Skip to main content

DInSAR-based monitoring of land subsidence related to groundwater over-exploitation: example from developing urban center of Nairobi, Kenya

Suivi par DInSAR de la subsidence du sol liée à la surexploitation des eaux souterraines : exemple du centre urbain en expansion de Nairobi, Kenya

Monitoreo basado en DInSAR de la subsidencia del terreno relacionada con la sobreexplotación de las aguas subterráneas: ejemplo del centro urbano en desarrollo de Nairobi, Kenia

基于 DInSAR 的与地下水过量开采相关的地面沉降监测:以肯尼亚内罗毕正发展的城市为例

Monitoramento baseado no DInSAR da subsidência de terreno relacionada com a superexploração das águas subterrâneas: exemplo do centro urbano em desenvolvimento de Nairóbi, Quênia

Abstract

Over-exploitation of groundwater in many evolving urban settings causes ground subsidence and permanent loss of aquifer storage capacity. DInSAR (differential interferometric synthetic aperture radar) time series data from 2016 to 2019 were used to monitor and model the surface deformation around Nairobi, Kenya, where the water demand has exceeded the supply without capacity augmentation for over two decades. The aquifer system constitutes hard rock to semiconfined ash beds in volcanic terrain. The Small Baseline DInSAR technique identified the spatial pattern of subsidence and magnitude (line-of-sight (LOS) velocity), which exceeds 41 mm/year in the semiconfined aquifer towards the western-central part of Nairobi. The spatial distribution of subsidence is consistent with the groundwater level drop and probable compaction modeled using aquifer characteristics for 1950–2015. The Global Navigation Satellite System (GNSS) data at a station from 2007 to 2018 indicate a cumulative 4-cm subsidence which is comparable to ~2.5-cm LOS subsidence from the present study for 2016–2019. The correlation with other hydrological data suggests the aquifer is experiencing inelastic subsidence due to unsustainable groundwater extraction, putting a massive strain on Nairobi’s aquifer system. The present DInSAR based study establishes its effectiveness in the monitoring of groundwater over-exploitation-based subsidence and associated hazard to the aquifer in emerging urban centers.

Résumé

La surexploitation des eaux souterraines dans denombreux contextes urbains en expansion cause la subsidence du sol et la perte définitivede la capacité d’emmagasinement de l’aquifère. Une série temporelle DInSAR (radarà synthèse d'ouverture interférométrique différentielle) de 2016 à 2019 a été exploitéepour le suivi et la modélisation de la déformation du sol autour de Nairobi,Kenya, où la demande en eau excède la disponibilité sans capacitéd’augmentation pour plus de deux décennies. Le système aquifère est constituéde roches dures et de niveaux de cendres semi-captifs en terrain volcanique. Latechnique «Small Baseline DInSAR» a permis d’identifier ladistribution spatiale de la subsidence et sa magnitude (vitesse«line-of-sight» - LOS), qui dépasse 41 mm/an pour l’aquifèresemi-captif dans le secteur centre-ouest de la ville de Nairobi. Ladistribution spatiale de la subsidence est cohérente avec la baisse du niveaude nappe et la compaction probable modélisée en utilisant les caractéristiquesde l’aquifère pour la période 1950-2015. Les données du système mondial denavigation par satellites (GNSS) à une station de 2007 à 2018 indiquent unesubsidence cumulée de 4 cm, comparable à la subsidence LOS de ~2.5 cm issue dela présente étude pour la période 2016-2019. La corrélation avec d’autresdonnées hydrologiques suggère que l’aquifère expérimente une subsidence inélastiquedue à l’extraction non durable de l’eau souterraine, exerçant une contraintemassive sur le système aquifère de Nairobi. La présente étude montrel’efficacité des données DInSAR pour le suivi de la subsidence causée par lasurexploitation de l’eau souterraine et l’aléa résultant pour l’aquifère dansles contextes de centres urbains émergents.

