Skip to main content
Log in

Evaluation of push–pull tracer tests for estimating groundwater velocity in a fractured-rock aquifer

Evaluation des tests de traçage push–pull pour l’estimation de la vitesse des eaux souterraines dans un aquifère rocheux fracturé

Evaluación de los ensayos de trazadores por inyección y extracción para estimar la velocidad del agua subterránea en un acuífero de roca fracturada

推-拉示踪试验评估以估计裂隙含水层的地下水流速

Avaliação de testes traçadores push–pull para estimativa da velocidade das águas subterrâneas em um aquífero fraturado

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Single-well tests are cost effective to estimate hydraulic parameters compared to multiwell tracer tests, but there are some drawbacks in their accuracy, complicated data analysis and nonuniqueness. As a single-well test, the push–pull tracer test, consisting of injection (or push), drift (or resting), and extraction (or pull) phases, is a cost-effective method that can provide a bulk groundwater velocity in the vicinity of a test well. However, there are limitations to estimating the groundwater velocity because its estimate is sensitive to experimental conditions. In this study, the estimation results of various push–pull tracer tests performed in a fractured-rock aquifer were compared to those based on various hydraulic and tracer tests. Based on a comparison between two approaches, the groundwater velocities estimated with the push–pull tracer test agree reasonably well with those based on other approaches. However, the push–pull tracer test velocity results tends to decrease with increasing drift phase times. This behavior underestimates the groundwater velocity when compared to those estimates from other methods. This difference may be caused by the fact that the mass recovery rate of the push–pull tracer test decreases with increasing drift phase time, which is possibly driven by the relatively high density of an injected tracer. Therefore, appropriate drift phase time is required in order to estimate reasonable hydrogeologic parameters using the push–pull tracer test.

Résumé

Les test à puits unique sont rentables pour estimer les paramètres hydrauliques quand on les compare aux test de traçage à puits multiples mais ils ont certains désavantages: leur fiabilité, la complication de l’analyse des données, leur nonunivocité. Comme l’essai à puits unique, le test de traçage push–pull, qui enchaîne les phases d’injection (ou poussée), de diffusion (ou repos) et d’extraction (ou soutirage) est une méthode rentable qui peut fournir une vitesse globale des eaux souterraines à proximité du puits d’essai. Cependant, il y a des limites à l’estimation de la vitesse des eaux souterraines car celle-ci est sensible aux conditions environnementales. Dans la présente étude, les résultats de l’estimation de divers tests de traçage push–pull réalisés dans un aquifère rocheux fracturé ont été comparés à ceux acquis par divers tests d’hydraulique et de traçage. D’après la comparaison entre des deux approches, les vitesses des eaux souterraines estimées par un test de traçage push–pull s’accordent relativement bien avec celles basées sur d’autres approches. Cependant, les résultats concernant les vitesses des traçages push–pull tendent à décroître avec l’augmentation de la durée de la phase de diffusion. Ce comportement sous-estime la vitesse des eaux souterraines par rapport aux estimations issues d’autres méthodes. Cette différence peut être causée par le fait que le taux de récupération de la masse dans le test de traçage en push–pull décroît quand la durée dela phase de diffusion croît, ce qui est possiblement dû à la densité relativement élevée du traceur injecté. Par conséquent, une durée appropriée de la phase de diffusion est nécessaire à l’estimation des paramètres hydrogéologiques réalistes d’après un test de traçage push–pull.

