Skip to main content

Advertisement

Log in

Geochemical and isotopic multi-tracing (δ18O, δ2H, δ13C, Δ14C) of groundwater flow dynamics and mixing patterns in the volcanoclastic aquifer of the semiarid San Juan del Río Basin in central Mexico

Multitraçage géochimique et isotopique (δ18O, δ2H, δ13C, Δ14C) de la dynamique d’écoulement des eaux souterraines et des modèles de mélange dans l’aquifère volcanoclastique du bassin semi-aride de San Juan del Río au Mexique central

Análisis geoquímico y multitrazado de isótopos (δ18O, δ2H, δ13C, Δ14C) para entender la dinámica de aguas subterráneas y patrones de mezcla de agua en el acuífero volcanoclástico de la cuenca semiárida de San Juan del Río en el centro de México

墨西哥中部半干旱San Juan del Río盆地火山碎屑含水层地下水流动动力和混合模式的地球化学和同位素多重示踪(δ18O, δ2H, δ13C, Δ14C)

Multitraçamento geoquímicos e isotópico (δ18O, δ2H, δ13C, Δ14C) da dinâmica do fluxo de águas subterrâneas e padrões de mistura no aquífero vulcanoclástico da bacia semiárida de San Juan del Río no México central

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Water supply in semiarid areas in Mexico depends on water extraction from compartmentalized aquifers where large drawdown rates can be observed due to increasing demand from urban, industrial and agricultural users. Understanding the behavior of these aquifers is a necessity in order to improve the estimation of water balances. Accordingly, this study assembles both geochemical and isotopic data to identify the source of recharge to the San Juan del Río graben aquifer and to determine its dynamics. The geological model developed with the aforementioned data reveals a complex system composed of a heterogeneous multilayered compartmentalized aquifer. The San Juan del Rio basin is composed of (1) the Amealco perched aquifer, (2) a shallow granular aquifer, and (3) a fractured aquifer. Hydrogeochemical and isotopic data (δ2H, δ18O, δ13C and correct carbon activity (Δ14C)) allow for identification of three end-member sources: (1) local meteoric recharge, (2) old groundwater contained in the siliciclastic shallow aquifer, and (3) regional/local hydrothermal recharge. The contribution of both meteoric and regional hydrogeothermal flow to the different aquifer compartments is determined through a principal component analysis of the hydrogeochemical data. With the aforementioned analysis it was found that the dominant contribution source for all aquifer compartments is meteoric water (up to 60% with a median of 50%), while the regional hydrothermal groundwater contribution represents 15%, even for the shallow aquifer.

Résumé

L’approvisionnement en eau dans les zones semiarides du Mexique dépend de l’extraction de l’eau d’aquifères compartimentés où l’on observe des taux de rabattement importants en raison de la demande croissante des utilisateurs urbains, industriels et agricoles. Comprendre le comportement de ces aquifères est une nécessité afin d’améliorer l’estimation des bilans hydriques. Par conséquent, cette étude rassemble des données géochimiques et isotopiques pour identifier la source de recharge de l’aquifère du graben de San Juan del Río et pour déterminer sa dynamique. Le modèle géologique développé à partir des données susmentionnées révèle un système complexe composé d’un aquifère hétérogène multicouche compartimenté. Le bassin de San Juan del Rio est composé (1) de l’aquifère perché d’Amealco, (2) d’un aquifère granulaire peu profond, et (3) d’un aquifère fracturé. Les données hydrogéochimiques et isotopiques (δ2H, δ18O, δ13C and 14C) permettent d’identifier trois sources de membres finaux: (1) la recharge météorique locale, (2) les anciennes eaux souterraines contenues dans l’aquifère silicoclastique peu profond, et (3) la recharge hydrothermale régionale/locale. La contribution du flux météorique et hydrogéothermal régional aux différents compartiments de l’aquifère est déterminée par une analyse en composantes principales des données hydrogéochimiques. Avec l’analyse susmentionnée, il a été constaté que la source de contribution dominante pour tous les compartiments de l’aquifère est l’eau météorique (jusqu’à 60% avec une médiane de 50%), tandis que la contribution des eaux souterraines hydrothermales régionales représente 15%, même pour l’aquifère peu profond.

