Skip to main content
Log in

Role of the confined aquifer in the mechanism of soil liquefaction due to the 7.5 Mw earthquake in Palu (Indonesia) on 28 September 2018

Rôle de l'aquifère captif dans le mécanisme de liquéfaction du sol due au séisme de 7.5 Mw à Palu (Indonésie) le 28 septembre 2018

Rol del acuífero confinado en el mecanismo de licuefacción del suelo debido al terremoto de 7.5 Mw en Palu (Indonesia) el 28 de septiembre de 2018

承压含水层在2018 年 9 月 28 日帕卢(印度尼西亚)7.5 Mw地震引起的土壤液化机制中的作用

Peran akuifer tertekan di dalam mekanisme likuifaksi tanah akibat gempa 7.5 Mw di Palu (Indonesia) pada 28 September 2018

O papel do aquífero confinado no mecanismo de liquefacção do solo devido ao terremoto de 7.5 Mw em Palu (Indonésia) em 28 de setembro de 2018

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Soil liquefaction on 28 September 2018 in Palu, Indonesia, included one of the largest soil movements ever, where objects on the ground surface moved hundreds of meters away and settlements sank into the mud. Some preliminary studies show that in addition to a strong earthquake, there are strong indications that a confined aquifer in the Palu valley worsened the liquefaction. The role of the confined aquifer can be recognized early on from one of various signs, namely the presence of massive surface inundations suspected due to groundwater expulsion which is thought to originate mostly from the confined aquifer. This paper describes the mechanism of the soil liquefaction in Palu from the perspective of earthquake hydrogeology, focusing on the groundwater expelled from an unconfined aquifer and especially from the underlying confined aquifer through hydraulic inter-connection between the two, which is possible due to simultaneous interaction of excess pore pressure dissipation and enhanced permeability driven by an earthquake in the near field. If this hypothesis proves to be strong, there are implications for engineering practices because the evaluation of potential soil liquefaction carried out currently in the geotechnical engineering field generally only involves the role of shallow groundwater and/or the unconfined aquifer and the role of soil layers not deeper than 30 m from the ground surface. It may be necessary to complement current evaluation practice with an evaluation of the deep groundwater response to earthquakes, especially if the deep groundwater is artesian and productive, with a relatively thin confining layer.

Resume

La liquéfaction du sol survenue le 28 septembre 2018 à Palu, en Indonésie, comprenait l'un des plus grands mouvements de sol jamais observés, où des objets à la surface du sol se sont éloignés de plusieurs centaines de mètres et où des établissements se sont enfoncés dans la boue. Certaines études préliminaires montrent qu'en plus d'un fort séisme, il y a de fortes indications qu'un aquifère captif dans la vallée de Palu a aggravé la liquéfaction. Le rôle de l'aquifère captif peut être reconnu très tôt à partir de l'un des différents signes, à savoir la présence d'inondations massives en surface, soupçonnées d'être dues à l'expulsion des eaux souterraines qui proviendraient principalement de l'aquifère captif. Cet article décrit le mécanisme de liquéfaction du sol à Palu du point de vue de l'hydrogéologie des tremblements de terre, en se concentrant sur l'eau souterraine expulsée d'un aquifère libre et surtout de l'aquifère captif sous-jacent par une connexion hydraulique entre les deux, ce qui est possible en raison de l'interaction simultanée de la dissipation de l'excès de pression interstitielle et de la perméabilité accrue provoquée par un tremblement de terre dans le champ proche. Si cette hypothèse s'avère forte, il y a des implications pour les pratiques d'ingénierie car l'évaluation de la liquéfaction potentielle des sols effectuée actuellement dans le domaine de l'ingénierie géotechnique ne concerne généralement que le rôle des eaux souterraines peu profondes et/ou de l'aquifère libre et le rôle des couches de sol situées dans les premiers 30 m sous la surface du sol. Il peut être nécessaire d’apporter des compléments à la pratique actuelle d'évaluation par une évaluation de la réponse des eaux souterraines profondes aux séismes, en particulier si ces eaux sont artésiennes et productives, avec une couche de confinement relativement mince.

