Skip to main content
Log in

Inverse modeling of natural tracer transport in a granite massif with lumped-parameter and physically based models: case study of a tunnel in Czechia

Modélisation inverse du transport de traceurs naturels dans un massif granitique à l’aide de modèles globaux paramétriques et de modèles à base physique: étude de cas d’un tunnel en Tchéquie

Modelado inverso del transporte de trazadores naturales en un macizo de granito con modelos basados en parámetros físicos y agrupados: estudio de caso de un túnel en la República Checa

使用集总参数和物理机制的模型对花岗岩块中天然示踪剂运移进行逆向建模:以捷克隧道为例

Inverzní modelování transportu přirozených stopovačů v žulovém masivu fyzikálně založeným modelem a se sdruženými parametry: případová studie tunelu v České republice

Modelagem inversa do transporte de traçadores naturais em um maciço de granito com parâmetro concentrado e modelos fisicamente baseados: estudo de caso de um túnel na Tchéquia

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

This study deals with numerical modelling of hydraulic and transport phenomena in granite of the Bohemian massif in Bedrichov, Czechia (Czech Republic). Natural tracers represented by stable isotopes δ18O and δ2H were collected at the tunnel outflow points and nearby catchment and their concentrations were monitored for seven years. The study compared transport simulations by a two-dimensional (2D) physically based model (advection-dispersion) developed in Flow123d software and a simpler lumped-parameter model, calculated with FLOWPC. Both variants were calibrated with UCODE software, either fitting the concentration data alone, or including the tunnel inflow rates in the case of the 2D model calibration (either in separate steps or within a single optimization problem). Since each of the models describes the tracer transport with different parameters, the models were compared based on the mean transit time as a postprocessed quantity. Besides this, two different options for processing the recharge data (input for both models) were evaluated. Calibration and data interpretation were possible for three of the four observed places in the tunnel, thus determining the depth limit of applicability of the stable isotopes. The estimates for discharge sampling at 25–35 m depth based on inverse modelling provide reasonable values of mean transit time (20–40 months) for the lumped parameter models, little revising the results of previous studies at the site. The resulting transport parameters of the advection-dispersion model (porosity and dispersivity) are in accordance with the hydrogeological structures present at the sampling sites.

Résumé

Cette étude porte sur la modélisation numérique des phénomènes hydrauliques et de transport dans le granite du massif Bohémien, à Bedrichov en Tchéquie (République tchèque). Des traceurs naturels, les isotopes stables δ18O et δ2H, ont été collectés aux exutoires du tunnel et dans le bassin versant voisin et leurs concentrations ont été suivies pendant sept ans. L’étude a comparé les simulations de transport par un modèle physique bidimensionnel (2D; advection-dispersion) développé avec le logiciel Flow123d et un modèle global paramétrique plus simple, implémenté sous FLOWPC. Les deux variantes ont été calées avec le logiciel UCODE, soit en ajustant les données de concentration seules, soit en incluant les débits des venues d’eau dans le tunnel dans le cas de la calibration du modèle 2D (soit en étapes séparées, soit au sein d’un seul problème d’optimisation). Comme chacun des modèles décrit le transport du traceur avec des paramètres différents, les modèles ont été comparés sur la base du temps de transit moyen en tant paramètre de post-traitement. En outre, deux options différentes ont été évaluées pour le traitement des données de recharge (entrée pour les deux modèles). Le calage et l’interprétation des données ont été possibles pour trois des quatre lieux d’observation dans le tunnel, déterminant ainsi la limite de profondeur d’applicabilité des isotopes stables. Les estimations pour les prélèvements effectués à 25–35 m de profondeur, basées sur la modélisation inverse, fournissent des valeurs raisonnables du temps de transit moyen (20–40 mois) pour les modèles globaux paramétriques, ce qui modifie peu les résultats des études antérieures sur le site. Les paramètres de transport résultants du modèle d’advection–dispersion (porosité et dispersivité) sont en accord avec les structures hydrogéologiques présentes sur les sites de prélèvement.

