Skip to main content
Log in

Regional-scale reactive transport modelling of hydrogeochemical evolution in a karstic carbonate aquifer

Modélisation du transport réactif à l’échelle régionale de l’évolution hydrogéochimique dans un aquifère carbonaté karstique

Modelización del transporte reactivo a escala regional de la evolución hidrogeoquímica en un acuífero kárstico

岩溶碳酸盐含水层水文地球化学演化的区域尺度反应迁移模型

Modelagem de transporte reativo em escala regional da evolução hidrogeoquímica de um aquífero carbonático cárstico

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A regional-scale reactive transport model is used to conduct a quantitative assessment of the chemical and isotopic processes that form a conceptual model of geochemical evolution. The primary geochemical reactions described in the conceptual model are incongruent dolomite and gypsum dissolution followed by a series of redox reactions and sulphur isotope fractionation with closed-to-atmosphere groundwater evolution. The investigated aquifer comprises karstic carbonate bedrock with a hydraulic conductivity (K) range spanning several orders of magnitude. Hydrochemical evolution was simulated with a fully saturated one-dimensional model using the multicomponent reactive transport code MIN3P. Five steady -state model scenarios representing the known range of K and porosity simulate geochemical and isotopic evolution along a hypothetical 50-km flowpath. Simulation results are compared with sparse field observations along the flowpath. Although field observations show similar trend directions for all parameters, the magnitude of these trends varies due to differences in residence times. The model results bracket the field observations well for all parameters, except for Mg, and thus these results confirm that variability in field trends can be attributed to physical heterogeneity. The good agreement between models and field observations demonstrates that the geochemical and isotopic processes forming the conceptual model can be quantitatively reproduced. This supports water management activities by establishing hydrochemical end members that may be used to constrain recharge area mapping, assess flow zone continuity and identify areas of older evolved waters. These results also support the use of reactive transport models for quantifying chemical processes in regional-scale groundwater flow systems.

Résumé

Un modèle de transport réactif à l’échelle régionale est utilisé pour effectuer une évaluation quantitative des processus chimiques et isotopiques qui forment un modèle conceptuel de l’évolution géochimique. Les principales réactions géochimiques décrites dans le modèle conceptuel sont la dissolution incompatible de la dolomie et du gypse suivie d’une série de réactions redox et d’un fractionnement isotopique du soufre avec une évolution des eaux souterraines fermée à l’atmosphère. L’aquifère étudié comprend un substrat rocheux carbonaté karstique avec une gamme de conductivité hydraulique (K) couvrant plusieurs ordres de grandeur. L’évolution hydrochimique a été simulée avec un modèle unidimensionnel entièrement saturé utilisant le code de transport réactif multicomposants MIN3P. Cinq scénarios de modèle pour des conditions stationnaires représentant la gamme connue de K et de porosité simulent l’évolution géochimique et isotopique le long d’un trajet d’écoulement hypothétique de 50 km. Les résultats de la simulation sont comparés à des observations de terrain éparses le long du trajet d’écoulement. Bien que les observations de terrain montrent des directions de tendance similaires pour tous les paramètres, l’ampleur de ces tendances varie en raison des différences de temps de séjour. Les résultats du modèle encadrent bien les observations sur le terrain pour tous les paramètres, à l’exception du Mg, et ces résultats confirment donc que la variabilité des tendances sur le terrain peut être attribuée à l’hétérogénéité physique. Le bon accord entre les modèles et les observations de terrain démontre que les processus géochimiques et isotopiques décrits dans le modèle conceptuel peuvent être reproduits quantitativement. Cela soutient les activités de gestion de l’eau en établissant des pôles hydrochimiques qui peuvent être utilisés pour contraindre la cartographie des zones de recharge, évaluer la continuité des zones d’écoulement et identifier les zones d’eaux évoluées plus anciennes. Ces résultats confirment également l’utilisation de modèles de transport réactif pour quantifier les processus chimiques dans les systèmes d’écoulement des eaux souterraines à l’échelle régionale.