Resumen

Lasobreexplotación de las aguas subterráneas en muchos ámbitos urbanos enevolución provoca el hundimiento del suelo y la pérdida permanente de lacapacidad de almacenamiento de los acuíferos. Se utilizaron datos de seriestemporales DInSAR (radar de apertura sintética interferométrica diferencial) de2016 a 2019 para supervisar y modelar la deformación de la superficie alrededorde Nairobi, Kenia, donde la demanda de agua ha superado el suministro sinaumento de la capacidad durante más de dos décadas. El sistema acuífero estáconstituido por lechos de roca dura hasta ceniza semiconfinada en terrenovolcánico. La técnica Small Baseline DInSAR identificó el patrón espacial desubsidencia y la magnitud (velocidad de la línea de visión (LOS)), que superalos 41 mm/año en el acuífero semiconfinado hacia la parte centro-occidental dela ciudad de Nairobi. La distribución espacial de la subsidencia es coherentecon el descenso del nivel de las aguas subterráneas y la probable compactaciónmodelada utilizando las características del acuífero para 1950-2015. Los datosdel Sistema Global de Navegación por Satélite (GNSS) en una estación de 2007 a2018 indican una subsidencia acumulada de 4 cm que es comparable a lasubsidencia de ~2.5 cm de LOS del presente estudio para 2016 a 2019. Lacorrelación con otros datos hidrológicos sugiere que el acuífero estáexperimentando un hundimiento inelástico debido a la extracción insostenible deagua subterránea, lo que supone una enorme presión sobre el sistema acuífero deNairobi. El presente estudio basado en DInSAR establece su eficacia en elseguimiento de la subsidencia basada en la sobreexplotación de las aguassubterráneas y el peligro asociado al acuífero en los centros urbanosemergentes.

摘要

在许多不断发展的城市, 过度开采地下水会导致地面沉降和含水层储量的持续减少。肯尼亚内罗毕水资源需求已超过供应量, 在愈20年没有储量增加, 因此使用 2016 年至 2019 年的 DInSAR(差分干涉合成孔径雷达)时间序列数据对其周边地表变形进行了监测和建模。火山区中含水层系统由硬质岩至半承压灰层构成。小基线 DInSAR 技术确定了沉降和震级(视线 (LOS) 速度)的空间分布, 在朝向内罗毕市中西部的半承压含水层中, 沉降速度超过 41 mm/yr。沉降的空间分布与使用1950-2015 年含水层特征模拟的地下水位下降和可能的压密一致。2007 年至 2018 年在一个站点的全球导航卫星系统(GNSS)数据表明累积 4 cm的沉降与本研究 2016 年至 2019 年的约 2.5 cm LOS 沉降相当。与其他水文数据的相关性表明由于不可持续的地下水开采, 含水层正在经历非弹性下降, 给内罗毕的含水层系统带来巨大压力。目前基于 DInSAR 的研究确立了其在监测地下水过量开采引起的沉降和新兴城市中心含水层相关危害方面的有效性。

Resumo

A superexploraçãodas águas subterrâneas em muitos cenários urbanos em evolução provoca asubsidência do terreno e a perda permanente da capacidade de armazenamento dosaquíferos. Os dados da série temporal do DInSAR (Interferometria Diferencialpor Radar de Abertura Sintética) de 2016 a 2019 foram utilizados para monitorare modelar a deformação da superfície em torno de Nairóbi, Quênia, onde aprocura de água excedeu a oferta sem aumento de capacidade durante mais de duasdécadas. O sistema aquífero constitui leitos de rocha dura a cinzassemiconfinadas em terreno vulcânico. A técnica DInSAR Small Baseline identificouo padrão espacial de subsidência e magnitude (velocidade da linha de visão (LDV)),que excede 41 mm/ano no aquífero semiconfinado em direção à parteocidental-central da cidade de Nairóbi. A distribuição espacial da subsidênciaé consistente com a queda do nível das águas subterrâneas e a provávelcompactação modelada utilizando as características do aquífero para 1950-2015.Os dados do Sistema Global de Navegação por Satélite (GNSS) numa estação de2007 a 2018 indicam uma subsidência acumulada de 4 cm que é comparável a ~2.5cm de subsidência na LDV do presente estudo para 2016 a 2019. A correlação comoutros dados hidrológicos sugere que o aquífero está apresentando umasubsidência inelástica devido à extração insustentável das águas subterrâneas,colocando uma enorme tensão no sistema aquífero de Nairóbi. O presente estudobaseado em DInSAR estabelece a sua eficácia no monitoramento da subsidênciabaseada na superexploração das águas subterrâneas e dos riscos associados aoaquífero nos centros urbanos emergentes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bateson L, Cigna F, Boon D, Sowter A (2015) The application of the intermittent SBAS (ISBAS) InSAR method to the South Wales coalfield, UK. Int J Appl Earth Obs Geoinf 34:249–257

    Article  Google Scholar 

  2. Bekaert DPS, Walters RJ, Wright TJ, Hooper AJ, Parker DJ (2015) Statistical comparison of InSAR tropospheric correction techniques. Remote Sens Environ 2015(170):40–47