Resumen

Los ensayos con un solo pozo son más rentables para estimar los parámetros hidráulicos que los ensayos con trazadores en varios pozos, pero presentan algunos inconvenientes en cuanto a su precisión, el complicado análisis de los datos y la no unicidad. Como prueba en un solo pozo, el ensayo de trazador de inyección y extracción, que consiste en las fases de inyección (o empuje), deriva (o reposo) y extracción (o arrastre), es un método rentable que puede proporcionar una velocidad del agua subterránea a gran escala en las proximidades de un pozo de ensayo. Sin embargo, existen limitaciones en la estimación de la velocidad del agua subterránea porque es sensible a las condiciones experimentales. En este estudio, se compararon los resultados de estimación de varias pruebas de trazador inyección–extracción realizadas en un acuífero de roca fracturada con los obtenidos a partir de varios ensayos hidráulicos y de trazador. Basándose en una comparación entre los dos enfoques, las velocidades de las aguas subterráneas estimadas con el ensayo de trazador por inyección y extracción coinciden razonablemente bien con las basadas en otros enfoques. Sin embargo, los resultados de la velocidad del ensayo inyección–extracción tienden a disminuir con el aumento de los tiempos de la fase de deriva. Este comportamiento subestima la velocidad del agua subterránea cuando se compara con las estimaciones de otros métodos. Esta diferencia puede ser causada por el hecho de que la tasa de recuperación del ensayo inyección – extracción disminuye con el aumento del tiempo de la fase de deriva, lo cual es posiblemente impulsado por la densidad relativamente alta de un trazador inyectado. Por lo tanto, se requiere un tiempo de fase de deriva apropiado para estimar parámetros hidrogeológicos razonables utilizando el ensayo de trazador por inyección–extracción.

摘要

与多井示踪试验相比, 利用单井试验估算水力参数的成本效益好, 但存在准确性、数据分析复杂和非唯一性等缺点。作为单井试验, 推-拉示踪试验由注入(或推)、流动(或静止)和抽取(或拉)阶段组成, 是一种经济有效的方法, 可以在试验井附近研究大范围的地下水流速。然而, 估计地下水流速存在局限性, 因为它的估计对实验条件很敏感。在这项研究中, 将在裂隙含水层中进行的各种推拉示踪试验的估计结果与基于各种水力和示踪试验的估算结果进行了比较。基于两种方法的比较, 推-拉示踪试验估计的地下水流速与基于其他方法的地下水流速相当吻合。然而, 推-拉示踪试验速度结果趋于随着流动阶段时间的增加而降低。与其他方法的估计值相比, 这种方法低估了地下水速度。这种差异可能是由于推拉示踪试验的质量恢复率随着流动阶段时间的增加而降低, 这可能是由于注入的示踪剂密度相对较高所致。因此, 需要适当的流动阶段时间, 以便使用推拉示踪试验估计合理的水文地质参数。

Resumo

Testes de poço único são econômicos para estimar parâmetros hidráulicos em comparação com testes traçadores em múltiplos poços, contudo há algumas desvantagens em sua acurácia, complexa análise de dados e generalidade. Como um teste de poço único, o teste traçador push–pull, que consiste nas fases de injeção (ou push), de deriva (ou descanso), e extração (ou pull), é um método rentável que pode fornecer uma velocidade bruta das águas subterrâneas nas proximidades de um poço de teste. No entanto, existem limitações na estimativa da velocidade das águas subterrâneas porque sua estimativa é sensível às condições experimentais. Neste estudo, os resultados da estimativa de vários testes traçadores push–pull realizados em um aquífero de rocha fraturada foram comparados com aqueles baseados em vários testes hidráulicos e com traçadores. Com base em uma comparação entre duas abordagens, as velocidades das águas subterrâneas estimadas com o teste traçador push–pull concordam razoavelmente com aquelas baseadas em outras abordagens. Contudo, os resultados de velocidade do teste traçador push–pull tendem a diminuir com o aumento dos tempos de fase de deriva. Esse comportamento subestima a velocidade das águas subterrâneas quando comparado com as estimativas de outros métodos. Essa diferença pode ser causada pelo fato de que a taxa de recuperação de massa do teste traçador push–pull diminui com o aumento do tempo da fase de deriva, o que possivelmente é impulsionado pela densidade relativamente alta de um traçador injetado. Portanto, é necessário um tempo de fase de deriva apropriado para estimar parâmetros hidrogeológicos razoáveis usando o teste traçador push–pull.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams EE, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer: 2. spatial moments analysis. Water Resour Res 28(12):3293–3307