Resumen

Se utiliza un modelo de transporte reactivo a escala regional para realizar una evaluación cuantitativa de los procesos químicos e isotópicos que constituyen un modelo conceptual de evolución geoquímica. Las principales reacciones geoquímicas descriptas en el modelo conceptual son la disolución de dolomita y yeso incongruentes, seguidas por una serie de reacciones redox y el fraccionamiento isotópico del azufre con una evolución del agua subterránea cerrada a la atmósfera. El acuífero investigado comprende roca madre carbonatada kárstica con un rango de conductividad hidráulica (K) que abarca varios órdenes de magnitud. La evolución hidroquímica se simuló con un modelo unidimensional totalmente saturado utilizando el código de transporte reactivo multicomponente MIN3P. Cinco escenarios del modelo en estado estacionario que representan el rango conocido de K y la porosidad simulan la evolución geoquímica e isotópica a lo largo de un hipotético trayecto de flujo de 50 km. Los resultados de la simulación se comparan con las escasas observaciones de campo a lo largo de la trayectoria del flujo. Aunque las observaciones de campo muestran direcciones de tendencia similares para todos los parámetros, la magnitud de estas tendencias varía debido a las diferencias en los tiempos de residencia. Los resultados del modelo se ajustan bien a las observaciones de campo para todos los parámetros, excepto para el Mg, y por tanto estos resultados confirman que la variabilidad en las tendencias de campo puede atribuirse a la heterogeneidad física. La adecuada concordancia entre los modelos y las observaciones de campo demuestra que los procesos geoquímicos e isotópicos que conforman el modelo conceptual pueden reproducirse cuantitativamente. Esto apoya las actividades de gestión del agua mediante el establecimiento de miembros finales hidroquímicos que pueden utilizarse para restringir la cartografía de las zonas de recarga, evaluar la continuidad de la zona de flujo e identificar las áreas de aguas evolucionadas más antiguas. Estos resultados también apoyan el uso de modelos de transporte reactivo para cuantificar los procesos químicos en los sistemas de flujo de agua subterránea a escala regional.

摘要

区域尺度的反应迁移模型用于对形成地球化学演化概念模型的化学和同位素过程进行定量评估。概念模型中描述的主要地球化学反应是与大气密切相关的地下水演化中发生的白云石和石膏的不全等溶解,并伴随着一系列氧化还原反应和硫同位素分馏。调查含水层包括岩溶碳酸盐基岩,其渗透系数(K)范围跨越几个数量级。采用多组分反应迁移程序MIN3P构建了水化学演化的一维饱和模型。采用已知K值和孔隙度范围的五种稳态模型场景,模拟了沿假设50 km水流路径的地球化学和同位素演化。模拟结果与水流路径上稀疏的观测值进行了对比。虽然场地观测显示所有参数的趋势方向都相似,但由于滞留时间的差异,这些趋势的大小有所不同。模型结果很好地支持了除镁以外的所有参数的场地观测,并且证实了场地趋势变化可归因于物理异质性。模型与场地观测的良好一致性表明,形成概念模型的地球化学和同位素过程可以定量再现。本研究通过建立水化学模拟终端来支持水管理活动,该模拟终端可用于约束补给区范围、评估径流区连续性和识别古水演化区域。这些结果也支持使用反应迁移模型来量化区域尺度地下水流动系统中的化学过程。