Resumen

El suministro de agua en las zonas semiáridas de México depende de la extracción de agua de acuíferos compartimentados, los cuales muestran altas tasas de abatimiento ocasionadas por el aumento de extracción por usuarios urbanos, industriales y agrícolas. Entender el comportamiento de estos acuíferos es necesario para mejorar la estimación de los balances hídricos. Debido a lo anterior, este estudio reúne datos geoquímicos e isotópicos para identificar la fuente de recarga del acuífero del graben de San Juan del Río y determinar su dinámica hidrológica. El modelo geológico desarrollado con los datos anteriormente mencionados revela un sistema estructural y estratigráfico complejo, compuesto por un acuífero compartimentado multicapa y heterogéneo. La cuenca de San Juan del Río está compuesta por (1) el acuífero colgado Amealco, (2) un acuífero granular poco profundo y (3) un acuífero fracturado. Los datos hidrogeoquímicos e isotópicos (δ2H, δ18O, δ13C and 14C) permiten identificar tres fuentes principales de recarga: (1) una recarga meteórica local, (2) aguas subterráneas antiguas contenidas en el acuífero superficial silicoclástico y (3) recarga hidrotermal regional/local. La contribución de cada fuente en los diferentes compartimentos acuíferos se determina a través de un análisis de componentes principales de los datos hidrogeoquímicos. Con el análisis antes mencionado se encontró que la fuente de aporte dominante para todos los compartimentos acuíferos es el agua meteórica (hasta un 60% con una mediana de 50%), mientras que el aporte hidrotermal regional de aguas subterráneas representa un 15%, incluso para el acuífero somero.

摘要

墨西哥半干旱地区的供水依赖于分段含水层的取水,且由于城市、工业和农业用户的需求增加,可以观察到大幅度的下降速率。为了改进对水平衡的估计,了解这些含水层的行为是必要的。因此,本研究汇集了地球化学和同位素数据,以确定San Juan del Río地堑含水层的补给源并确定其动态。利用上述数据建立的地质模型揭示了由非均质多层分段含水层组成的复杂系统。San Juan del Rio 盆地由 (1) Amealco 上层滞水含水层、(2) 浅层粒状含水层和 (3) 裂隙含水层组成。水文地球化学和同位素数据(δ2H, δ18O, δ13C and 14C)可以识别三个端元来源:(1)局部大气补给,(2)硅碎屑浅层含水层中的老地下水,以及 (3)区域/局部热液补给。通过水文地球化学数据的主成分分析确定大气和区域水热流对不同含水区的贡献。通过上述分析发现,所有含水区的主要贡献来源是大气水(高达 60%,中位数为 50%),而区域热液地下水贡献占 15%,即使对于浅层含水层也是如此。