Resumen

La licuefacción del suelo el 28 de septiembre de 2018 en Palu (Indonesia) incluyó uno de los mayores movimientos de tierra que se hayan producido, en el que los objetos de la superficie del suelo se desplazaron cientos de metros y los asentamientos se hundieron en el barro. Algunos estudios preliminares muestran que, además de un fuerte terremoto, hay fuertes indicios de que un acuífero confinado en el valle de Palu agravó la licuefacción. El papel del acuífero confinado puede reconocerse desde el principio a partir de uno de los diversos indicios, a saber, la presencia de inundaciones masivas en la superficie que se sospecha que se deben a la expulsión de aguas subterráneas que se considera que se originan principalmente en el acuífero confinado. Este artículo describe el mecanismo de la licuefacción del suelo en Palu desde la perspectiva de la hidrogeología sísmica, centrándose en el agua subterránea expulsada de un acuífero no confinado y especialmente del acuífero confinado subyacente a través de la interconexión hidráulica entre ambos, lo que es posible debido a la interacción simultánea de la disipación del exceso de presión de poros y el aumento de la permeabilidad impulsado por un terremoto en el campo cercano. Si esta hipótesis resulta ser sólida, existen implicaciones para las prácticas de ingeniería, ya que la evaluación de la licuefacción potencial del suelo que se realiza actualmente en el campo de la ingeniería geotécnica generalmente sólo implica el papel de las aguas subterráneas poco profundas y/o el acuífero no confinado y el papel de las capas del suelo que no están a más de 30 m de la superficie del suelo. Puede ser necesario complementar la práctica de evaluación actual con una evaluación de la respuesta a los terremotos de las aguas subterráneas profundas, especialmente si éstas son artesianas y productivas, con una capa de confinamiento relativamente fina.

摘要

2018 年 9 月 28 日在印度尼西亚帕卢发生的土壤液化包括有史以来最大的土壤运动之一, 其中地表上的物体移动了数百米, 居住点沉入泥土中。一些初步研究表明, 除了强烈地震外, 还有强烈迹象表明帕卢河谷的承压含水层加剧了液化。承压含水层的作用可以从各种迹象中早期识别出来, 即存在大量地表淹没, 怀疑是由于地下水排泄而被认为主要来自承压含水层。本文从地震水文地质学的角度描述了帕卢地区土壤液化的机理, 重点是从非承压含水层, 特别是从下伏承压含水层中通过两者之间的水力相互联系排泄的地下水, 这可能是由于同时相互作用近场地震驱动的超孔隙压力消散和渗透率增强。如果这个假设被证明是可信服的, 那么对工程实践就会产生影响, 因为目前在岩土工程领域进行的潜在土壤液化评估通常只涉及浅层地下水和/或非承压含水层的作用, 而土层的作用不深于地表地下30 m。可能有必要通过评估深层地下水对地震的响应来补充当前的评估实践, 特别是如果深层地下水具有相对薄的承压层, 是自流的和产水型的。