Resumo

Um modelo de transporte reativo em escala regional foi usado para realizar uma avaliação quantitativa de processos químicos e isotópicos que formam um modelo conceitual de evolução geoquímica. As reações geoquímicas primárias descritas no modelo conceitual são as dissoluções incongruentes da dolomita e do gipso, seguida por uma série de reações redox e fracionamento isotópico do enxofre com a evolução de águas subterrâneas isoladas da atmosfera. O aquífero investigado compreende uma rocha carbonática cárstica com uma faixa de condutividade hidráulica (K) que abrange várias ordens de magnitude. A evolução hidroquímica foi simulada com um modelo unidimensional totalmente saturado usando o código de transporte reativo de multicomponente MIN3P. Cinco cenários de modelo no estado estacionário representando as faixas conhecidas de K e de porosidade simularam as evoluções geoquímicas e isotópicas ao longo de um trajeto de fluxo hipotético de 50 km. Os resultados da simulação são comparados com observações de campo esparsas ao longo do trajeto de fluxo. Embora as observações de campo mostrem direções de tendência semelhantes para todos os parâmetros, a magnitude dessas tendências varia devido a diferenças nos tempos de residência. Os resultados do modelo se enquadram bem às observações de campo para todos os parâmetros, exceto para Mg, e, portanto, esses resultados confirmam que a variabilidade nas tendências de campo pode ser atribuída à heterogeneidade física. A boa concordância entre modelos e observações de campo demonstra que os processos geoquímicos e isotópicos que formam o modelo conceitual podem ser reproduzidos quantitativamente. Isso apoia as atividades de gestão hídrica estabelecendo membros finais hidroquímicos que podem ser usados para restringir o mapeamento de áreas de recarga, avaliar a continuidade da zona de fluxo e identificar áreas de águas mais antigas. Esses resultados também suportam o uso de modelos de transportes reativos para quantificar processos químicos em sistemas de fluxo de água subterrânea em escala regional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al TA, Clark ID, Kennell L, Jensen M, Raven K (2015) Geochemical evolution and residence time of porewater in low-permeability rocks of the Michigan Basin, southwest Ontario. Chem Geol 404:1–17

    Article  Google Scholar 

  • Antoniou EA, Stuyfzand PJ, van Breukelen BM (2013) Reactive transport modeling of an aquifer storage and recover (ASR) pilot to assess long-term water quality improvements and potential solutions. Appl Geochem 35:173–186

    Article  Google Scholar 

  • Antoniou EA, van Breukelen BM, Stuyfzand PJ (2015) Optimizing aquifer storage and recovery performance through reactive transport modeling. Appl Geochem 61:29–40

    Article  Google Scholar 

  • Appelo CAJ, Drijver B, Hekkenberg R, de Jonge M (1998) Modeling in situ iron removal from groundwater. Ground Water 13(2):811–817

    Google Scholar 

  • Armstrong DK, Carter TR (2010) The subsurface Paleozoic stratigraphy of southern Ontario. OGS Special Volume 7, Ontario Geological Survey, Sudbury, ON, 301 pp

  • Atchley AL, Maxwell RM, Navarre-Sitchler AK (2013) Using streamlines to simulate stochastic reactive transport in heterogeneous aquifers: kinetic metal release and transport in CO2 impacted drinking water aquifers. Adv Water Resour 52:93–106

    Article  Google Scholar 

  • Bailey R, Gates T, Ahmadi M (2014) Simulating reactive transport of selenium coupled with nitrogen in a regional-scale irrigated groundwater System. J Hydrol 515:29–46. https://doi.org/10.1016/j.jhydrol.2014.04.039

  • Bain JG, Mayer KU, Blowes DW, Frind EO, Molson JWH, Kahnt R, Jenk U (2001) Modelling the closure-related geochemical evolution of groundwater at a former uranium mine. J Contam Hydrol 52(1–4):109–135

    Article  Google Scholar 

  • Bao Z, Haberer CM, Maier U, Amos RT, Blowes DW, Grathwohl P (2017) Modeling controls on the chemical weathering of marine mudrocks from the Middle Jurassic in southern Germany. Chem Geol. https://doi.org/10.1016/j.chemgeo.2017.03.021

  • Bea SA, Mayer KU, MacQuarrie KTB (2016) Reactive transport and thermo-hydro-mechanical coupling in deep sedimentary basins affected by glaciation cycles: model development, verification, and illustrative example. Geofluids 16:279–300