    Article  Google Scholar 

  3. Blewitt G, Kreemer C, Hammond WC, Gazeaux J (2016) MIDAS robust trend estimator for accurate GPS station velocities without step detection. J Geophys Res 121:2054–2068. https://doi.org/10.1002/2015JB012552

    Article  Google Scholar 

  4. Blewitt G, Hammond WC, Kreemer C (2018) Harnessing the GPS data explosion for interdisciplinary science. Eos 99. https://doi.org/10.1029/2018EO104623

  5. Bonì R, Meisina C, Cigna F, Herrera G, Notti D, Bricker S, McCormack H, Tomás R, Béjar-Pizarro M, Mulas J, Ezquerro P (2017) Exploitation of satellite A-DInSAR time series for detection, characterization and modelling of land subsidence. Geosciences 7(2):25

    Article  Google Scholar 

  6. Caló F, Notti D, Galve JP, Abdikan S, Görüm T, Pepe A, Balik Şanli F (2017) Dinsar-based detection of land subsidence and correlation with groundwater depletion in Konya plain, Turkey. Remote Sens 9(1):83

    Article  Google Scholar 

  7. Castellazzi P, Arroyo-Domínguez N, Martel R, Calderhead AI, Normand JCL, Gárfias J, Rivera A (2016) Land subsidence in major cities of Central Mexico: interpreting InSAR-derived land subsidence mapping with hydrogeological data. Int J Appl Earth Obs Geoinf 2016(47):102–111

    Article  Google Scholar 

  8. Chaussard E, Wdowinski S, Cabral-Cano E, Amelung F (2014) Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens Environ 2014(140):94–106

    Article  Google Scholar 

  9. Coetsiers M, Kilonzo F, Walraevens K (2008) Hydrochemistry and source of high fluoride in groundwater of the Nairobi area, Kenya/Hydrochimie et origine des fortes concentrations en fluorure dans l’eau souterraine de la région de Nairobi, au Kenya. Hydrol Sci J 53(6):1230–1240

    Article  Google Scholar 

  10. COMET-LiCS (2020) COMET-LiCS Sentinel-1 InSAR portal. https://comet.nerc.ac.uk/COMET-LiCS-portal/. Accessed Dec 2020

  11. DESA UN (2018) 68% of the world population projected to live in urban areas by 2050, says UN. United Nations Department of Economic and Social Affairs, New York. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html. Accessed Jul 2021

  12. Doin MP, Guillaso S, Jolivet R, Lasserre C, Lodge F, Ducret G, Grandin R (2011) Presentation of the small baseline NSBAS processing chain on a case example: the Etna deformation monitoring from 2003 to 2010 using Envisat data. In: Proceedings of the Fringe Symposium. ESA SP-697, Frascati, Italy, pp 3434–3437

  13. Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New York

  14. Dong S, Samsonov S, Yin H, Ye S, Cao Y (2014) Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environ Earth Sci 72(3):677–691

    Article  Google Scholar 

  15. Foster S, Tuinhof A (2005) The role of groundwater in the water supply of greater Nairobi, Kenya. World Bank Case Profile Collection 13, World Bank, Washington, DC

  16. Fuhrmann T, Garthwaite MC (2019) Resolving three-dimensional surface motion with InSAR: constraints from multi-geometry data fusion. Remote Sens 11(3):241

    Article  Google Scholar 

  17. Galloway DL, Hudnut KW, Ingebritsen SE, Phillips SP, Peltzer G, Rogez F, Rosen PA (1998) Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour Res 34(10):2573–2585

    Article  Google Scholar 

  18. Galloway DL, Erkens G, Kuniansky EL, Rowland JC (2016) Preface: land subsidence processes. Hydrogeol J 24(3):547–550

    Article  Google Scholar 

  19. Gevaerts EAL (1964) Hydrogeology of the Nairobi area. Government of Kenya, Water Development Department, Nairobi

  20. GitHub (2020) LiCSBAS. https://github.com/yumorishita/LiCSBAS. Accessed Dec 2020

  21. Gregory JW (1921) The rift valleys and geology of East Africa: an account of the origin & history of the rift valleys of East Africa & their relation to the contemporary earth-movements which transformed the geography of the world. With some account of the prehistoric stone implements, soils, water supply, & mineral resources of the Kenya Colony. Seeley, Service, London