Resumen

Este estudio trata del modelado numérico de los fenómenos hidráulicos y de transporte en el granito del macizo de Bohemia en Bedrichov, República Checa. Se registraron trazadores naturales mediante isótopos estables δ18O y δ2H en los puntos de salida del túnel y en la cuenca de captación cercana, y se monitorearon sus concentraciones durante siete años. El estudio comparó las simulaciones de transporte mediante un modelo bidimensional (2D) basado en la física (advección–dispersión) desarrollado en el software Flow123d y un modelo más simple de parámetros agrupados, calculado con FLOWPC. Ambas modelos se calibraron con el software UCODE, ajustando únicamente los datos de concentración o incluyendo las tasas de entrada al túnel en el caso de la calibración del modelo 2D (ya sea en pasos separados o dentro de un único problema de optimización). Dado que cada uno de los modelos describe el transporte del trazador con diferentes parámetros, los modelos se compararon basándose en el tiempo medio de tránsito como cantidad postprocesada. Además de esto, se evaluaron dos opciones diferentes para el procesamiento de los datos de recarga (entrada para ambos modelos). La calibración e interpretación de los datos fue posible para tres de los cuatro sitios observados en el túnel, determinando así el límite de profundidad de aplicabilidad de los isótopos estables. Las estimaciones para el muestreo de la descarga a 25–35 m de profundidad basadas en el modelo inverso proporcionan valores razonables del tiempo medio de tránsito (20–40 meses) para los modelos de parámetros agrupados, revisando poco los resultados de estudios anteriores en el lugar. Los parámetros de transporte resultantes del modelo de advección–dispersión (porosidad y dispersividad) son acordes con las estructuras hidrogeológicas presentes en los sitios de muestreo.

摘要

本研究是关于捷克(捷克共和国)Bedrichov 的Bohemian地块花岗岩水力和运移的数值模拟。收集了在隧道出水点和附近集水区的稳定同位素18O和2H为代表天然示踪剂近7年的浓度监测数据。该研究通过Flow123d 软件开发了二维 (2D) 物理模型(对流-弥散)和使用 FLOWPC 计算的更简单的集总参数模型来比较运移模拟结果。变量都使用 UCODE 软件进行校准,或者单独拟合浓度数据,或者在 2D 模型校准的情况下包括隧道流入速率(或在单独的步骤中或在单个优化问题中)。由于每个模型都用不同的参数描述示踪剂运移,因此基于作为后处理的平均运移时间对模型进行了比较。除此之外,还评估了处理补给数据(两种模型的输入)的两种不同选项。可以对隧道中四个观测点中的三个点进行校准和数据解释,从而确定稳定同位素适用性的深度限制。基于逆模型对 25–35 m 深度的排泄采样的估计为集总参数模型提供了合理的平均运移时间(20–40月),几乎没有修改先前现场研究的结果。对流-弥散模型的最终运移参数(孔隙度和弥散度)与采样点的水文地质结构一致。

Abstrakt

Studie se zabývá numerickým modelováním proudění vody a transportu látek v granitu českého masivu v České republice. Ve vývěrech v tunelu a v blízkém povodí byly po dobu sedmi let monitorovány koncentrace stabilních isotopů δ18O a δ2H jako přirozených stopovačů. Tato práce porovnává simulace fyzikálně založeným 2D advekčně disperzním modelem pomocí softwaru Flow123d a jednodušším modelem se sdruženými parametry počítaným ve FLOWPC. Obě varianty byly kalibrovány v softwaru UCODE. Byly využity buď jen koncentrace stopovačů, nebo spolu s nimi také průtok v odebíraném vývěru v případě kalibrace 2D modelu (buď v samostatných krocích, nebo v rámci jedné optimalizační úlohy). Protože každý z modelů popisuje transport stopovačů rozdílnými parametry, byly modely porovnány na základě střední doby transportu (zdržení), získané postprocesingem. Kromě toho byly vyhodnoceny dvě různé varianty zpracování dat infiltrace srážek (vstup pro oba modely). Kalibraci a interpretaci výsledků bylo možné provést pro tři ze čtyř pozorovacích míst v tunelu, čímž byla stanovena mezní hloubka pro použití stabilních izotopů. Z inverzní úlohy modelu se sdruženými parametry pro vzorky v hloubce 25 až 35 metrů vychází rozumný odhad střední doby zdržení s hodnotou 20–40 měsíců, což mírně koriguje předchozí výsledky. Parametry transportu advekčně disperzního modelu (porozity a disperzivity) jsou ve shodě s hydrogeologickou strukturou na místech odběrů.