    Article  Google Scholar 

  • Brunton FR (2009) Update of revisions to the Early Silurian stratigraphy of the Niagara Escarpment: integration of sequence stratigraphy, sedimentology and hydrogeology to delineate hydrogeologic units. In: Summary of field work and other activities 2009, OGS Open File Report 6240, Ontario Geological Survey, Sudbury, ON, pp 25-1–25-20

  • Brunton FR, Brintnell C (2020) Early Silurian sequence stratigraphy and geological controls on karstic bedrock groundwater-flow zones, Niagara Escarpment region and the subsurface of southwestern Ontario. Report, Groundwater Resources Study 13, Ontario Geological Survey, Sudbury, ON

  • Brunton FR, Dodge JEP (2008) Karst of southern Ontario and Manitoulin Island. Groundwater Resources Study 5, Ontario Geological Survey, Sudbury, ON

  • Brunton FR, Belanger D, DiBiase S, Yungwirth G, Boonstra G (2007) Caprock carbonate stratigraphy and bedrock aquifer characterization of the Niagara Escarpment, City of Guelph Region, Southern Ontario. In: Proceedings of the 60th Canadian Geotechnical Conference and the 8th joint Canadian Geotechnical Society, International Association of Hydrogeologists conference, Canadian Geotechnical Society, Ottawa, pp 371–377

  • Busenberg E, Plummer NL (1982) The kinetics of dissolution of dolomite in CO2*H2O systems at 1.5 to 65 degrees Celsius and 0 to 1 atm Pco2. Am J Sci 282:45–78

    Article  Google Scholar 

  • Champ DR, Gulens J, Jackson RE (1979) Oxidation-reduction sequences in ground-water flow systems. Can J Earth Sci 16(1):12–23

    Article  Google Scholar 

  • Chen Z, Auler AS, Bakalowicz DD, Griger F, Hartmann J, Jiange G, Moosdorf M, Richts A, Stevanovic Z, Veni G, Goldscheider N (2017) The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe. Hydrogeol J 25:771–785

    Article  Google Scholar 

  • Chilingarian GV, Chang J, Bagrintseva KI (1990) Empirical expression of permeability in terms of porosity, specific surface area, and residual water saturation of carbonate rocks. J Pet Sci Eng 4:317–322

    Article  Google Scholar 

  • Chou L, Garrels RM, Wollast R (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem Geol 78:269–282

    Article  Google Scholar 

  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulphur and oxygen isotopes in marine sulphate and their mutual interpretation. Chem Geol 28:199–260

    Article  Google Scholar 

  • Descouvrieres C, Prommer H, Oldham C, Greskowiak J, Hartog N (2010) Kinetic reaction modeling framework for identifying and quantifying reductant reactivity in heterogeneous aquifer sediments. Environ Sci Technol 44:6698–6705

    Article  Google Scholar 

  • Edmunds WM, Walton NGR (1983) The Linconshire limestone-hydrogeochemical evolution over a ten year period. J Hydrol 61:201–211

    Article  Google Scholar 

  • El-Kadi AI, Plummer LN, Aggarwal P (2010) NETPATH-WIM: an interactive user version of the mass-balance model, NETPATH. Ground Water. https://doi.org/10.1111/j.1745-6584.2010.00779.x

  • Fritz P, Lapcevic PA, Miles M, Frape SK, Lawson DE, O’Shea KJ (1988) Stable isotopes in sulphate minerals from the Salina formation in southwestern Ontario. Can J Earth Sci 25:195–205

    Article  Google Scholar 

  • Ford DC, Williams P (2007) Karst Hydrogeology and Geomorphology. John Wiley, Chichester, p 562. https://doi.org/10.1002/9781118684986

  • Gibson B, Amos RT, Blowes DW (2010) Reactive transport modeling of isotope fractionation in permeable reactive barriers. Environ Sci Technol 45:2863–2870

    Article  Google Scholar 

  • Gibson BD, Amos RT, Blowes DW (2011) D 34S/32S Fractionation during sulfate reduction in groundwater treatment systems: reactive transport modeling. Environ Sci Technol 45:2863–2870

