Skip to main content
Log in

Fence Springs of the Grand Canyon, USA: insight into the karst aquifer system of the Colorado Plateau region

Les sources de Fence du Grand Canyon, Etats-Unis d’Amérique: aperçu du système hydrogéologique karstique de la région du Plateau du Colorado

Los manantiales Fence del Gran Cañón, EEUU: una visión del sistema acuífero kárstico de la región de la meseta del Colorado

美国大峡谷的Fence泉群:洞察科罗拉多高原地区喀斯特含水层系统

Fence Springs do Grand Canyon, EUA: visão do sistema aquífero cárstico da região do Planalto do Colorado

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Fence Springs are the highest discharge springs of the Redwall-Muav (R-M) karst aquifer in Marble Canyon of eastern Grand Canyon, Arizona, USA. Vents on opposite banks of the Colorado River within the Fence fault system have similar chemistries indicating the springs are connected hydrologically within the confined karst aquifer below the river. Stable isotope data fingerprint the recharge area for both springs to be the Kaibab Plateau, west of the river. Chemical variation in nearby R-M springs indicates mixing between karst base flow (represented by Fence Springs) and fast-traveled meteoric waters (Vasey’s Paradise). A 7-year record (2012—2019) suggests the karst base flow has steady temperature (~20 °C) and specific conductance (~2,000 μS/cm) and no seasonality. A progressive decrease of ~1 °C in both springs and ~100 μS/cm in Fence East over 7 years reflects declining spring discharge accompanying declining meteoric recharge. Fortuitous high-flow experiments in the Colorado River during Glen Canyon Dam management operations provide data analogous to a “slug test” for the groundwater system. Rapid increase in river level from ~142 to 1,218 m3/s caused the springs to be inundated and mix with river water. Recovery curves showed rapid return of spring temperature from ~10 to 20 °C and specific conductance from 500 to 2,000 μS/cm once river stage fell below ~283 m3/s. After 2016, an increase in short-term fluctuations during recovery suggests declining spring discharge through the 7-year period. This multitracer hydrochemical dataset combined with spring monitoring helps establish a baseline for groundwater in eastern Grand Canyon.

Résumé

Les Sources de Fence sont les sources avec le débit le plus élevé de l’aquifère karstique de Redwall-Muay (R-M) dans le Canyon de Marbre de la partie orientale du Grand Canyon, Arizona, Etats-Unis d’Amérique. Les sources situées sur les rives opposées du fleuve Colorado, dans le système de failles de Fence, ont une chimie similaire, ce qui indique que les sources sont connectées hydrologiquement à l’aquifère karstique captif situé sous le fleuve. Les données d’isotopes stables indiquent que la zone de recharge des deux sources est le plateau de Kaibab, à l’ouest de la rivière. La variation chimique des sources R-M voisines indique un mélange entre l’écoulement de base karstique (représenté par Fence Springs) et les eaux météoriques à déplacement rapide (Vasey’s Paradise). Un enregistrement sur 7 ans (2012–2019) suggère que l’écoulement de base karstique a une température (~20 °C) et une conductance spécifique (~2,000 μS) stables et sans saisonnalité. Une diminution progressive de 1 °C dans les deux sources et de ~100 μS/cm dans Fence East sur 7 ans reflète la baisse du débit des sources suivant la baisse de la recharge météorique. Des expériences fortuites de débit élevé dans le fleuve Colorado pendant les opérations de gestion du barrage de Glen Canyon fournissent des données analogues à un “slug test” pour le système des eaux souterraines. L’augmentation rapide du niveau du fleuve de ~142 à 1,218 m3/s a provoqué l’inondation des sources et leur mélange avec l’eau du fleuve. Les courbes de récupération ont montré un retour rapide de la température printanière de ~10 à 20 °C et de la conductance spécifique de 500 à 2,000 μS/cm une fois que le niveau de la rivière est tombé en dessous de ~283 m3/s. Après 2016, une augmentation des fluctuations à court terme pendant la période de rétablissement suggère une baisse du débit printanier au cours de la période de 7 ans. Cet ensemble de données hydrochimiques multi-traceurs combiné au suivi des sources permet d’établir une base de référence pour les eaux souterraines de la partie orientale du Grand Canyon.