Abstrak

Likuifaksi tanah pada 28 September 2018 di Palu, Indonesia, termasuk salah satu pergerakan tanah terbesar yang pernah terjadi, padamana obyek-obyek di permukaan tanah bergerak beberapa ratus meter dan pemukiman tenggelam dalam lumpur. Beberapa studi pendahuluan menunjukkan, bahwa selain akibat gempa yang kuat, ada indikasi yang kuat, bahwa akuifer tertekan di lembah Palu memperparah likuifaksi tanah tersebut. Peran akuifer tertekan ini dapat dikenali secara awal dari beberapa tandanya, misalnya kehadiran genangan-genangan permukaan yang diduga berasal dari airtanah dalam, terutama dari akuifer tertekan. Makalah ini mendiskripsikan mekanisme likuifaksi tanah di Palu dari perspektif hidrogeologi kegempaan, yang berfokus pada airtanah yang dikeluarkan dari dalam akuifer tak tertekan dan terutama dari akuifer tertekan di bawahnya, melalui inter-koneksi hidraulik antar keduanya, yang dimungkinkan akibat interaksi simultan antara desipasi tekanan pori dan peningkatan permeability yang diakibatkan oleh sumber gempa di dalam daerah yang dekat. Jika hipotesis ini benar, maka terdapat implikasi untuk praktek kerekayasaan, karena evaluasi potensi likuifaksi tanah selama ini dilakukan di dalam rekayasa geoteknik umumnya hanya meninjau peran airtanah dangkal atau akuifer tak tertekan dari lapisan tanah yang tidak lebih dalam dari 30 meter dari permukaan tanah. Hasil-hasil yang disampaikan di dalam paper ini perlu menjadi komplementer pada evaluasi potensi likuifaksi tanah, padamana airtanah dalam berperan di dalam memperparah likuifaksi tanah, khususnya bila airtanah dalam tersebut bersifat artesian dan sangat produktif dengan lapisan akuitard atau akuiklud yang relatif tipis.

Resumo

A liquefação do solo em 28 de setembro de 2018 em Palu, Indonésia, incluiu um dos maiores movimentos de massa da história, onde objetos na superfície do solo se deslocaram centenas de metros de distância e assentamentos afundaram na lama. Alguns estudos preliminares indicam que, para além de um forte terremoto, há fortes indícios de que um aquífero confinado no vale do Palu agravou a liquefação. O papel do aquífero confinado pode ser identificado precocemente por um de seus vários sinais, a saber, a presença de inundações maciças em superfície suspeitas devido à descarga de águas subterrâneas que se pensa terem origem, na sua maioria, no aquífero confinado. Este artigo descreve o mecanismo de liquefação do solo em Palu a partir da perspectiva da hidrogeologia sísmica, concentrando-se nas águas subterrâneas expelidas de um aquífero não confinado e especialmente do aquífero confinado subjacente através da interconexão hidráulica entre os dois, o que é possível devido à interação simultânea da dissipação do excesso de pressão dos poros e do aumento da permeabilidade impulsionada por um terremoto no campo próximo. Se esta hipótese se revelar forte, há implicações para as práticas de engenharia pois a avaliação do potencial liquefação do solo realizada atualmente no campo da engenharia geotécnica geralmente envolve apenas o papel das águas subterrâneas rasas e/ou do aquífero não confinado e o papel das camadas do solo não mais profundas do que 30 m da superfície do solo. Poderá ser necessário complementar a prática atual de avaliação com uma avaliação da resposta das águas subterrâneas profundas aos terremotos, especialmente se as águas subterrâneas profundas forem artesianas e produtivas, com uma camada de confinamento relativamente fina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arief S, Hidayat RS (1993) Hydrogeological map of Indonesia - Palu and Parigi sheet, Directorate of Geology and Environment, Republic of Indonesia

  • Bao H, Ampuero JP, Meng L, Fielding EJ, Liang C, Milliner CWD, Feng T, Huang H (2019) Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nat Geosci 12:200–205. https://doi.org/10.1038/s41561-018-0297-z

    Article  Google Scholar 

  • Bellier O, Bourles DL, Beaudouin T, Braucher R (1999) Cosmic Ray Exposure (CRE) dating in a wet tropical domain: late Quaternary fan emplacements in central Sulawesi (Indonesia). Terra Nova 11(4):174–180. https://doi.org/10.1046/J.1365-3121.1999.00242.X

    Article  Google Scholar 

  • Bellier O, Sébrier M, Beaudouin T, Villeneuve M, Braucher R, Bourlès D, Siame L, Putranto E, Pratomo I (2001) High slip rate for a low seismicity along the Palu-Koro active fault in central Sulawesi (Indonesia). Terra Nova 13(6):0954–4879. https://doi.org/10.1046/j.1365-3121.2001.00382.x

    Article  Google Scholar 

  • Berryman JG (1992) Effective stress for transport properties of inhomogeneous porous rock. J Geophys Res 97:17409–17424. https://doi.org/10.1029/92JB01593

