhtnin VU (2001) Low flow hydrology: a review. J Hydrol 240:147–186

    Article  Google Scholar 

  • Stoelzle M, Weiler M, Stahl K, Morhard A, Schuetz T (2015) Is there a superior conceptual groundwater model structure for base-flow simulation? Hydrol Process 29(6):1301–1313

    Article  Google Scholar 

  • Venkatramanan S, Chung SY, Selvam S, Lee SY, Elzain HE (2017) Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS. Environ Sci Pollut Res 24:23679–23693

    Article  Google Scholar 

  • Weatherl RK, Salgado MJH, Ramgraber M, Moeck C, Schirmer M (2021) Estimating surface runoff and groundwater recharge in an urban catchment using a water balance approach. Hydrogeol J 29:2411–2428

    Article  Google Scholar 

  • Wijekoon P, Koliyabandara PA, Cooray AT, Lam SS, Athapattu, BCL,Vithanage M (2022) Progress and prospects in mitigation of landfill leachate pollution: risk, pollution potential, treatment and challenges. J Hazard Mater 421:126627

  • Wimmer B, Hrad M, Huber-Humer M, Watzinger A, Wyhlidal S, Reichenauer TG (2013) Stable isotope signatures for characterizing the biological stability of landfilled municipal solid waste. Waste Manag 33(10):2083–2090

    Article  Google Scholar 

  • Wu LB, Wang JX, Xiang PJ, Fogg GE, Yang TL, Yan XX, Huang XL, Liu ZP, Qi R (2019) Distribution and origination of zinc contamination in newly reclaimed heterogeneous dredger fills: field investigation and numerical simulation. Mar Pollut Bull 149:110496

    Article  Google Scholar 

  • Wu LB, Zhan LT, Lan JW, Chen YM, Zhang S, Li JC, Liao GQ (2021) Leachate migration investigation at an unlined landfill located in granite region using borehole groundwater TDS profiles. Eng Geol 292:106259

    Article  Google Scholar 

  • Yong RN, Nakano M, Pusch R (2012) Environmental soil properties and behavior, 1st edn. CRC, London

    Book  Google Scholar 

  • Zhan LT, Xu H, Chen YM, Lü F, Lan JW, Shao LM, Lin WA, He PJ (2017) Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: preliminary findings from a large-scale experiment. Waste Manag 63:27–40

    Article  Google Scholar 

  • Zhang JK, Dong H, Cheng YP, Yue C, Liu K (2020) Compilation of hydrogeological map of China. J Groundw Sci Eng 8(04):381–395

    Google Scholar 

  • Zheng CM, Bennett GD (2009) Applied contaminant transport modeling, 2nd edn. Wiley, pp 240–280

  • Zheng CM, Guo ZL (2022) Plans to protect China’s depleted groundwater. Sci Lett 375(6583):827

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their valuable comments.

Funding

The authors would like to acknowledge the National Key Research and Development Program of China (No. 2018YFC1802300) and the Basic Science Center Program for Multiphase Media Evolution in Hypergravity of the National Natural Science Foundation of China (No. 51988101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linbo Wu.

Ethics declarations

Conflicts of interest statement

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 250 kb)

Appendix

Appendix

Abbreviations and notation

MWS

Municipal solid waste

HCA

Hierarchical clustering analysis

P-IR

Plain type and intensive runoff

P-WR

Plain type and weak runoff

P-QH

Plain type and quasi-hydrostatic

T-IR

Terrace type and intensive runoff

T-WR

Terrace type and weak runoff

V-IR

Valley type and intensive runoff

V-WR

Valley type and weak runoff

Cl

Chloride

NH

Ammoniacal nitrogen

CODCr

Chemical oxygen demand

α

General slope of outer surface around the waste pile

d

Distance from boundary of the waste pile

C 0, Cm

Average contaminant concentration in leachate, and in groundwater at outer surface of the contamination plume

K

Hydraulic conductivity

I

Hydraulic gradient

L, Lm

Migration distance of the analyzed groundwater contaminant with the specified concentration, the furthest L away from the waste-pile boundary

G m

Negative gradient of contaminant concentration in the Lm range

R r/d

The ratio of length of the MSW site’s recharge boundary to the combined length of the discharge boundary and hydrobalance boundary

D r

Relative depth of the water table at the landfill site

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, L., Wu, L., Han, H. et al. Hydrogeological classification of municipal solid waste landfill sites in China and correlation with groundwater contaminant migration. Hydrogeol J 31, 771–787 (2023). https://doi.org/10.1007/s10040-023-02611-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02611-y

Keywords

Navigation