Skip to main content

Advertisement

Log in

Numerical modelling of the saline interface in coastal karstic aquifers within a conceptual model uncertainty framework

Modélisation numérique de l’interface saline dans des aquifères karstiques côtiers dans un contexte d’incertitude du modèle conceptuel

Modelación numérica de la interfaz salina en acuíferos kársticos costeros dentro de un marco de incertidumbre del modelo conceptual

基于概念模型不确定性框架的滨海岩溶含水层咸淡水界面数值模拟

Modelagem numérica da interface salina em aquíferos cársticos costeiros dentro de uma estrutura de incerteza do modelo conceitual

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Numerical modelling is increasingly used as a tool for improving management strategies in aquifers and to support the design of comprehensive projects considering natural and anthropogenic processes. Overall, numerical simulation in karstic aquifers poses a major scientific challenge due to the non-Darcian groundwater flow dynamics. In specific cases, the equivalent porous medium approach has shown acceptable results, particularly in poorly karstified aquifers with regional/subregional scales such as this case. The Yucatan coastal karstic aquifer (Mexico) has been defined as a complex regional heterogeneous system, partially confined, thus allowing the discussion of multiple conceptual models. In this research, a two-dimensional numerical model of flow and transport was implemented using SEAWAT for the NW Yucatan aquifer. Four likely conceptual models were audited, calibrated and verified using hydrogeological field data, to select the best one, considering their fit and complexity. The numerical model accuracy was evaluated using the root-mean-square error, Nash Sutcliffe efficiency and the Pearson coefficient. The Akaike information criterion and Bayesian information criterion were included for evaluating the complexity of the numerical models. In addition, the signal of tide propagation into the aquifer was assessed as a proxy to improve the numerical calibration process. Results show that the most complex numerical model has a better calibration than the simpler models, but the model accuracy is worse when compared to less complex numerical models in the verification exercise. This research offers enhancement in the knowledge of numerical modelling in heterogeneous coastal aquifers within a conceptual-model uncertainty setting.

Résumé

La modélisation numérique est de plus en plus utilisée comme un outil d’amélioration des stratégies de gestion des aquifères et d’appui à la conception de projets d’ensemble prenant en compte les processus naturels et anthropiques. En général, la simulation numérique des aquifères karstiques pose un défi scientifique majeur en raison d’une dynamique d’écoulement souterrain de type non-Darcy. Dans des cas spécifiques, l’approche par un milieu poreux équivalent a donné des résultats acceptables, particulièrement dans des aquifères peu karstifiés aux échelles régionales ou subrégionales, comme dans le cas présent. L’aquifère karstique côtier du Yucatan (Mexique) a été défini comme un système régional hétérogène complexe, en partie captif, permettant ainsi la discussion de nombreux modèles conceptuels. Dans la présente étude, un modèle numérique bi-dimensionnel d’écoulement et de transport a été réalisé sur l’aquifère NW du Yucatan en utilisant SEAWAT. Quatre modèles conceptuels comparables ont été audités, calés et vérifiés à l’aide des données hydrogéologiques de terrain, dans le but de sélectionner le meilleur, au vu de leur adéquation et de leur complexité. L’exactitude du modèle numérique a été évaluée en utilisant l’erreur quadratique moyenne, l’efficacité de Nash Sutcliffe et le coefficient de Pearson. Le critère d’information d’Akaike et le critère d’information de Bayesian ont été intégrés pour évaluer la complexité des modèles numériques. De plus, le signal de propagation de la marée dans l’aquifère a été évalué en tant que proxy pour améliorer le processus de calibration numérique. Les résultats montrent que le modèle numérique le plus complexe présente une meilleure calibration que les modèles plus simples, mais dans l’exercice de vérification l’exactitude du modèle est moins bonne que celle des modèles numériques moins complexes. Cette étude offre une amélioration de la compréhension du modèle numérique des aquifères côtiers hétérogènes dans un contexte d’incertitude du modèle conceptuel.