    Article  Google Scholar 

  • Becker MW, Shapiro AM (2003) Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock. Water Resour Res 39(1):SBH14

  • Boggs JM, Young SC, Beard LM, Gelhar LW, Rehfeldt KR, Adams EE (1992) Field study of dispersion in a heterogeneous aquifer: 1. overview and site description. Water Resour Res 28(12):3281–3291

    Article  Google Scholar 

  • Bouwer H, Rice RC (1976) A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12(3):423–428

  • Chao HC, Rajaram H, Illangasekare T (2000) Intermediate-scale experiments and numerical simulations of transport under radial flow in a two-dimensional heterogeneous porous medium. Water Resour Res 36(10):2869–2884

    Article  Google Scholar 

  • Cooper JHH, Bredehoeft JD, Papadopulos IS (1967) Response of a finite-diameter well to an instantaneous charge of water. Water Resour Res 3(1):263–269

    Article  Google Scholar 

  • Dagan G (1984) Solute transport in heterogeneous porous formations. J Fluid Mech 145:151–177

    Article  Google Scholar 

  • Duffield G (2002) AQTESOLV for windows user’s guide. HydroSOLVE, Reston, VA

  • Field J, Istok J, Schroth M, Sawyer T, Humphrey M (1999) Laboratory investigation of surfactant-enhanced trichloroethene solubilization using single-well, “push-pull” tests. Groundwater 37(4):581–588

    Article  Google Scholar 

  • Freyberg DL (1986) A natural gradient experiment on solute transport in a sand aquifer: 2. spatial moments and the advection and dispersion of nonreactive tracers. Water Resour Res 22(13):2031–2046

    Article  Google Scholar 

  • Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974

    Article  Google Scholar 

  • Hageman KJ, Istok JD, Field JA, Buscheck TE, Semprini L (2001) In situ anaerobic transformation of trichlorofluoroethene in trichloroethene-contaminated groundwater. Environ Sci Technol 35(9):1729–1735

    Article  Google Scholar 

  • Haggerty R, Schroth M, Istok J (1998) Simplified method of “push-pull” test data analysis for determining in situ reaction rate coefficients. Groundwater 36(2):314–324

    Article  Google Scholar 

  • Haggerty R, Fleming SW, Mckenna SA (2000) STAMMT-R solute transport and multirate mass transfer in radial coordinates. Sandia National Labs., Albuquerque, NM, and Livermore, CA (US)

  • Hall SH, Luttrell SP, Cronin WE (1991) A method for estimating effective porosity and ground-water velocity. Groundwater 29(2):171–174

    Article  Google Scholar 

  • Istok J, Humphrey M, Schroth M, Hyman M, O’Reilly K (1997) Single-well, “push-pull” test for in situ determination of microbial activities. Groundwater 35(4):619–631

    Article  Google Scholar 

  • Istok JD, Field JA, Schroth MH, Davis BM, Dwarakanath V (2002) Single-well “push−pull” partitioning tracer test for NAPL detection in the subsurface. Environ Sci Technol 36(12):2708–2716

    Article  Google Scholar 

  • Keefe SH, Barber LB, Runkel RL, Ryan JN, McKnight DM, Wass RD (2004) Conservative and reactive solute transport in constructed wetlands. Water Resour Res 40(1):W01201

  • Kim Y, Han B, Kim K, Koh K, Park K (2007) Fast vertical movement of groundwater at the borehole in volcanic confined aquifer detected from point-dilution test with multi-level observations. AGU Fall Meeting Abstracts, AGU, Washington, DV

  • Kim H-H, Lee S-S, Ha S-W, Lee K-K (2018) Application of single-well push-drift-pull tests using dual tracers (SF6 and salt) for designing CO2 leakage monitoring network at the environmental impact test site in Korea. Geosci J 22(6):1041–1052

    Article  Google Scholar 

  • Kim H-H, Koh E-H, Lee S-S, Lee K-K (2019) Biased estimation of groundwater velocity from a push-pull tracer test due to plume density and pumping rate. Water 11(8):1558