  • Greskowiak J, Prommer H, Massmann G, Nutzmann G (2006) Modeling seasonal redox dynamics and the corresponding fate of the pharmaceutical residue phenazone during artificial recharge of groundwater. Environ Sci Technol 40:6615–6621

    Article  Google Scholar 

  • Inskeep WP, Bloom PR (1985) An evaluation of rate equation for calcite precipitation kinetics at PCO2 less than 0.01 atm and pH greater than 8. Geochim Cosmochim Acta 49:2165–2180

    Article  Google Scholar 

  • International Atomic Energy Association (IAEA) (2021) Global Network of Isotopes in Precipitation, Water Isotope System for Data Analysis portal. https://nucleus.iaea.org/Pages/GNIPR.aspx. Accessed Feb 2021

  • Mahler BJ, Bourgeais R (2013) Dissolved oxygen fluctuations in karst spring flow and implications for endemic species: Barton Springs Edwards aquifer, Texas, USA. J Hydrol 505:291–298

    Article  Google Scholar 

  • Majoube M (1971) Fractionation of oxygen-18 and deuterium in water and its vapour. J Chem Phys 197:1423–1436

    Google Scholar 

  • Mayer KU, MacQuarrie KTB (2010) Solution of the MoMaS reactive transport benchmark with MIN3P-model formulation and simulation results. Comput Geosci 14:405–419

    Article  Google Scholar 

  • Mayer KU, Frind EO, Blowes DW (2002) Multicomponent reactive transport modeling in variably unsaturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour Res 38(9):13-1–13-21

  • Molins S, Greskowiak J, Wanner C, Mayer KU (2015) A benchmark for microbially mediated chromium reduction under denitrifying conditions in a biostimulation column experiment. Comput Geosci. https://doi.org/10.1007/s10596-014-9432-0

  • Nancollas GH, Reddy MM (1971) The crystallization of calcium carbonate, II: calcite growth mechanism. J Colloid Interface Sci 37:824–829

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC: a computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99-4259, 312 pp

  • Plummer LN, Wigley TML (1976) The dissolution of calcite in CO2-saturated solution at 25 degrees C and 1 atmosphere total pressure. Geochem Cosmochim Acta 40:191–201

    Article  Google Scholar 

  • Plummer LN, Wigley TML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO2-water system at 5 to 60 degrees C and 0.0 to 1.0 atm CO2. Am J Sci 278:179–216

    Article  Google Scholar 

  • Priebe EH, Neville CJ, Brunton FR (2017), Discrete, high-quality hydraulic conductivity estimates for the Early Silurian carbonates of the Guelph region. Groundwater Resources Study 16, Ontario Geological Survey, Sudbury, ON

  • Priebe EH, Frape SK, Jackson RE, Rudolph DL, Brunton FR (2020) Tracing recharge and groundwater evolution in a glaciated, regional-scale carbonate aquifer system, southern Ontario, Canada. Appl Geochem https://doi.org/10.1016/j.apgeochem.2020.104794

  • Prommer H, Stuyfzand PJ (2005) Identification of temperature-dependent water quality changes during a deep well injection experiment in a pyritic aquifer. Environ Sci Technol 39:2200–2209

    Article  Google Scholar 

  • Rowell DJ (2015) Aggregate and industrial mineral potential of the Guelph Formation, southern Ontario. Open File Report 6307, Ontario Geological Survey, Sudbury, ON, 66 pp

  • Sakai H (1968) Isotopic properties of sulphur compounds in hydrothermal processes. Geochem J 2:29–49

    Article  Google Scholar 

  • Seibert S, Atteia O, Salmon SU, Siade A, Douglas G, Prommer H (2016) Identification and quantification of redox and pH buffering processes in a heterogeneous, low carbonate aquifer during managed aquifer recharge. Water Resour Res 52:4003–4025

    Article  Google Scholar 

  • Seibert S, Descourviers C, Skrzypek G, Deng H, Prommer H (2017) Model-based analysis of 34S signatures to trace sedimentary pyrite oxidation during managed aquifer recharge in a heterogeneous aquifer. J Hydrol 548:368–381