    Article  Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164. https://doi.org/10.1063/1.1712886

    Article  Google Scholar 

  • Bradley K, Mallick R, Andikagumi H, Hubbard J, Meilianda E, Switzer A, Du N, Brocard G, Alfian D, Benazir B, Feng G, Yun SH, Majewski J, Wei S, Hill EM (2019) Earthquake-triggered 2018 Palu valley landslides enabled by wet rice cultivation. Nat Geosci 12:935–939. https://doi.org/10.1038/s41561-019-0444-1

    Article  Google Scholar 

  • Buana TW, Hermawan W, Wiyono, Kusumah AW, Rahdiana RN (2018) Failure mechanism in Balaroa and Petobo. In: Andiani, Oktariadi O, Kurnia A (eds) Behind the charm of Palu, Geological Agency of Republic of Indonesia, p. 14-158

  • CGEG (2018) Exploration and clean water supply service work through deep groundwater drilling in Palu regency of Central Sulawesi Province, Geological Agency, Republic of Indonesia, Internal Report SB 16, unpublished

  • Cox SC, van Ballegooy S, Rutter H, Ward ND (2012a) Did artesian groundwater contribute to Christchurch liquefaction and lateral spreading damage ? Natural Hazards Research Platform, Contest Project, New Zealand

    Google Scholar 

  • Cox SC, Rutter HK, Simsc A, Mangad M, Weirb JJ, Ezzye T, Whitef PA, Hortong TW, Scotte D (2012b) Hydrological effects of the Mw 7.1 Darfield (Canterbury) earthquake, 4 September 2010 New Zealand. N Z J Geol Geophys 55(3):231–247. https://doi.org/10.1080/00288306.2012.680474

    Article  Google Scholar 

  • Elkhoury JE, Brodsky EE, Agnew DC (2006) Seismic waves increase permeability. Nature 411:1135–1138. https://doi.org/10.1038/nature04798

    Article  Google Scholar 

  • Elkhoury JE, Niemeijer A, Brodsky EE, Marone C (2011) Laboratory observations of permeability enhancement by fluid pressure oscillation of in-situ fractured rock. J Geophys Res 116:B02311. https://doi.org/10.1029/2010JB007759

    Article  Google Scholar 

  • Fang J, Xu C, Wen Y, Wang S, Xu G, Zhao Y, Yi L (2019) The 2018 Mw 7.5 Palu earthquake: a supershear rupture event constrained by InSAR and broadband regional seismograms. Remote Sens 11:1330. https://doi.org/10.3390/rs11111330

    Article  Google Scholar 

  • Faris F, Fathani TF, Wang F (2019) Report on the UNESCO Chair workshop on geoenvironmental disaster reduction 28th April—1st may, 2019, Palu-Jakarta, Indonesia. Geoenviron Disasters 6(12):1–6. https://doi.org/10.1186/s40677-019-0129-5

    Article  Google Scholar 

  • Geballe ZM, Wang CY, Manga M (2011) A permeability-change model for water level changes triggered by tele seismic waves. Geofluids 11:302–308. https://doi.org/10.1111/j.1468-8123.2011.00341.x

    Article  Google Scholar 

  • Green MJ (2015) Hydrogeological investigation of earthquake related springs in the Hillsborough Valley Christchurch, New Zealand, Thesis, University of Canterbury, New Zealand

  • Green RA, Mitchell JK (2004) Energy-based evaluation and remediation of liquefiable soils. In: Yegian M and Kavazanjian E (ed) Geotechnical engineering for transportation projects. ASCE Geotech Special Public 126(2):1961–1970. https://doi.org/10.1061/40744(154)191

    Article  Google Scholar 

  • Gulley AK, Ward NFD, Cox SC, Kaipio JP (2013) Groundwater responses to the recent Canterbury earthquakes. J Hydrol 504:171–181. https://doi.org/10.1016/j.jhydrol.2013.09.018

    Article  Google Scholar 

  • Hanifa NR (2018) GEER – HATTI – PuSGeN Joint Survey on Palu Earthquake 2018 (M7.4) 13-18 Nov 2018, Report, Indonesian Ministry of Research, Technology and Higher Education, Jakarta, Indonesia.