Resumo

Este estudo trata da modelagem numérica de fenômenos hidráulicos e de transporte em granito do maciço Boêmio em Bedrichov, na Tchéquia (República Tcheca). Traçadores naturais representados por isótopos estáveis δ18O e δ2H foram coletados nos pontos de saída do túnel e próximos da captação e suas concentrações foram monitoradas por sete anos. O estudo comparou simulações de transporte por um modelo bidimensional (2D) fisicamente baseado (advecção-dispersão) desenvolvido no software Flow123d e um modelo mais simples de parâmetros concentrados, calculado com FLOWPC. Ambas as variantes foram calibradas com software UCODE, seja encaixando os dados de concentração sozinhos, ou incluindo as taxas de entrada do túnel no caso da calibração do modelo 2D (em etapas separadas ou dentro de um único problema de otimização). Uma vez que cada um dos modelos descreve o transporte de traçadores com parâmetros diferentes, os modelos foram comparados com base no tempo médio de trânsito como uma quantidade pós-processada. Além disso, foram avaliadas duas opções diferentes para o processamento dos dados de recarga (entrada para ambos os modelos). A calibração e a interpretação dos dados foram possíveis para três dos quatro locais observados no túnel, determinando assim o limite de profundidade da aplicabilidade dos isótopos estáveis. As estimativas para amostragem de descarga a 25–35 m de profundidade com base na modelagem inversa fornecem valores razoáveis de tempo médio de trânsito (20–40 meses) para os modelos de parâmetros concentrados, pouco revisando os resultados de estudos anteriores no local. Os parâmetros de transporte resultantes do modelo de advecção-dispersão (porosidade e dispersividade) estão de acordo com as estruturas hidrogeológicas presentes nos locais de amostragem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Asano Y, Uchida T, Ohte N (2002) Residence times and flow paths of water in steep unchanneled catchments, Tanakami, Japan. J Hydrol 261:173–192. https://doi.org/10.1016/S0022-1694(02)00005-7

    Article  Google Scholar 

  • Balay S, Abhyankar S, Adams M, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp W, Karpeyev D, Kaushik D, Knepley M, May D, Curfman McInnes L, Mills R, Munson T, Rupp K, Sanan P, Smith B, Zampini S, Zhang H, Zhang H (2019) PETSc users manual. Argonne Natl Lab ANL-95/11, Revis 312. https://wwwmcsanlgov/petsc. Accessed 12 Jul 2021

  • Balvín A, Hokr M, Škarydová I, Rálek P (2014) Uncertainty of the hydraulic and transport model based on the tunnel inflow observation. In: ICWRER 2013, Water & Environmental Dynamics, Koblenz, Germany, 3–7 June 2013, pp 425–427

  • Bethke CM, Johnson TM (2002) Ground water age. GroundWater 40:337–339. https://doi.org/10.1111/j.1745-6584.2002.tb02510.x

    Article  Google Scholar 

  • Bethke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci 36:121–152. https://doi.org/10.1146/annurev.earth.36.031207.124210

    Article  Google Scholar 

  • Březina J (2012) Mortar-like mixed-hybrid methods for elliptic problems on complex geometries. In: Handlovičová A, Minarechová Z, Ševčovič D (eds) ALGORITMY 2012 - 19th conference on scientific computing, Slovak University of Technology in Bratislava, Publishing House of STU, pp 200–208

  • Březina J, Stebel J, Flanderka D, Exner P, Hybš J (2017) Flow123d version 2.1.0 user guide and input reference. Technical University of Liberec, 156 pp. https://flow123d.github.io/. Accessed 12 Jul 2021

  • Dušek J, Vogel T, Dohnal M, Gerke HH (2012) Combining dual-continuum approach with diffusion wave model to include a preferential flow component in hillslope scale modeling of shallow subsurface runoff. Adv Water Resour 44:113–125. https://doi.org/10.1016/j.advwatres.2012.05.006

    Article  Google Scholar 

  • Eberts SM, Böhlke JK, Kauffman LJ, Jurgens BC (2012) Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination. Hydrogeol J 20:263–282. https://doi.org/10.1007/s10040-011-0810-6

    Article  Google Scholar 

  • Etcheverry D, Perrochet P (2000) Direct simulation of groundwater transit-time distributions using the reservoir theory. Hydrogeol J 8:200–208. https://doi.org/10.1007/s100400050006

    Article  Google Scholar 

  • Farlin J, Gallé T, Bayerle M, Pittois D, Braun C, El Khabbaz H, Elsner M, Maloszewski P (2013) Predicting pesticide attenuation in a fractured aquifer using lumped-parameter models. GroundWater 51:276–285. https://doi.org/10.1111/j.1745-6584.2012.00964.x