Resumen

La modelación numérica es una herramienta cada vez más utilizada para implementar estrategias de manejo de acuíferos y como soporte para el diseño de proyectos de ingeniería considerando los procesos naturales y antropogénicos. En general, la modelación numérica en acuíferos cársticos representa un desafío debido a que el flujo subterráneo puede ser no Darciano. En situaciones específicas—y como en este caso—el enfoque conocido como medio poroso equivalente ha mostrado resultados aceptables, particularmente en acuíferos poco carstificados con escalas regionales/subregionales. El acuífero costero cárstico de Yucatán (México) ha sido definido como un sistema regional complejo, heterogéneo y parcialmente confinado, lo que permite discutir múltiples modelos conceptuales. En esta investigación se implementó un modelo numérico de flujo y transporte bidimensional utilizando SEAWAT para el acuífero al NW de Yucatán. Se auditaron, calibraron y verificaron cuatro posibles modelos conceptuales utilizando datos hidrogeológicos de campo, para seleccionar el mejor de ellos, considerando su ajuste y su complejidad. La precisión del modelo numérico se evaluó utilizando la raíz media del error cuadrático, la eficiencia de Nash-Sutcliffe y el coeficiente de correlación de Pearson. Se incluyeron los criterios de información de Akaike y Bayesiano para evaluar la complejidad de cada modelo numérico. Adicionalmente, se incluyó la señal de la propagación de la marea en el acuífero como una mejoría en el proceso de calibración. Los resultados muestran que el modelo numérico más complejo tiene una calibración mejor en comparación con los modelos más simples, pero su precisión es menor a la de los modelos menos complejos durante el proceso de verificación. Esta investigación ofrece una mejoría en el conocimiento de la modelación numérica en acuíferos costeros heterogéneos con incertidumbres en la configuración del modelo conceptual.

摘要

数值模拟越来越多地被用作改进含水层管理战略的工具, 并支持考虑自然和人为过程的综合项目的设计。总体而言, 由于地下水流的非达西动力学特征, 岩溶含水层的数值模拟是一个重大的科学挑战。在特定情况下, 等效多孔介质方法可以获得较为理想的结果, 特别是在区域/次区域尺度岩溶发育较差的含水层中, 例如本案例。尤卡坦滨海岩溶含水层(墨西哥)被定义为一个复杂的区域非均质系统, 局部承压, 因此可以讨论多个概念模型。本研究以尤卡坦西北部含水层为研究对象, 利用SEAWAT建立二维水流传输数值模型。利用水文地质场地数据, 对四种可能的概念模型进行了拟合、校准和验证, 结合其适用性和复杂性选择最佳的概念模型。利用均方根误差、Nash-Sutcliffe效率和Pearson系数对数值模型的精度进行评估。采用Akaike信息准则和Bayesian信息准则对数值模型的复杂性进行评估。此外, 潮汐传播到含水层的信号被作为一个替代指标, 以改进数值校准过程。结果表明, 最复杂的数值模型比简单的模型有更好的校正效果, 但在验证过程中其模型精度要低于相对简单的数值模型。这项研究通过设置概念模型不确定性提高了对非均质滨海含水层数值模拟的认识。

Resumo

A modelagem numérica está sendo usada cada vez mais como uma ferramenta para melhorar estratégias de gestão em aquíferos e como suporte a concepção de projetos considerando processos naturais e antropogênicos. No geral, simulações numéricas em aquíferos cársticos representa um grande desafio científico devido à dinâmica não Darciana do fluxo subterrâneo. Em certos casos, a abordagem da equivalência de meios porosos tem mostrado resultados aceitáveis, particularmente em aquíferos pobremente carstificados com escalas regionais/sub-regionais, como este caso. O aquífero cárstico da costa de Yucatan (México) tem sido definido como um complexo sistema regional heterogêneo, parcialmente confinado, permitindo, portanto, a discussão de múltiplos modelos conceituais. Nesta pesquisa, um modelo numérico bidimensional de fluxo e transporte foi implementado usando SEAWAT para o aquífero no nordeste de Yucatan. Quatro prováveis modelos conceituais foram auditados, calibrados e verificados usando dados hidrogeológicos de campo, para selecionar o melhor, considerando seu ajuste e complexidade. A acurácia do modelo numérico foi avaliada usando a raiz do erro médio quadrático médio, eficiência de Nash Sutcliffe e coeficiente de Pearson. O critério de informação Akaike e o critério de informação Bayesiano foram incluídos para avaliação da complexidade dos modelos numéricos. Além disso, o sinal de propagação da maré dentro do aquífero foi avaliado como um intermediário (proxy) para melhorar o processo de calibração numérica. Os resultados mostraram que o modelo numérico mais complexo teve uma melhor calibração do que os modelos simples, mas a acurácia do modelo é pior quando comparado com os modelos menos complexos no exercício de verificação. Esta pesquisa oferece aprimoramento no conhecimento da modelagem numérica em aquíferos heterogêneos costeiros dentro de um contexto de incertezas do modelo conceitual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abarca E (2006) Seawater intrusion in complex geological environments. PhD Thesis, Technical University of Catalonia, UPC, Spain