  • Hidayat RF, Kiyota T, Tada N, Hayakawa J, Nawir H (2020) Reconnaissance on liquefaction-induced flow failure caused by the 2018 Mw 7.5 Sulawesi earthquake Palu Indonesia. J Eng Technol Sci 52(1):51–65. https://doi.org/10.5614/j.eng.technol.sci.2020.52.1.4

    Article  Google Scholar 

  • Hughes MW, Quigley MC, van Ballegooy S, Deam BL, Bradley BA, Hart DE, Measures R (2015) The sinking city: earthquakes increase flood hazard in Christchurch New Zealand. GSA Today 25(3-4):4–10. https://doi.org/10.1130/GSATG221A.1

    Article  Google Scholar 

  • Jalil A, Fathani TF, Satyarno I, Wilopo W (2021) Liquefaction in Palu: the cause of massive mudflows, Geoenviron. Disasters 8:21–34. https://doi.org/10.1186/s40677-021-00194-y

    Article  Google Scholar 

  • Kiyota T, Furuichi H, Hidayat RF, Tada N, Nawir H (2020) Overview of long-distance flow-slide caused by the 2018 Sulawesi earthquake, Indonesia. Soils Found 60:722–735. https://doi.org/10.1016/j.sandf.2020.03.015

    Article  Google Scholar 

  • Kusumawardani R, Chang M, Togani Cahyadi Upomo TC, Huang RC, Fansuri MH, Prayitno GA (2021) Understanding of Petobo liquefaction flow slide by 2018.09.28 Palu-Donggala Indonesia earthquake based on site reconnaissance. Landslides 18:3163–3182. https://doi.org/10.1007/s10346-021-01700-x

    Article  Google Scholar 

  • Lakeland DL, Rechenmacher A, Ghanem R (2014) Towards a complete model of soil liquefaction: the importance of fluid flow and grain motion. Proc R Soc, A 470(20130453):1–19. https://doi.org/10.1098/rspa.2013.0453

    Article  Google Scholar 

  • Liu CY, Chia Y, Chuang PY, Chiu YC, Tseng TL (2018) Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes. Hydrogeol J 26:451–465. https://doi.org/10.1007/s10040-017-1684-z

    Article  Google Scholar 

  • Manga M (2001) Origin of post seismic streamflow changes inferred from baseflow recession and magnitude-distance relation. Geophys Res Lett 28:2133–2136. https://doi.org/10.1029/2000GL012481

    Article  Google Scholar 

  • Manga M, Wang CY (2015) Earthquake hydrology. University of California Berkeley, Berkeley. https://doi.org/10.1016/B978-0-444-53802-4.00082-8

    Book  Google Scholar 

  • Manga M, Brodsky EE, Boone M (2003) Response of stream flow to multiple earthquakes. Geophys Res Lett 30:214. https://doi.org/10.1029/2002GL016618

    Article  Google Scholar 

  • Manga M, Beresnev I, Brodsky EE, Elkhoury JE, Elsworth D, Ingebritsen S, Mays DC, Wang CY (2012) Changes in permeability by transient stresses: field observations, experiments and mechanisms. Rev Geophys 50:RG2004. https://doi.org/10.1029/2011RG000382

    Article  Google Scholar 

  • Mason HB, Montgomery J, Gallant AP, Hutabarat D, Reedb AN, Wartman J, Irsyam M, Simatupang PT, Alatas IM, Prakoso WA, Djarwadi D, Hanifa NR, Rahardjo P, Faizal L, Harnanto DS, Kawanda A, Himawan A, Yasin W (2021) East Palu Valley flow slides induced by the 2018 MW 7.5 Palu-Donggala earthquake. Geomorphology 373:107482. https://doi.org/10.1016/j.geomorph.2020.107482

    Article  Google Scholar 

  • Matasovic N, Ordonez GA (2012) DMOD2000 – A computer program for seismic response analysis of horizontally layered soil deposits: earthfill dams and solid waste landfills. GeoMotions, LLC, Lacey, Washington, USA

    Google Scholar 

  • Harian Nasional (2018) Asa dibalik kisah pilu Petobo (The hope behind the sad story of Petobo), http://www.harnas.co/2018/10/08/asa-di-balik-kisah-pilu-petobo, accessed December 07, 2021.