    Article  Google Scholar 

  • Gardner WP, Hokr M, Shao H, Balvin A, Kunz H, Wang Y (2016) Investigating the age distribution of fracture discharge using multiple environmental tracers, Bedrichov tunnel, Czech Republic. Environ Earth Sci 75(20):1–16. https://doi.org/10.1007/s12665-016-6160-x

    Article  Google Scholar 

  • Goode DJ (1996) Direct simulation of groundwater age. Water Resour Res 32(2):289–296. https://doi.org/10.1029/95WR03401

    Article  Google Scholar 

  • Hokr M, Balvín A, Škarydová I (2014) Tunnel inflow in granite: fitting the field observations with hybrid model of discrete fractures and continuum. In: Sharp JM (ed) Fractured rock hydrogeology. IAH - Selected Papers on Hydrogeology 20, CRC, Boca Raton, FL, pp 240–256

  • Hokr M, Rukavičková L, Havlová V, Balvín A, Dědeček P, Bárta J (2018) Development and testing of methods for rock characterisation: results of monitoring in Bedřichov tunnel. Rep. SÚRAO 289/2018, SÚRAO, Prague, The Czech Republic, 155 pp

  • Hokr M, Shao H, Gardner WP, Balvín A, Kunz H, Wang Y, Vencl M (2016) Real-case benchmark for flow and tracer transport in the fractured rock. Environ Earth Sci 75(18):1–17. https://doi.org/10.1007/s12665-016-6061-z

    Article  Google Scholar 

  • Holko L (1995) Stable environmental isotopes of 18O and 2H in hydrological research of mountainous catchment. J Hydrol Hydromechan 43(4–5):249–274

    Google Scholar 

  • Hrnčíř M, Šanda M, Kulasová A, Císlerová M (2010) Runoff formation in a small catchment at hillslope and catchment scales. Hydrol Process 24:2248–2256. https://doi.org/10.1002/hyp.7614

    Article  Google Scholar 

  • Jankovec J, Vitvar T, Šanda M, Matsumoto T, Han LF (2017) Groundwater recharge and residence times evaluated by isotopes of hydrogen and oxygen, noble gases and CFCs in a mountain catchment in the Jizera Mts., northern Czech Republic. Geochem J 51:423–437. https://doi.org/10.2343/geochemj.2.0469

    Article  Google Scholar 

  • Klomínský J (2008) Architecture of Krkonoše-Jizera Composite Massif granites and recent activity of their tectonic network in the Bedřichov tunnel in Jizerské Hory Mts. In: Zprávy o geologických výzkumech v roce (in Czech). pp 154–158. http://www.geology.cz/zpravy/. Accessed July 2021

  • Klomínský J, Woller F (2011) Geological studies in the Bedřichov water supply tunnel. RAWRA technical report 02/2010. Czech Geological Survey, Prague, 103 pp

  • Krabbenhoft DP, Anderson MP, Bowser CJ (1990) Estimating groundwater exchange with lakes: 2. calibration of a three-dimensional, solute transport model to a stable isotope plume. Water Resour Res 26(10):2455–2462. https://doi.org/10.1029/WR026i010p02455

    Article  Google Scholar 

  • Mądrala M, Wąsik M, Małoszewski P (2017) Interpretation of environmental tracer data for conceptual understanding of groundwater flow: an application for fractured aquifer systems in the Kłodzko Basin, Sudetes, Poland. Isot Environ Health Stud 53:466–483. https://doi.org/10.1080/10256016.2017.1330268

    Article  Google Scholar 

  • Małoszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers. 1: models and their applicability. J Hydrol 57(3–4):207–231. https://doi.org/10.1016/0022-1694(82)90147-0

    Article  Google Scholar 

  • Maloszewski P, Zuber A (1996) Manual on mathematical models in isotope hydrology. Technical report TECDOC–910, International Atomic Energy Agency, Vienna

  • Maloszewski P, Stichler W, Zuber A, Rank D (2002) Identifying the flow systems in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modelling of environmental 18O and 3H isotopes. J Hydrol 256:48–59. https://doi.org/10.1016/S0022-1694(01)00526-1