Resumo

O abastecimento de água em áreas semiáridas no México depende da extração de água de aquíferos compartimentados, onde grandes taxas de rebaixamento podem ser observadas devido à crescente demanda de usuários urbanos, industriais e agrícolas. Compreender o comportamento desses aquíferos é uma necessidade para melhorar a estimativa dos balanços hídricos. Assim, este estudo reúne dados geoquímicos e isotópicos para identificar a fonte de recarga para o aquífero de San Juan del Río e determinar sua dinâmica. O modelo geológico desenvolvido com os dados supracitados revela um sistema complexo composto por um aquífero compartimentalizado multicamadas heterogêneas. A bacia de San Juan del Rio é composta por (1) o aquífero suspenso Amealco, (2) um aquífero granular raso e (3) um aquífero fraturado. Dados hidrogeoquímicos e isotópicos (δ18O, δ2H, δ13C, Δ14C) permitem a identificação de três fontes de membros finais: (1) recarga meteórica local, (2) águas subterrâneas antigas contidas no aquífero silicoclástico raso e (3) recarga hidrotermal regional/local. A contribuição do fluxo meteórico e hidrogeotérmico regional para os diferentes compartimentos aquíferos é determinada através de uma análise de componentes principais dos dados hidrogeoquímicos. Com a análise citada acima verificou-se que a fonte de contribuição dominante para todos os compartimentos aquíferos é a água meteórica (até 60% com mediana de 50%), enquanto a contribuição hidrotermal regional das águas subterrâneas representa 15%, mesmo para o aquífero raso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguirre-Díaz GJ (1995) La Toba Amealco Y Su Correlacion Con La Formacion Las Americas a traves del graben de Acambay y Estados de México, Michoacán y Querétaro, Mexico [The Amealco Tuff and its correlation with the Las Americas Formation through the Acambay grabben and the states of Mexico, Michoacán and Querétaro, Mexico]. Rev Mex Cienc Geol 12:17–21

    Google Scholar 

  • Aguirre-Díaz GJ (1996) Volcanic stratigraphy of the Amealco caldera and vicinity, Central Mexican Volcanic Belt. Rev Mex Cienc Geol 13:10–51

    Google Scholar 

  • Aguirre-Díaz GJ, López-Martínez M (2001) The Amazcala caldera, Queretaro, Mexico: geology and geochronology. J Volcanol Geotherm Res 111(1–4):203–218. https://doi.org/10.1016/S0377-0273(01)00227-X

  • Aguirre-Díaz GJ, López-Martínez M (2009) Geologic evolution of the Donguinyó-Huichapan caldera complex, central Mexican Volcanic Belt, Mexico. J Volcanol Geotherm Res 179:133–148. https://doi.org/10.1016/j.jvolgeores.2008.10.013

    Article  Google Scholar 

  • Aguirre-Díaz GJ, McDowell FW (2007) Volcanic evolution of the Amealco caldera, central Mexico. In: Cenozoic tectonics volcanism of Mexico. Spec. Pap. 334, pp 179–193. https://doi.org/10.1130/0-8137-2334-5.179

  • Alaniz-Álvarez SA, Nieto-Samaniego ÁF (2005) El sistema de fallas Taxco-San Miguel de Allende y la Faja Volcánica Transmexicana, dos fronteras tectónicas del centro de México activas durante el Cenozoico [The Taxco-San Miguel de Allende fault system and the Trans-Mexican Volcanic Belt: two tectonic boundaries of the central Mexico active during the Cenozoic]. Bol Soc Geol Mex 57:65–82. https://doi.org/10.18268/bsgm2005v57n1a4

    Article  Google Scholar 

  • Alaniz-Álvarez SA, Nieto-Samaniego ÁF, Reyes-Zaragoza MA, Orozco-Esquivel MT, Ojeda-García ÁC, Vassallo LF (2001) Estratigrafía y deformación extensional en la región San Miguel de Allende-Querétaro, México [Stratigraphy and extensional deformation in the San Miguel de Allende-Queretaro region, Mexico]. Rev Mex Cienc Geol 18:129–148

    Google Scholar 

  • Ambach W, Dansgaard W, Eisner H, Møller J (2012) The altitude effect on the isotopic composition of precipitation and glacier ice in the Alps. Tellus 20:595–600. https://doi.org/10.3402/tellusa.v20i4.10040

    Article  Google Scholar 

  • Aranda-Gómez JJ, McDowell FW (1998) Paleogene extension in the Southern Basin and Range Province of Mexico: syndepositional tilting of Eocene red beds and Oligocene volcanic rocks in the Guanajuato mining district. Int Geol Rev 40:116–134. https://doi.org/10.1080/00206819809465201