  • Nazir R, Irsyam M, Sahadewa A, Alatas IM, Simatupang P, Faizal L (2018) Geotechnical impact of Palu Donggala earthquake - a lesson learned. In: Irsyam M, Hanifa NR, Djarwadi D, Sarsito DA (eds) Study of earthquake (Mw 7.5) on 28th of September 2018 Palu, The Province of Central Sulawesi, National Center for Earthquake Study (PuSGeN). Center for Housing and Settlement Research and Development, Republic of Indonesia, pp 217–248

    Google Scholar 

  • Nugraha AMS, Hall R, Fadel MB (2022) The Celebes Molasse: A revised Neogene stratigraphy for Sulawesi, Indonesia. J Asian Earth Sci 228:105140. https://doi.org/10.1016/j.jseaes.2022.105140

    Article  Google Scholar 

  • Nurdin S, Harianto T, Aswad S, Arsyad A, Alexsander S (2019) Liquefaction disaster mitigation and geohydrology conditions - lessons from the Palu earthquake Magnitude 7.4 Mw 28th September 2018, Proceedings of 23rd Annual National Conference on Geotechnical Engineering, Indonesian Society of Geotechnical Engineering, p. 208-216

  • Ordonez GA (2012) SHAKE2000 – a computer program for the 1D analysis of geotechnical earthquake engineering problems. GeoMotions, LLC, Lacey, Washington, USA

    Google Scholar 

  • Ortoleva PJ (1994) Basin compartments and seals, AAPG Memoir. Am Assoc Petroleum Geol 61. https://doi.org/10.1306/M61588

  • Quigley MC, Bastin S, Bradley BA (2013) Recurrent liquefaction in Christchurch New Zealand during the Canterbury earthquake sequence. Geology 41(4):419–422. https://doi.org/10.1130/G33944.1

    Article  Google Scholar 

  • Rohit D, Pasha SMK, Hazarika H, Kokusho T, Arsyad A, Nurdin S (2019) Influence of low permeability capping layers on liquefaction induced ground failure, Proceeding of 16th Asian Regional Conference on Soil Mechanics and Geotechical Eng, Taipei, Taiwan

  • Rojstaczer S, Wolf S, Michel R (1995) Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature 373:237–239. https://doi.org/10.1038/373237a0

    Article  Google Scholar 

  • Rutter HK, Cox SC, Ward NFD, Weir JJ (2016) Aquifer permeability change caused by a near-field earthquake Canterbury New Zealand. Water Resour Res 52:8861–8878. https://doi.org/10.1002/2015WR018524

    Article  Google Scholar 

  • Samang L, Harianto T, Nurdin S, Aswad S, Alimudin I, Arsyad A, Beddu A, Rauf I, Nur H (2018) Preliminary investigation of liquefaction disaster due to 7.4 Mw earthquake in Palu City and resistivity section of soil. In: Irsyam M, Hanifa NR, Djarwadi D, Sarsito DA (eds) Study of Palu 7.4 earthquake on 28th of September 2018 Palu - The Province of Central Sulawesi. National Center of Earthquake Study Team, Republic of Indonesia, pp 201–215

    Google Scholar 

  • Sano Y, Onda S, Kagoshima T, Miyajima T, Takahata N, Shibata T, Nakagawa C, Onoue T, Kim NK, Lee H, Kusakabe M, Pinti DL (2020) Groundwater oxygen anomaly related to the 2016 Kumamoto earthquake in Southwest Japan. Proc Jpn Acad Ser B 96:322–334. https://doi.org/10.2183/pjab.96.024

    Article  Google Scholar 

  • Sengara IW, Sulaiman A, Widodo LE (2020) Coupled effective stress analysis of sand liquefaction for Petobo site post Mw 7.4 Palu earthquake, Proceeding of 17th WCEE, Sendai, Japan.