    Article  Google Scholar 

  • Kreft A, Zuber A (1978) On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chem Eng Sci 33(11):1471–1480

    Article  Google Scholar 

  • Leap DI, Kaplan PG (1988) A single-well tracing method for estimating regional advective velocity in a confined aquifer: theory and preliminary laboratory verification. Water Resour Res 24(7):993–998

    Article  Google Scholar 

  • Mackay DM, Freyberg DL, Roberts PV, Cherry JA (1986) A natural gradient experiment on solute transport in a sand aquifer: 1. approach and overview of plume movement. Water Resour Res 22(13):2017–2029

    Article  Google Scholar 

  • Neuman SP, Witherspoon PA (1969) Theory of flow in a confined two aquifer system. Water Resour Res 5(4):803–816

    Article  Google Scholar 

  • Neuman SP, Witherspoon PA (1972) Field determination of the hydraulic properties of leaky multiple aquifer systems. Water Resour Res 8(5):1284–1298

    Article  Google Scholar 

  • Park H, Chi J, Chang K, Ko I (1974) Geologic map of Naepyeong sheet and explanatory text, Geological and Mineralogical Institute of Korea, Daejeon, South Korea, pp 1–13

  • Pimentel MI, Christensen AH (2003) Pumping test results for wells within Potrero Canyon, Morongo band of Mission Indians Reservation, California. US Geol Surv Open-File Rep 2002-228

  • Radulović MM, Poleksić S, Blagojević M (2019) A modified point dilution test for the assessment of groundwater flux in karst aquifers. Environ Earth Sci 78(15):1–10

    Article  Google Scholar 

  • Sauty J, Kinzelbach W, Voss A (1992) CATTI: computer aided tracer test interpretation, BRGM report, BRGM, Orléans

  • Schroth M, Istok J, Conner G, Hyman M, Haggerty R, O’Reilly K (1998) Spatial variability in in situ aerobic respiration and denitrification rates in a petroleum-contaminated aquifer. Groundwater 36(6):924–937

    Article  Google Scholar 

  • Toride N, Leij F, Van Genuchten MT (1995) The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. US Salinity Laboratory, Riverside, CA

    Google Scholar 

  • Trudell M, Gillham R, Cherry J (1986) An in-situ study of the occurrence and rate of denitrification in a shallow unconfined sand aquifer. J Hydrol 83(3–4):251–268

    Article  Google Scholar 

  • Valocchi AJ (1986) Effect of radial flow on deviations from local equilibrium during sorbing solute transport through homogeneous soils. Water Resour Res 22(12):1693–1701

    Article  Google Scholar 

  • Van Tonder G, Riemann K, Dennis I (2002) Interpretation of single-well tracer tests using fractional-flow dimensions., part 1: theory and mathematical models. Hydrogeol J 10(3):351–356

    Article  Google Scholar 

  • Wang Q, Jin A, Zhan H, Chen Y, Shi W, Liu H, Wang Y (2021) Revisiting simplified model of a single-well push–pull test for estimating regional flow velocity. J Hydrol 601:126711

    Article  Google Scholar 

  • Wheatcraft SW, Tyler SW (1988) An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour Res 24(4):566–578

    Article  Google Scholar 

Download references

Funding

This work was supported by Korea Environment Industry & Technology Institute (KEITI) through “Activation of remediation technologies by application of multiple tracing techniques for remediation of groundwater in fractured rocks” funded by Korea Ministry of Environment (MOE) (Grant number: 20210024800002/1485017890). Funding for this research was provided by Korea Environment Industry & Technology Institute (KEITI) and Korea Ministry of Environment (MOE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Kun Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, HT., Lee, KK. Evaluation of push–pull tracer tests for estimating groundwater velocity in a fractured-rock aquifer. Hydrogeol J 30, 2171–2182 (2022). https://doi.org/10.1007/s10040-022-02546-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02546-w

Keywords

Navigation