    Article  Google Scholar 

  • Arango-Galván C, Prol-Ledesma RM, Flores-Márquez EL, Canet C, Villanueva Estrada RE (2011) Shallow submarine and subaerial, low-enthalpy hydrothermal manifestations in Punta Banda, Baja California, Mexico: geophysical and geochemical characterization. Geothermics 40:102–111. https://doi.org/10.1016/j.geothermics.2011.03.002

    Article  Google Scholar 

  • Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353. https://doi.org/10.1007/s10653-008-9167-8

    Article  Google Scholar 

  • Arreguín-Cortés FI, López-Pérez M, Cervantes-Jaimes CE (2020) Water challenges in Mexico. Tecnol Cie Agua 11:341–371. https://doi.org/10.24850/j-tyca-2020-02-10

    Article  Google Scholar 

  • Billarent-Cedillo A, Levresse G, Ferrari L, Inguaggiato C, Hernández-Pérez E, Hernández-Espriú A, Arias-paz A, Corbo-Camargo F, Carrera-Hernández JJ (2021) Geothermics Deciphering origins and pathways of low-enthalpy geothermal waters in the unconventional geothermal system of Juchipila graben (central Mexico):94. https://doi.org/10.1016/j.geothermics.2021.102076

  • Byers HR, Moses H, Harney PJ (1949) Measurement of rain temperature. J Meteorol 6:51–55. https://doi.org/10.1175/1520-0469(1949)006%3c0051:mort%3e2.0.co;2

  • Carreón-Freyre D, Cerca M, Luna-González L, Gámez-González FJ (2005) Influencia de la estratigrafía y estructura geológica en el flujo de agua subterránea del Valle de Querétaro [Influence of the stratigraphy and geological structure on the groundwater flow of the Queretaro Valley]. Rev Mex Cienc Geol 22:1–18

    Google Scholar 

  • Carrera-Hernández JJ, Carreón-Freyre D, Cerca-Martínez M, Levresse G (2016) Groundwater flow in a transboundary fault-dominated aquifer and the importance of regional modeling: the case of the city of Querétaro, Mexico. Hydrogeol J 24:373–393. https://doi.org/10.1007/s10040-015-1363-x

    Article  Google Scholar 

  • Carrera-Hernandez JJ (2018) A tale of Mexico’s most exploited—and connected—watersheds: the Basin of Mexico and the Lerma-Chapala Basin. WIREs Water 5:1–15. https://doi.org/10.1002/wat2.1247

    Article  Google Scholar 

  • Carrillo-Rivera JJ, Cardona A, Edmunds WM (2002) Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosí Basin, Mexico. J Hydrol 261:24–47. https://doi.org/10.1016/S0022-1694(01)00566-2

    Article  Google Scholar 

  • Carucci V, Petitta M, Aravena R (2012) Interaction between shallow and deep aquifers in the Tivoli Plain (central Italy) enhanced by groundwater extraction: a multi-isotope approach and geochemical modeling. Appl Geochem 27:266–280. https://doi.org/10.1016/j.apgeochem.2011.11.007

    Article  Google Scholar 

  • Chowdhury S, Dey S, Ghosh S, Saud T (2016) Satellite-based estimates of aerosol washout and recovery over India during monsoon. Aerosol Air Qual Res 16:1302–1314. https://doi.org/10.4209/aaqr.2015.01.0018

    Article  Google Scholar 

  • Christophersen N, Hooper RP (1992) Multivariate analysis of stream water chemical data: the use of Principal Components Analysis for the end-member mixing problem. Water Resour Res 28:99–107. https://doi.org/10.1029/91WR02518

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313. https://doi.org/10.1016/j.jhydrol.2008.02.015 

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Eos Trans Am Geophys Union 27:526–534. https://doi.org/10.1029/TR027i004p00526

    Article  Google Scholar 

  • Coplen TB (1988) Normalization of oxygen and hydrogen isotope data. Chem Geol Isot Geosci Sect 72:293–297. https://doi.org/10.1016/0168-9622(88)90042-5