  22. Harini P, Sahadevan DK, Das IC, Manikyamba C, Durgaprasad M, Nandan MJ (2018) Regional groundwater assessment of Krishna River basin using integrated GIS approach. J Indian Soc Remote Sens 46(9):1365–1377

    Article  Google Scholar 

  23. Infante D, Di Martire D, Confuorto P, Tessitore S, Tòmas R, Calcaterra D, Ramondini M (2019) Assessment of building behavior in slow-moving landslide-affected areas through DInSAR data and structural analysis. Eng Struct 199:109638

    Article  Google Scholar 

  24. Ishitsuka K, Fukushima Y, Tsuji T, Yamada Y, Matsuoka T, Giao PH (2014) Natural surface rebound of the Bangkok plain and aquifer characterization by persistent scatterer interferometry. Geochem Geophys Geosyst 15(4):965–974

    Article  Google Scholar 

  25. Jackson JA (2005) Glossary of geology, 5th edn. Springer, Berlin

  26. Karner SL, Chester FM, Kronenberg AK, Chester JS (2003) Subcritical compaction and yielding of granular quartz sand. Tectonophysics 377(3–4):357–381

  27. Kenya Open Data (2020) https://www.opendata.go.ke/. Accessed Dec 2020

  28. Kuang J, Ge L, Metternicht GI, Ng AHM, Wang H, Zare M, Kamranzad F (2019) Coseismic deformation and source model of the 12 November 2017 MW 7.3 Kermanshah earthquake (Iran–Iraq border) investigated through DInSAR measurements. Int J Remote Sens 40(2):532–554

    Article  Google Scholar 

  29. Lanari R, Casu F, Manzo M, Zeni G, Berardino P, Manunta M, Pepe A (2007) An overview of the small baseline subset algorithm: a DInSAR technique for surface deformation analysis. In: Deformation and gravity change: indicators of isostasy, tectonics, volcanism, and climate change. Springer, Heidelberg, Germany, pp 637–661

  30. Lavecchia G, Castaldo R, De Nardis R, De Novellis V, Ferrarini F, Pepe S, Brozzetti F, Solaro G, Cirillo D, Bonano M, Boncio P (2016) Ground deformation and source geometry of the 24 august 2016 Amatrice earthquake (central Italy) investigated through analytical and numerical modeling of DInSAR measurements and structural-geological data. Geophys Res Lett 43(24):12–389

    Article  Google Scholar 

  31. Ledant M (2013) Water in Nairobi: unveiling inequalities and its causes. Les cahiers d’Outre-Mer. Rev géogr Bordeaux 66(263):335–348

    Google Scholar 

  32. Liu Z, Liu PW, Massoud E, Farr TG, Lundgren P, Famiglietti JS (2019) Monitoring groundwater change in California’s Central Valley using Sentinel-1 and GRACE observations. Geosciences 9(10):436

    Article  Google Scholar 

  33. Mathu EM, Onyancha C, Mwea S, Ngecu W (2014) Effects of drilling deep tube wells in the urban areas of Nairobi city, Kenya. J Earth Sci 3(1). https://profiles.uonbi.ac.ke/wngecu/publications/effects-drilling-deep-tube-wells-urban-areas-nairobi-city-kenya. Accessed Jul 2021

  34. Morishita Y, Lazecky M, Wright TJ, Weiss JR, Elliott JR, Hooper A (2020) LiCSBAS: an open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor. Remote Sens 12(3):424

    Article  Google Scholar 

  35. Motagh M, Djamour Y, Walter TR, Wetzel HU, Zschau J, Arabi S (2007) Land subsidence in Mashhad Valley, Northeast Iran: results from InSAR, levelling and GPS. Geophys J Int 168(2):518–526

    Article  Google Scholar 

  36. Nicodemo G, Peduto D, Ferlisi S, Gullà G, Reale D, Fornaro G (2018) Dinsar data integration in vulnerability analyses of buildings exposed to slow-moving landslides. In: IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, New York, pp 6107–6110

  37. Oiro S, Comte JC, Soulsby C, MacDonald A, Mwakamba C (2020) Depletion of groundwater resources under rapid urbanization in Africa: recent and future trends in the Nairobi aquifer system, Kenya. Hydrogeol J 28(8):2635–2656

    Article  Google Scholar 

  38. Ongoma V, Otieno SA, Onyango AO (2015) Investigation of the possible influence of urbanization on rainfall variability over Nairobi City, Kenya. Momona Ethiop J Sci 7(2):222–239