  • Setiawan T, Hermawan W, Defrizal, Kusumah AW, Buana TW (2018) Palu groundwater basin. In: Andiani, Oktariadi O, Kurnia A (ed) Behind the charm of Palu, Geological Agency, Republic of Indonesia, p. 7-17

  • Shi Z, Wang G (2016) Aquifers switched from confined to semiconfined by earthquakes. Geophys Res Lett 43(11):166–11,172. https://doi.org/10.1002/2016GL070937

    Article  Google Scholar 

  • Socquet A, Hollingsworth J, Pathier E, Bouchon M (2019) Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nat Geosci 12:192–199. https://doi.org/10.1038/s41561-018-0296-0

    Article  Google Scholar 

  • Sukamto R (1973) Reconnaissance geological map of Palu area, Sulawesi. Scale 1:250.000, Geological Survey of Indonesia, Bandung, Indonesia

  • Syifaurrohman Y, Utama W, Lestari W, Surya TMA (2018) Mapping of groundwater aquifer distribution using resistivity data of vertical electrical sounding (VES) based on Schlumberger configuration - case study Palu Regency of Central Sulawesi Province. Jurnal Geosaintek 4(3):113–122. https://doi.org/10.12962/j25023659.v4i3.4102

    Article  Google Scholar 

  • The Star (2018) Liquefaction causes whole villages to be sucked into ground, https://www.thestar.com.my/news/regional/2018/10/08/liquefaction-causes-whole-villages-to-be-sucked-into-ground/, accessed December 07, 2021

  • Thein PS, Pramumijoyo S, Brotopuspito KS, Wilopo W, Kiyono J, Setianto A (2013) Estimation of sediment thickness by using microtremor observations at Palu City – Indonesia, Proceeding of The 11st International Conference on Mining, Materials and Petroleum Engineering and The 7th International Conference on Earth Resources Technology. ASEAN Forum on Clean Coal Technology, Chiang Mai, pp 21–25

    Google Scholar 

  • Thein PS, Pramumijoyo S, Brotopuspito KS, Kiyono J, Wilopo W, Furukawa A, Setianto A (2014) Estimation of seismic ground motion and shaking parameters based on microtremor measurements at Palu City, Central Sulawesi Province Indonesia, World Acad Sci Eng Technol Int J Geol. Environ Eng 8:308–319. https://doi.org/10.5281/zenodo.1092938

    Article  Google Scholar 

  • Tjia HD (1981) Example of young tectonism in Eastern Indonesia. In: Barber AJ, Wiryosudjono S (eds.) The Geology and tectonics of Eastern Indonesia, Spec. Publ. Geol. Res. and Dev. Centre, Bandung, Indonesia. 2, pp. 89–104

  • USGS (2018) M 7.5 – 70 km North of Palu, Indonesia, https://earthquake.usgs.gov/earthquakes/eventpage/us1000h3p4/executive, accessed June 15, 2020

  • van Ballegooy S, Cox SC, Agnihotri R, Reynolds T, Thurlow C, Rutter HK, Scott DM, Begg JG, McCahon I (2013) Median water table elevation in Christchurch and surrounding area after the 4 September 2010 Darfield earthquake, Version 1. GNS Science Report, New Zealand

    Google Scholar 

  • Wang HF (2000) Theory of linear poroelasticity with applications to Geomechanics and Hydrogeology, Princeton Series in Geophysics. Princeton University Press, Princeton and Oxford

    Google Scholar 

  • Wang CY (2007) Liquefaction beyond the near field. Seismol Res Lett 78(5):512–517. https://doi.org/10.1785/gssrl.78.5.512