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Environ Sci Geol 133:1702–1703

    Google Scholar 

  • Cruz-Ayala MB, Megdal SB (2020) An overview of managed aquifer recharge in Mexico and its legal framework. Water (Switzerland) 12. https://doi.org/10.3390/w12020474

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468. https://doi.org/10.3402/tellusa.v16i4.8993

    Article  Google Scholar 

  • Dávalos-Álvarez OG, Nieto-Samaniego ÁF, Alaniz-Álvarez SA, Gómez-González JM (2005) Las fases de deformación cenozoica en la región de Huimilpan, Querétaro, y su relación con la sismicidad local [Cenozoic deformation phases in the Huimilpan region, Queretaro, and their relationship with local seismicity]. Rev Mex Cienc Geol 22:129–147

    Google Scholar 

  • Dogramaci S, Herczeg AL (2002) Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia. J Hydrol 262:50–67. https://doi.org/10.1016/S0022-1694(02)00021-5

    Article  Google Scholar 

  • Ferrari L, Orozco-Esquivel T, Bryan SE, López-Martínez M, Silva-Fragoso A (2018) Cenozoic magmatism and extension in western Mexico: linking the Sierra Madre Occidental silicic large igneous province and the Comondú Group with the Gulf of California Rift. Earth-Sci Rev 183:115–152. https://doi.org/10.1016/j.earscirev.2017.04.006

    Article  Google Scholar 

  • Ferrari L, Conticelli S, Vaggelli G, Petrone CM, Manetti P (2000) Late Miocene volcanism and intra-arc tectonics during the early development of the Trans-Mexican Volcanic Belt. Tectonophysics 318:161–185. https://doi.org/10.1016/S0040-1951(99)00310-8

    Article  Google Scholar 

  • Fontes J-C, Garnier J-M (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15:399–413. https://doi.org/10.1029/WR015i002p00399

    Article  Google Scholar 

  • Giggenbach WF, Lyon GL (1977) The chemical and isotopic composition of water and gas discharges from the Ngawha geothermal field, Northland. Unpub. DSIR Geothermal Circular, CD 30/555/7 WFG

  • Gleason JA, Flores CC (2021) Challenges of water sensitive cities in Mexico: the case of the metropolitan area of Guadalajara. Water (Switzerland) 13:1–19. https://doi.org/10.3390/w13050601

    Article  Google Scholar 

  • González-Guzmán R, Inguaggiato C, Peiffer L, Weber B, Kretzschmar T (2019) Fault-controlled geothermal fluids of the northern Trans-Mexican Volcanic Belt: a geochemical and isotopic study of the Los Geysers field (Valley of Queretaro, Mexico). J Volcanol Geotherm Res 388. https://doi.org/10.1016/j.jvolgeores.2019.106681

  • Guerrero-Martínez L, Hernández-Marín M, Burbey TJ (2018) Estimation of natural groundwater recharge in the Aguascalientes semiarid valley, Mexico. Rev Mex Cienc Geol 35:268–276. https://doi.org/10.22201/cgeo.20072902e.2018.2.1022

    Article  Google Scholar 

  • Han LF, Plummer LN (2013) Revision of Fontes & Garnier’s model for the initial 14 C content of dissolved inorganic carbon used in groundwater dating. Chem Geol 351:105–114. https://doi.org/10.1016/j.chemgeo.2013.05.011

    Article  Google Scholar 

  • Han LF, Plummer LN, Aggarwal P (2012) A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating. Chem Geol 318–319:88–112. https://doi.org/10.1016/j.chemgeo.2012.05.004

    Article  Google Scholar 

  • Hegg DA, Clarke AD, Doherty SJ, Ström J (2011) Measurements of black carbon aerosol washout ratio on Svalbard. Tellus Ser B Chem Phys Meteorol 63:891–900. https://doi.org/10.1111/j.1600-0889.2011.00577.x