Resumen

Los manantiales Fence son los de mayor descarga del acuífero kárstico Redwall-Muav (R-M) en el Marble Canyon del este del Gran Cañón, Arizona, EEUU. Los manantiales situados en orillas opuestas del río Colorado dentro del sistema de fallas de Fence tienen una química similar, lo que indica que están conectados hidrológicamente dentro del acuífero kárstico confinado debajo del río. Los datos de isótopos estables indican que la zona de recarga de ambos manantiales es la meseta Kaibab, al oeste del río. La variación química en los manantiales R-M cercanos señala la mezcla entre el flujo kárstico de base (representado por los manantiales Fence) y las aguas meteóricas de rápido recorrido (Vasey’s Paradise). Un registro de 7 años (2012–2019) sugiere que el flujo de base kárstico tiene una temperatura estable (~20 °C) y una conductividad específica (~2,000 μS/cm) y no tiene estacionalidad. Un descenso progresivo de 1 °C en ambos manantiales y de ~100 μS/cm en Fence East a lo largo de 7 años refleja la disminución de la descarga del manantial que acompaña a la disminución de la recarga meteórica. Los experimentos con alto flujo que se realizaron de manera casual en el río Colorado durante las operaciones de gestión de la presa de Glen Canyon proporcionan datos análogos a una “ prueba slug” para el sistema de aguas subterráneas. El rápido aumento del nivel del río de ~142 a 1,218 m3/s hizo que los manantiales se inundaran y se mezclaran con el agua del río. Las curvas de recuperación mostraron un rápido retorno de la temperatura del manantial de ~10 a 20 °C y de la conductividad específica de 500 a 2,000 μS/cm una vez que el caudal del río cayó por debajo de ~283 m3/s. Después de 2016, un aumento de las fluctuaciones a corto plazo durante la recuperación sugiere la disminución de la descarga de los manantiales a lo largo del período de 7 años. Este conjunto de datos hidroquímicos de múltiples trazadores, combinado con el monitoreo de los manantiales, ayuda a establecer una línea de base para las aguas subterráneas en el este del Gran Cañón.

摘要

Fence泉群是美国亚利桑那州大峡谷东部大理石峡谷 Redwall-Muav (R-M) 喀斯特含水层的最大排泄泉群。Fence 断层系统内科罗拉多河对岸的出露口具有相似的化学成分,表明这些泉水在河流下方承压的喀斯特含水层内是水文连通的。稳定同位素数据表明,这两个泉群的补给区都是河流以西的Kaibab高原。附近 R-M 泉群的化学变化表明岩溶基流(以 Fence泉群为代表)和快速流动的大气水(Vasey天堂)之间的混合。 7年的记录(2012–2019)表明岩溶基流具有稳定的温度(~20 °C)和电导率(~2,000 μS/cm),没有季节性变化。 7 年内,两个泉群温度逐渐下降 1 °C,Fence East下降约 100 μS/cm,这反映了春季流量下降伴随着大气补给量下降。在Glen峡谷大坝管理运营期间,科罗拉多河的偶然高流量实验提供了类似于地下水系统“微水试验”的数据。河流水位从约 142 m3/s迅速上升至 1,218 m3/s,导致泉群被淹没并与河水混合。恢复曲线显示,一旦河流量低于约 283 m3/s,泉水温度从 ~10 到 20 °C 快速恢复,电导率从 500 变到 2,000 μS/cm。 2016 年之后,恢复期间短期波动的增加表明泉水排泄量在 7 年期间下降。这个多示踪剂水化学数据集与泉水监测相结合,有助于建立大峡谷东部地下水的基线。

Resumo

Fence Springs são as nascentes de maiores descargas do aquífero cárstico Redwall-Muav (R-M), em Marble Canyon, a leste do Grand Canyon, Arizona, EUA. As aberturas nas margens opostas do Rio Colorado, dentro do sistema de falhas Fence, têm químicas semelhantes, indicando que as nascentes estão conectadas hidrologicamente dentro do aquífero cárstico confinado abaixo desse rio. Dados de isótopos estáveis apontam áreas de recarga para ambas as nascentes no Planalto Kaibab, a oeste do rio. Variações químicas próximas das nascentes R-M indicam uma mistura entre o fluxo cárstico de base (representado por Fence Springs) e águas meteóricas de trajeto rápido (Vasey’s Paradise). Um registro de 7 anos (2012–2019) sugere que o fluxo cárstico de base tem temperatura constante (~20 °C) e condutância específica (~2,000 μS/cm) e nenhuma sazonalidade. Uma diminuição progressiva de 1°C em ambas as nascentes e ~100 μS/cm a leste de East ao longo de 7 anos reflete o declínio da descarga da nascente acompanhando a diminuição da recarga meteórica. Experimentos fortuitos de alto fluxo no rio Colorado durante as operações de gerenciamento da represa de Glen Canyon fornecem dados análogos a um teste slug para o sistema de águas subterrâneas. O rápido aumento do nível do rio de ~142 para 1,218 m3/s fez com que as nascentes fossem inundadas e se misturassem com a água do rio. As curvas de recuperação mostraram um rápido retorno da temperatura da nascente de ~10 a 20 °C e condutância específica de 500 a 2,000 μS/cm, uma vez que o estágio do rio caiu abaixo de ~283 m3/s. Após 2016, um aumento nas flutuações de curto prazo durante a recuperação sugere um declínio na descarga da nascente ao longo do período de 7 anos. Este conjunto de dados hidroquímicos multitraçador combinado com o monitoramento de nascentes ajuda a estabelecer uma linha de base para as águas subterrâneas a leste do Grand Canyon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Baird R, Bridgewater L (2017) 2320 ALKALINITY, Standard methods for the examination of water and wastewater, 23rd edn. American Public Health Association, Washington, DC