    Article  Google Scholar 

  • Marçais J, de Dreuzy JR, Ginn TR, Rousseau-Gueutin P, Leray S (2015) Inferring transit time distributions from atmospheric tracer data: assessment of the predictive capacities of lumped parameter models on a 3D crystalline aquifer model. J Hydrol 525:619–631. https://doi.org/10.1016/j.jhydrol.2015.03.055

    Article  Google Scholar 

  • Markovich KH, Manning AH, Condon LE, McIntosh JC (2019) Mountain-block recharge: a review of current understanding. Water Resour Res 55:8278–8304. https://doi.org/10.1029/2019WR025676

    Article  Google Scholar 

  • Maryška J, Severýn O, Tauchman M, Tondr D (2008) Modelling of processes in fractured rock using FEM/FVM on multidimensional domains. J Comput Appl Math 215:495–502. https://doi.org/10.1016/j.cam.2006.04.074

    Article  Google Scholar 

  • McGuire KJ, McDonnell JJ (2006) A review and evaluation of catchment transit time modeling. J Hydrol 330(3–4):543–563. https://doi.org/10.1016/j.jhydrol.2006.04.020

    Article  Google Scholar 

  • McGuire KJ, DeWalle DR, Gburek WJ (2002) Evaluation of mean residence time in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians. J Hydrol 261:132–149. https://doi.org/10.1016/S0022-1694(02)00006-9

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I: a discussion of principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Penna D, Stenni B, Šanda M, Wrede S, Bogaard TA, Michelini M, Fischer BMC, Gobbi A, Mantese N, Zuecco G, Borga M, Bonazza M, Sobotková M, Čejková B, Wassenaar LI (2012) Hydrology and earth system sciences technical note: evaluation of between-sample memory effects in the analysis of δ2H and δ18O of water samples measured by laser spectroscopes. Hydrol Earth Syst Sci 16(10):3925–3933. https://doi.org/10.5194/hess-16-3925-2012

    Article  Google Scholar 

  • Poeter EP, Hill MC (1999) UCODE, a computer code for universal inverse modeling. Comput Geosci 25:457–462. https://doi.org/10.1016/S0098-3004(98)00149-6

    Article  Google Scholar 

  • Rálek P, Hokr M (2013) Methods of water inflow measurement in the Bedřichov tunnel. EGRSE, Czech Assoc. Geophysicists 2013(2):30–39. https://www.caag.cz/egrse/2013-2/03_hokr.pdf. Accessed July 2021

    Google Scholar 

  • Šanda M (2013) Assessment of recharge dynamics in sedimentary and fractured granitic structures of catchments in the northern Czech Republic using the tritium-Helium-3 dating technique. Progress report for the research contract-16335, IAEA, Vienna, 56 pp

  • Šanda M, Císlerová M (2009) Transforming hydrographs in the hillslope subsurface. J Hydrol Hydromech 57(4):264–275. https://doi.org/10.2478/v10098-009-0023-z

    Article  Google Scholar 

  • Šanda M, Vitvar T, Kulasová A, Jankovec J, Císlerová M (2014) Run-off formation in a humid, temperate headwater catchment using a combined hydrological, hydrochemical and isotopic approach (Jizera Mountains, Czech Republic). Hydrol Process 28(8):3217–3229. https://doi.org/10.1002/hyp.9847

    Article  Google Scholar 

  • Šanda M, Sedlmaierová P, Vitvar T, Seidler C, Kändler M, Jankovec J, Kulasová A, Paška F (2017) Pre-event water contributions and streamwater residence times in different land use settings of the transboundary mesoscale Lužická Nisa catchment. J Hydrol Hydromech 65(2):154–164. https://doi.org/10.1515/johh-2017-0003

    Article  Google Scholar 

  • Sanford WE, Plummer LN, Casile G, Busenberg E, Nelms DL, Schlosser P (2017) Using dual-domain advective-transport simulation to reconcile multiple-tracer ages and estimate dual-porosity transport parameters. Water Resour Res 53(6):5002–5016. https://doi.org/10.1002/2016WR019469

    Article  Google Scholar 

  • Schilling OS, Cook PG, Brunner P (2019) Beyond classical observations in hydrogeology: the advantages of including exchange flux, temperature, tracer concentration, residence time, and soil moisture observations in groundwater model calibration. Rev Geophys 57(1):146–182. https://doi.org/10.1029/2018RG000619