    Article  Google Scholar 

  • Wang CY, Manga M (2010) Hydrologic responses to earthquakes and a general metric. Geofluids 10:206–216. https://doi.org/10.1111/j.1468-8123.2009.00270.x

    Article  Google Scholar 

  • Wang CY, Manga M (2014) Earthquakes and water, Encyclopedia of Complexity and Systems. Science. https://doi.org/10.1007/978-3-642-27737-5_606-1

  • Wang CY, Wong A, Dreger DS, Manga M (2006) Liquefaction limit during earthquakes and underground explosions: implications on ground-motion attenuation. Bull Seismol Soc Am 96(1):355–363. https://doi.org/10.1785/0120050019

    Article  Google Scholar 

  • Wang CY, Liao X, Wang LP, Wang CH, Manga M (2016) Large earthquakes create vertical permeability by breaching aquitards. Water Resour Res 52:5923–5937. https://doi.org/10.1002/2016WR018893

    Article  Google Scholar 

  • Ward NFD (2015) On the mechanism of earthquake induced groundwater flow. J Hydrol 530:561–567. https://doi.org/10.1016/j.jhydrol.2015.09.024

    Article  Google Scholar 

  • Watkinson IM, Hall R (2019) Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides. Nat Geosci 12:940–945. https://doi.org/10.1038/s41561-019-0448-x

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Widodo LE, Simangunsong GM, Iskandar I, Prasetyo SH (2019) The role of confined aquifer in the escalation of Palu liquidation due to the Palu earthquake of September 28, 2018 - a hypothesis. Proceedings of 4th Annual Meeting of Association of Indonesian Groundwater Experts, Bandung

    Google Scholar 

  • Widyaningrum R, Mudohardono D, Murtianto E, Sukhyar R (2012) Geological engineering investigation of liquefaction potential Palu area of Central Sulawesi Province, Center of Groundwater and Environmental Geology, Geological Agency, Republic of Indonesia, Internal Report, No: 297/LAP-BGE.P2K/2012, unpublished.

  • Wu J, Kammerer AM, Riemer MF, Seed RB, Pestana JM (2004) Laboratory study of liquefaction triggering criteria. roceeding of 13th World Conference on Earthquake Engineering, Vancouver

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank The Asahi Glass Foundation of Japan for the 2019 research grant and The Bandung Institute of Technology Research and Community Service (LPPM-ITB) for the P3MI 2019, 2020 and PPMI 2021 research funding. Many thanks are also conveyed to the Energy and Mineral Resources Services (ESDM) Office of Central Sulawesi Province for providing access to information on field surveys and investigations of Palu liquefaction and restoration plans for the affected areas. The authors also thank the editors and reviewers of Hydrogeology Journal who constructively provided suggestions and improvements to the manuscript. Further thanks go to Prof. Sudarto Notosiswoyo for discussion on groundwater isotopes, Budi Sulistijo for discussion on well logging, and Taat Setiawan, Teuku Reza, Tommy Alvin Rivai, Andi Yahya Al Hakim, Berry Casanova, Muhammad Fajri Nugroho Putra, Mirza Dian Rifaldi, and Kiki Rizky Fauziah for their assistance in this research.

Funding

The research on Palu liquefaction 2018 conducted by the author was supported by the 2019 research grant from The Asahi Glass Foundation of Japan and the research funding P3MI 2019, 2020 and PPMI 2021 from The Bandung Institute of Technology Research and Community Service (LPPM-ITB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilik E. Widodo.

Ethics declarations

Conflict of interests

The authors declare that in the research on Palu liquefaction 2018 and the results presented in this paper, there is no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widodo, L.E., Prassetyo, S.H., Simangunsong, G.M. et al. Role of the confined aquifer in the mechanism of soil liquefaction due to the 7.5 Mw earthquake in Palu (Indonesia) on 28 September 2018. Hydrogeol J 30, 1877–1898 (2022). https://doi.org/10.1007/s10040-022-02516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02516-2

Keywords

Navigation