    Article  Google Scholar 

  • Herrera, Custodio (2003) Hipótesis sobre el origen de la salinidad de las aguas subterráneas en la isla de Fuerteventura, Archipiélago de Canarias. Boletín geológico y minero 114(4):433–452 

  • Hernández-Antonio A, Mahlknecht J, Tamez-Meléndez C, Ramos-Leal J, Ramírez-Orozco A, Parra R, Ornelas-Soto N, Eastoe CJ (2015) Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico). Hydrol Earth Syst Sci 19:3937–3950. https://doi.org/10.5194/hess-19-3937-2015

    Article  Google Scholar 

  • Hernández-Pérez E, Levresse G, Carrera-hernández J, García-martínez R (2020) Short term evaporation estimation in a natural semiarid environment: new perspective of the Craig-Gordon isotopic model. J Hydrol 587:124926. https://doi.org/10.1016/j.jhydrol.2020.124926

    Article  Google Scholar 

  • Huang J, Wang T, Wang W, Li Z, Yan H (1955) Journal of Geophysical Research. Nature 175:238

  • Laaksoharju M, Skårman C, Skårman E (1999) Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Appl Geochem 14:861–871. https://doi.org/10.1016/S0883-2927(99)00024-4

    Article  Google Scholar 

  • Luna-Niño R, Cavazos T (2018) Formation of a coastal barrier jet in the Gulf of Mexico due to the interaction of cold fronts with the Sierra Madre Oriental mountain range. Q J R Meteorol Soc 144:115–128. https://doi.org/10.1002/qj.3188

    Article  Google Scholar 

  • Mahlknecht J, Horst A, Hernández-Limón G, Aravena R (2008) Groundwater geochemistry of the Chihuahua City region in the Rio Conchos Basin (northern Mexico) and implications for water resources management. Hyrdrol Process 22:4736–4751. https://doi.org/10.1002/hyp

    Article  Google Scholar 

  • Martini M, Solé J, Garduño-Martínez DE, Puig TP, Omaña L (2016) Evidence for two Cretaceous superposed orogenic belts in central Mexico based on paleontologic and K-Ar geochronologic data from the Sierra de los Cuarzos. Geosphere 12:1257–1270. https://doi.org/10.1130/GES01275.1

    Article  Google Scholar 

  • Mook WG (1972) On the reconstruction of the initial 14C content of groundwater from the chemical and isotopic composition. Proceedings of Eighth International Conference on radiocarbon dating, vol. 1, Royal Society of New Zealand, Wellington: 342–352

  • Mook WG (1976) The dissolution-exchange model for dating groundwater with 14C. Interpretation of Environmental Isotope and Hydrochemical Data in Groundwater Hydrology, IAEA, Vienna: 213–225

  • Morales I, Villanueva-Estrada RE, Rodríguez R, Armienta MA (2015) Geological, hydrogeological, and geothermal factors associated to the origin of arsenic, fluoride, and groundwater temperature in a volcanic environment “El Bajío Guanajuatense”, Mexico. Environ Earth Sci 74:5403–5415. https://doi.org/10.1007/s12665-015-4554-9

    Article  Google Scholar 

  • Murgulet D, Cook M, Murgulet V (2016) Groundwater mixing between different aquifer types in a complex structural setting discerned by elemental and stable isotope geochemistry. Hydrol Process 30:410–423. https://doi.org/10.1002/hyp.10589

    Article  Google Scholar 

  • Pearson FJ, Hanshaw BB Jr (1970) Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating. Isotope Hydrology 1970, IAEA, Vienna: 271–286 

  • Popp AL, Scheidegger A, Moeck C, Brennwald MS, Kipfer R (2021) Integrating Bayesian Groundwater Mixing Modeling With On-Site Helium Analysis to Identify Unknown Water Sources, Water Resources Research 55(10602–10615):445.  https://doi.org/10.1029/2019WR0256772019