  • Adams EA (2005) Determining ephemeral spring flow timing with laboratory and field techniques: Applications to Grand Canyon, Arizona. MSc Thesis, Department of Geology, Northern Arizona University, Flagstaff, AZ

  • Billingsley GH, Hampton HM (2000) Geologic map of the Grand Canyon 30’ × 60’ quadrangle, Mohave and Coconino counties, northwestern Arizona. US Geol Surv Miscell Geol Invest Ser I-2688, scale 1:100,000

  • Bills DJ, Flynn ME, Monroe SA (2007) Hydrogeology of the Coconino Plateau and adjacent areas, Coconino and Yavapai counties, Arizona. US Geol Surv Sci Invest Rep 2005-5222. https://doi.org/10.3133/sir20055222

  • Bills DJ, Flynn ME, Monroe SA (2016) Arizona Water Science Center. US Geol Surv Fact Sheet 113-02

  • Brown C (2011) Physical, geochemical, and isotopic analyses of R-Aquifer springs, North Rim, Grand Canyon, Arizona. MSc Thesis, Northern Arizona University, Flagstaff, AZ

  • Cooley ME, Harshbarger JW, Akers JP, Hardt W, Hicks ON (1969) Regional hydrogeology of the Navajo and Hopi Indian reservations, AZ, NM, UT. US Geol Surv Prof Pap 521-A. https://doi.org/10.3133/PP521A

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Crossey LJ, Fischer TP, Patchett PJ, Karlstrom KE, Hilton D, Newell D, Huntoon P, Reynolds A, Leeuw G (2006) Dissected hydrologic system at the Grand Canyon: interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine. Geology 34:25–28. https://doi.org/10.1130/G22057.1

    Article  Google Scholar 

  • Crossey LJ, Karlstrom KE, Springer AE, Newell D, Hilton D, Fischer TP (2009) Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region: neotectonic connections and implications for groundwater systems. Geol Soc Am Bull 121:1034–1053. https://doi.org/10.1130/B26394.1

    Article  Google Scholar 

  • Crossey LJ, Karlstrom KE, Schmandt B, Crow R, Colman D, Cron B, Takacs-Vesbach TD, Dahm C, Northup DE, Hilton DR, Ricketts JR, Lowry AR (2016) Continental smokers couple mantle degassing and unique microbiology within continents. Earth Planet Sci Lett 435:22–30. https://doi.org/10.1016/j.epsl.2015.11.039

    Article  Google Scholar 

  • Faure G (2015) Isotopes principles and applications. Wiley, New York

    Google Scholar 

  • Grand Canyon Monitoring and Research Center (GCMRC), USGS (2021) Colorado River above Little Colorado River near Desert View, AZ 09383100, sediment and water quality data. www.gcmrc.gov/discharge_qw_sediment/station/GCDAMP/09383100#. Accessed Sept 2022

  • Huntoon PW (1974) The karstic groundwater basins of the Kaibab Plateau, Arizona. Water Resour Res 10:579–590. https://doi.org/10.1029/WR010i003p00579

    Article  Google Scholar 

  • Huntoon PW (1981) Fault controlled ground-water circulation under the Colorado River, Marble Canyon, Arizona. Ground Water 19:20–27. https://doi.org/10.1111/j.1745-6584.1981.tb03433.x

    Article  Google Scholar 

  • Huntoon PW (2000) Variability of karstic permeability between unconfined and confined aquifers, Grand Canyon region, Arizona. Environ Eng Geosci 6:155–170. https://doi.org/10.2113/gseegeosci.6.2.155

    Article  Google Scholar 

  • Huntoon PW, Sears JW (1975) Bright Angel and Eminence Faults, Eastern Grand Canyon, Arizona. Geol Soc Am Bull 86:465–472. https://doi.org/10.1130/0016-7606(1975)86<465:BAAEFE>2.0.CO;2

    Article  Google Scholar 

  • Ingraham NL, Zukosky K, Kreamer DK (2001) Application of stable isotopes to identify problems in large-scale water transfer in Grand Canyon National Park. Environ Sci Technol 35(7):1299–1302. https://doi.org/10.1021/es0015186