    Article  Google Scholar 

  • Soulsby C, Malcolm R, Helliwell R, Ferrier RC, Jenkins A (2000) Isotope hydrology of the Allt a’ Mharcaidh catchment, Cairngorms, Scotland: implications for hydrological pathways and residence times. Hydrol Process 14(4):747–762. https://doi.org/10.1002/(SICI)1099-1085(200003)14:4<747::AID-HYP970>3.0.CO;2-0

    Article  Google Scholar 

  • Suckow A (2014) The age of groundwater-definitions, models and why we do not need this term northern Australia water resource assessment view project the age of groundwater-definitions, models and why we do not need this term. Appl Geochem 50:222–230. https://doi.org/10.1016/j.apgeochem.2014.04.016

    Article  Google Scholar 

  • Turnadge C, Smerdon BD (2014) A review of methods for modelling environmental tracers in groundwater: advantages of tracer concentration simulation. J Hydrol 519:3674–3689. https://doi.org/10.1016/j.jhydrol.2014.10.056

    Article  Google Scholar 

  • Turner JV, Townley LR (2006) Determination of groundwater flow-through regimes of shallow lakes and wetlands from numerical analysis of stable isotope and chloride tracer distribution patterns. J Hydrol 320:451–483. https://doi.org/10.1016/j.jhydrol.2005.07.050

    Article  Google Scholar 

  • Vincenzi V, Gargini A, Goldscheider N (2009) Using tracer tests and hydrological observations to evaluate effects of tunnel drainage on groundwater and surface waters in the northern Apennines (Italy). Hydrogeol J 17:135–150. https://doi.org/10.1007/s10040-008-0371-5

    Article  Google Scholar 

  • Vincenzi V, Gargini A, Goldscheider N, Piccinini L (2014) Differential hydrogeological effects of draining tunnels through the northern Apennines, Italy. Rock Mech Rock Eng 47:947–965. https://doi.org/10.1007/s00603-013-0378-7

    Article  Google Scholar 

  • Vitvar T, Balderer W (1997) Estimation of mean water residence times and runoff generation by 18O measurements in a pre-Alpine catchment (Rietholzbach, eastern Switzerland). Appl Geochem 12:787–796. https://doi.org/10.1016/S0883-2927(97)00045-0

    Article  Google Scholar 

  • Viville D, Ladouche B, Bariac T (2006) Isotope hydrological study of mean transit time in the granitic Strengbach catchment (Vosges Massif, France): application for the FlowPC model with modified input function. Hydrol Process 20(8):1737–1751. https://doi.org/10.1002/hyp.5950

    Article  Google Scholar 

  • Votrubová J, Dohnal M, Vogel T, Šanda M, Tesař M (2017) Episodic runoff generation at central European headwater catchments studied using water isotope concentration signals. J Hydrol Hydromech 65(2):114–122. https://doi.org/10.1515/johh-2017-0002

    Article  Google Scholar 

  • Žák J, Verner K, Klomínský J, Chlupáčová M (2009) “Granite tectonics” revisited: insights from comparison of K-feldspar shape-fabric, anisotropy of magnetic susceptibility (AMS), and brittle fractures in the Jizera granite, Bohemian M. Int J Earth Sci 98:949–967. https://doi.org/10.1007/s00531-007-0292-x

    Article  Google Scholar 

  • Zuber A (1986) Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. In: PFJ-C F (ed) Handbook of environmental isotope geochemistry, vol 2. Elsevier, Amsterdam, pp 1–59

  • Zuber A, Różański K, Kania J, Purtschert R (2011) On some methodological problems in the use of environmental tracers to estimate hydrogeologic parameters and to calibrate flow and transport models. Hydrogeol J 19(1):53–69. https://doi.org/10.1007/s10040-010-0655-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the water management company SČVK, a.s. for allowing access to the tunnel.

Funding

This work was co-funded by the Radioactive Waste Repository Authority (as a partial result of project “Research support for Safety Evaluation of Deep Geological Repository”), the International Atomic Energy Agency within Research Contract CZ16335, and the Ministry of Education, Youth and Sports, and EU within the project RINGEN+, CZ.02.1.01/0.0/0.0/16_013/0001792.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Balvín.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Progress in fractured-rock hydrogeology”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balvín, A., Hokr, M., Šteklová, K. et al. Inverse modeling of natural tracer transport in a granite massif with lumped-parameter and physically based models: case study of a tunnel in Czechia. Hydrogeol J 29, 2633–2654 (2021). https://doi.org/10.1007/s10040-021-02389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02389-x

Keywords

Navigation