  • Power JF, Schepers JS (1989) Nitrate contamination of groundwater in North America. Agric Ecosyst Environ 26:165–187. https://doi.org/10.1016/0167-8809(89)90012-1

    Article  Google Scholar 

  • Prol-Ledesma RM, Carrillo-de la Cruz JL, Torres-Vera MA, Membrillo-Abad AS, Espinoza-Ojeda OM (2018) Heat flow map and geothermal resources in Mexico. Terra Digit 2:1–15. https://doi.org/10.22201/igg.25940694.2018.2.51

    Article  Google Scholar 

  • Rodríguez R, Morales-Arredondo I, Rodríguez I (2016) Geological differentiation of groundwater threshold concentrations of arsenic, vanadium and fluorine in El Bajio Guanajuatense, Mexico. Geofis Int 55:5–15. https://doi.org/10.22201/igeof.00167169p.2016.55.1.1708

    Article  Google Scholar 

  • Sanchez R, Rodriguez L, Tortajada C (2018) Transboundary aquifers between Chihuahua, Coahuila, Nuevo Leon and Tamaulipas, Mexico, and Texas, USA: identification and categorization. J Hydrol Reg Stud 20:74–102. https://doi.org/10.1016/j.ejrh.2018.04.004

    Article  Google Scholar 

  • Sow M, Lemaitre P (2016) Influence of electric charges on the washout efficiency of atmospheric aerosols by raindrops. Ann Nucl Energy 93:107–113. https://doi.org/10.1016/j.anucene.2015.12.036

    Article  Google Scholar 

  • Valenzuela-Vásquez L, Ramírez-Hernández J, Reyes-López J, Sol-Uribe A, Lázaro-Mancilla O (2006) The origin of fluoride in groundwater supply to Hermosillo City, Sonora. México Environ Geol 51:17–27. https://doi.org/10.1007/s00254-006-0300-7

    Article  Google Scholar 

  • Van Der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res 46:1–12. https://doi.org/10.1029/2010WR009127

    Article  Google Scholar 

  • Vitòria L, Soler A, Canals À, Otero N (2008) Environmental isotopes (N, S, C, O, D) to determine natural attenuation processes in nitrate contaminated waters: example of Osona (NE Spain). Appl Geochem 23:3597–3611. https://doi.org/10.1016/j.apgeochem.2008.07.018

    Article  Google Scholar 

Download references

Acknowledgements

This research is part of the first author’s PhD project in the framework of the Universidad Nacional Autónoma de Mexico (UNAM) Postgraduate Program. We thank Comité Técnico de Aguas Subterráneas SJR, Junta de Agua Potable y Alcantarillado Municipal SJR, and Comisión Estatal de Aguas Querétaro for sharing information and logistical support. We thank Carolina Muñoz for assistance at the Crustal Fluid Laboratory and Pedro Morales, Francisco Otero, and Edith Cienfuegos for technical assistance with the δ2H–δ18O analyses at the Laboratorio Universitario de Geoquímica Isotópica, and also Octavio Velázquez at Beta Analytics Laboratory in Miami, USA for the 14C and δ13C analyses and support.

Funding

The research was funded by CONACYT grant CB-255070 to G. Levresse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Levresse.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Francisco Javier Sancén Contreras is deceased

Supplementary information

ESM 1

(PDF 343 kb)

ESM 2

(XLSX 35 kb)

ESM 3

(XLSX 41 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Pérez, E., Levresse, G., Carrera-Hernandez, J. et al. Geochemical and isotopic multi-tracing (δ18O, δ2H, δ13C, Δ14C) of groundwater flow dynamics and mixing patterns in the volcanoclastic aquifer of the semiarid San Juan del Río Basin in central Mexico. Hydrogeol J 30, 2073–2095 (2022). https://doi.org/10.1007/s10040-022-02536-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02536-y

Keywords

Navigation