    Article  Google Scholar 

  • Şengör SS, Mayer KU, Greskowiak J, Wanner C, Su D, Prommer H (2015) A reactive transport benchmark on modeling biogenic uraninite re-oxidation by Fe(III)-(hydr)oxides. Comput Geosci. https://doi.org/10.1007/s10596-015-9480-0

  • Shafer W (2001) Predicting natural attenuation of xylene in groundwater using a numerical model. J Contam Hydrol 52:57–83

    Article  Google Scholar 

  • Sharpe DR, Piggot A, Carter TR, Gerber RE, MacRitchie SM, de Loe R, Strynatka S, Zwiers G (2013) Southern Ontario hydrogeological region, chap 12. In: Canada’s groundwater resources. Fitzhenry & Whiteside, Toronto, 804 pp

  • Steefel CI, van Cappellen PV (1998) Reactive transport modeling of natural systems. J Hydrol 209:1–7

    Google Scholar 

  • Tavakoli-Kivi S, Bailey RT, Gates TK (2019) A salinity reactive transport and equilibrium chemistry model for a regional-scale agricultural groundwater system. J Hydrol 572:274–293

    Article  Google Scholar 

  • Toran L, Harris RF (1989) Interpretation of sulphur and oxygen isotopes in biological and abiological sulfide oxidation. Geochim Cosmochim Acta 53:2341–2348

    Article  Google Scholar 

  • Toth DJ, Katz BG (2006) Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs. Hydrogeol J 14(6):1060–1080

    Article  Google Scholar 

  • Uliana MM, Banner JL, Sharp JM Jr (2007) Regional groundwater flow paths in Trans-Pecos, Texas inferred from oxygen, hydrogen, and strontium isotopes. J Hydrol 334:334–336

    Article  Google Scholar 

  • van Cappellen P, Gaillard JF (1996) Biogeochemical dynamics in aquatic sediments. Rev Mineral Geochem 34(1):335–376

    Google Scholar 

  • Wanner C, Druhan JL, Amos RT, Alt-Epping P, Steefel CI (2015) Benchmarking the simulation of Cr isotope fractionation. Comput Geosci. https://doi.org/10.1007/s10596-014-9436-9

  • Wei X, Bailey RT (2021) Evaluating nitrate and phosphorous remediation in intensively irrigated stream–aquifer systems using a coupled flow and reactive transport model. J Hydrol 598:126304

    Article  Google Scholar 

  • Williamson MA, Rimstidt JD (1994) The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim Cosmochim Acta 58(24):5443–5454

    Article  Google Scholar 

  • Worthington SRH, Smart CC, Ruland W (2012) Effective porosity of a carbonate aquifer with bacterial contamination: Walkerton, Ontario, Canada. J Hydrol 464(465):517–527

    Article  Google Scholar 

  • Xie X, Wang Y, Ellis A, Su C, Li J, Li M, Duan M (2013) Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: a case study in high arsenic aquifer systems of the Datong basin, northern China. J Hydrol 476:87–96

    Article  Google Scholar 

  • Zheng Q (1999) Carbonate diagenesis and porosity evolution in the Guelph Formation, southwestern Ontario. PhD Thesis, University of Waterloo, Ontario, Canada, 265 pp

Download references

Acknowledgements

The authors are grateful to the Ontario Geological Survey for funding this research. We are also grateful to editor Dr. Philip Weis, reviewer Dr. Mercè Corbella and the anonymous reviewer whose comments have significantly benefited this manuscript. Many thanks to Julien Bonin and Emily Saurette for their superb drafting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. H. Priebe.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priebe, E.H., Amos, R.T., Jackson, R.E. et al. Regional-scale reactive transport modelling of hydrogeochemical evolution in a karstic carbonate aquifer. Hydrogeol J 31, 435–452 (2023). https://doi.org/10.1007/s10040-022-02568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02568-4

Keywords

Navigation