    Article  Google Scholar 

  • Jones CJR, Springer AE, Tobin BW, Zappitello SJ, Jones NA (2018) Characterization and hydraulic behaviour of the complex karst of the Kaibab Plateau and Grand Canyon National Park, USA. Geol Soc Spec Publ 466:237–260. https://doi.org/10.1144/SP466.5

    Article  Google Scholar 

  • Kessler JA (2002) Grand Canyon Springs and the Redwall-Muav Aquifer: comparison of geologic framework and groundwater flow models. MSc Thesis, Northern Arizona University, Flagstaff, AZ

  • Lange AL (1956) Cave evolution in Marble Gorge of the Colorado River. Plateau 29:12–21

    Google Scholar 

  • Melis, TS, ed., 2011 Effects of three high-flow experiments on the Colorado River ecosystem downstream from Glen Canyon Dam, Arizona. US Geol Surv Circ 1366, 147 pp

  • Metzger DG (1961) Geology in relation to availability of water along the South Rim Grand Canyon National Park Arizona. US Government Printing Office, Washington, DC

  • Monroe SA, Antweiler RC, Hart RJ, Taylor HE, Truini M, Rihs JR, Felger TJ (2005) Chemical characteristics of ground-water discharge at selected springs, South Rim Grand Canyon, Arizona. US Geol Surv Sci Invest Rep 04-5146

  • Natural Resources Conservation Service (NRCS), USDA (2021) Bright Angel Station, Az, 12N01, SNOTEL, snow depth data. www.wcc.nrcs.usda.gov. Accessed September 2022

  • Parkhurst D (1995) Users guide to PHREEQC: a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. USGS, Reston, VA

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans AGU 25:914–928. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Sharp (2007) Principles of stable isotope geochemistry. Prentice Hall, Upper Saddle River, NJ

  • Solder JE, Beisner KR (2020) Critical evaluation of stable isotope mixing end-members for estimating groundwater recharge sources: case study from the South Rim of the Grand Canyon, Arizona, USA. Hydrogeol J. https://doi.org/10.1007/s10040-020-02194-y

  • Solder J, Beisner KR, Anderson J, Bills DJ (2020) Rethinking groundwater flow on the South Rim of the Grand Canyon, USA: characterizing recharge sources and flow paths with environmental tracers. Hydrogeol J 28:1593–1613. https://doi.org/10.1007/s10040-020-02193-z

    Article  Google Scholar 

  • Tillman FD, Gangopadhyay S, Pruitt T (2020) Recent and projected precipitation and temperature changes in the Grand Canyon area with implications for groundwater resources. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-76743-6

    Article  Google Scholar 

  • Tobin BW, Springer E, Kreamer DK, Schenk E (2017) Review: The distribution, flow, and quality of Grand Canyon Springs, Arizona (USA). Hydrogeol J. https://doi.org/10.1007/s10040-017-1688-8

  • USGS (2006) National field manual for the collection of water-quality data. US Geol Surv Tech Water Resour Invest 09

  • Wassenaar LI, Ahmad M, Aggarwal P, van Duren M, Pöltenstein L, Araguas L, Kurttas T (2012) Worldwide proficiency test for routine analysis of δ2H and δ18O in water by isotope-ratio mass spectrometry and laser absorption spectroscopy. Rapid Commun Mass Spectrom 26:1641–1648. https://doi.org/10.1002/rcm.6270

    Article  Google Scholar 

  • Woodhouse CA, Meko DM, MacDonald GM, Stahle DW, Cook ER (2010) A 1,200-year perspective of 21st century drought in southwestern North America. PNAS 107(50):21283–21288

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Abdul-Medhi Ali, Viorel Atudorei and Laura Berkemper for laboratory assistance (the UNM Analytical Laboratory, and Center for Stable Isotopes respectively). We thank Cameron Reed for help with drafting and Grand Canyon National Park (GRCA) for research and collecting permits throughout the study. Reviews by Daniel Doctor and Don Sweetkind helped improve the report.

Funding

We acknowledge NSF grant EAR- 0538304 from the Hydrologic Sciences Program (01/01/2006-12/31/2007) to L. Crossey, K. Karlstrom, T. Fischer, and A. Springer, and student awards to C. McGibbon from Cindy Jaramillo Graduate Scholarship 2019, The Patrick J.F. Gratton Scholarship fund 2018, The Geology Alumni Scholarship fund 2017, GPSA Student Research Grant 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris McGibbon.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGibbon, C., Crossey, L.J. & Karlstrom, K.E. Fence Springs of the Grand Canyon, USA: insight into the karst aquifer system of the Colorado Plateau region. Hydrogeol J 30, 2379–2398 (2022). https://doi.org/10.1007/s10040-022-02541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02541-1

Keywords

Navigation