    Article  Google Scholar 

  39. Onyancha C, Mathu E, Mwea S, Ngecu W (2011) A study on the engineering behaviour of Nairobi subsoil. ARPN J Eng Appl Sci 6(7)

  40. Oyugi MO (2018) Modelling the Effects of Urban Morphology on Environmental Quality of Nairobi City, Kenya. PhD Thesis, School of Environmental Studies, University of Eldoret, Kenya

  41. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644

    Article  Google Scholar 

  42. Saggerson EP (1991) Geology of the Nairobi area. Rep. no. 98, Geological Survey Kenya, Nairobi

  43. Sahadevan DK, Pandey AK, Malik K, Maisnam D (2019) Chasm at east African Suswa rift: possible explanations. J Indian Soc Remote Sens 47(10):1773–1780

    Article  Google Scholar 

  44. Shi X, Jiang S, Xu H, Jiang F, He Z, Wu J (2016) The effects of artificial recharge of groundwater on controlling land subsidence and its influence on groundwater quality and aquifer energy storage in Shanghai, China. Environ Earth Sci 75(3):195

    Article  Google Scholar 

  45. Short N, LeBlanc AM, Sladen W, Oldenborger G, Mathon-Dufour V, Brisco B (2014) RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit airport, Baffin Island, Canada. Remote Sens Environ 141:40–51

    Article  Google Scholar 

  46. SMEC (2020) Northern Collector Tunnel. https://www.smec.com/what-we-do/projects/Northern-Collector-Tunnel. Accessed Dec 2020

  47. Sonel (2020) Nairobi. https://www.sonel.org/spip.php?page=gps&idStation=4216. Accessed Dec 2020

  48. STAR (2020) https://www.the-star.co.ke/counties/nairobi/2019-01-17-no-more-boreholes-to-be-drilled-water-table-dropping-warns-cs/. Accessed Dec 2020

  49. Sun H, Zhang Q, Zhao C, Yang C, Sun Q, Chen W (2017) Monitoring land subsidence in the southern part of the lower Liaohe plain, China with a multi-track PS-InSAR technique. Remote Sens Environ 188:73–84

    Article  Google Scholar 

  50. Surinaidu L, Sahadevan DK, Amarasinghe U, Nandan MJ (2017) Identification of potential locations for groundwater pumping and recharge to minimize the impact of floods and droughts in the Ganges basin. Eur Water 57:329–335

    Google Scholar 

  51. Tu YC, Ting CS, Tsai HT, Chen JW, Lee CH (2011) Dynamic analysis of the infiltration rate of artificial recharge of groundwater: a case study of Wanglong Lake, Pingtung, Taiwan. Environ Earth Sci 63(1):77–85

  52. Water Resources Management Authority (WRMA) (2010) Preliminary Water Allocation Plan of the Nairobi Aquifer Suite, and long-term water resources management strategy. Prepared by Norken (I) for WRMA, Nairobi

  53. Wu JC, Shi XQ, Ye SJ, Xue YQ, Zhang Y, Yu J (2009) Numerical simulation of land subsidence induced by groundwater overexploitation in Su-xi-Chang area, China. Environ Geol 57(6):1409–1421

    Article  Google Scholar 

  54. Yastika PE, Shimizu N, Abidin HZ (2019) Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and sentinel-1A S.a.R. data. Adv Space Res 63(5):1719–1736

    Article  Google Scholar 

  55. Zhou L, Guo J, Hu J, Li J, Xu Y, Pan Y, Shi M (2017) Wuhan surface subsidence analysis in 2015–2016 based on Sentinel-1a data by SBAS-inSAR. Remote Sens 9(10):982

    Article  Google Scholar 

Download references

Acknowledgements

The Sentinel data of the study region were downloaded from ESA-Copernicus and we sincerely thank Morishita for sharing the Python code for SBAS analysis. The constructive comments and suggestion by learned reviewers, Tom G. Farr (JPL) and an anonymous reviewer brought clarity to the revised manuscript. This work corresponds to the publication number of NGRI/Lib/2020/Pub-206 of CSIR-NGRI.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Sahadevan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahadevan, D.K., Pandey, A.K. DInSAR-based monitoring of land subsidence related to groundwater over-exploitation: example from developing urban center of Nairobi, Kenya. Hydrogeol J 29, 2461–2473 (2021). https://doi.org/10.1007/s10040-021-02384-2

Download citation

Keywords

  • DInSAR
  • Subsidence
  • Groundwater over-exploitation
  • Groundwater management
  • Kenya