  • Abarca E, Carrera J, Held R, Sanchez-Vila X, Dentz M, Kinzelbach W, Vazquez-Suñe E (2004) Effective dispersion in seawater intrusion through heterogeneous aquifers. 18 SWIM 18:49–61

    Google Scholar 

  • Abarca E, Carrera J, Sánchez-Vila X, Dentz M (2007) Anisotropic dispersive Henry problem. Adv Water Resour 30:913–926. https://doi.org/10.1016/j.advwatres.2006.08.005

    Article  Google Scholar 

  • Aguilar Y, Bautista F, Mendoza ME, Frausto O, Ihl T (2016) Density of karst depressions in YucatÁn state, Mexico. J Cave Karst Stud 78:51–60. https://doi.org/10.4311/2015ES0124

    Article  Google Scholar 

  • Alcolea A, Castro E, Barbieri M, Carrera J, Bea S (2007) Inverse modeling of coastal aquifers using tidal response and hydraulic tests. Ground Water 45:711–722. https://doi.org/10.1111/j.1745-6584.2007.00356.x

    Article  Google Scholar 

  • Anderson MP, Woessner W, Hunt RJ (2015) Chapter 9 - Model calibration: assessing performance. In: Applied Groundwater Modeling (Second Edition), Second Edition. Academic Press, San Diego, pp 375–441. https://doi.org/10.1016/B978-0-08-091638-5.00009-2

  • Bauer-Gottwein P, Gondwe BRN, Charvet G, Marin L, Rebolledo-Vieyra M, Merediz-Alonso G (2011) Review: the Yucatan peninsula karst aquifer, Mexico. Hydrogeol J 19:507–524. https://doi.org/10.1007/s10040-010-0699-5

    Article  Google Scholar 

  • Box G, Jenkins G, Reinsel G (1994) Time series analysis: forecasting and control, 3rd edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Bredehoeft J (2005) The conceptualization model problem: surprise. Hydrogeol J. https://doi.org/10.1007/s10040-004-0430-5

  • Brovelli A, Mao X, Barry DA (2007) Numerical modeling of tidal influence on density-dependent contaminant transport. Water Resour Res 43:1–15. https://doi.org/10.1029/2006WR005173

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference, 2nd edn. Springer, New York

    Google Scholar 

  • Butterlin J, Bonet F (1963) Las Formaciones Cenozoicas de la parte Mexicana de la Península de Yucatán [The Cenozoic formations of the Mexican part of the Yucatan peninsula]. Ing Hidrául México 17:63–71

    Google Scholar 

  • Canul-Macario C, González-Herrera R, Sánchez-Pinto I, Graniel-Castro E (2019) Contribution to the evaluation of solute transport properties in a karstic aquifer (Yucatan, Mexico). Hydrogeol J 27:1683–1691. https://doi.org/10.1007/s10040-019-01947-8

    Article  Google Scholar 

  • Canul-Macario C, Salles P, Hernández-Espriu JA, Pacheco-Castro R (2020) Empirical relationships of groundwater head–salinity response to variations of sea level and vertical recharge in coastal confined karst aquifers. Hydrogeol J 28:1679–1694. https://doi.org/10.1007/s10040-020-02151-9

    Article  Google Scholar 

  • Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten L (2005) Inverse problem in hydrogeology. Hydrogeol J 13:206–222. https://doi.org/10.1007/s10040-004-0404-7

    Article  Google Scholar 

  • Casáres-Salazar R, González-Herrera R, Graniel-Castro E (2013) Field scale longitudinal dispersivities estimation in a karstic aquifer. Int J Water 7:14. https://doi.org/10.1504/IJW.2013.051976

    Article  Google Scholar 

  • CONAGUA (2012) Programa Hídrico Regional Visión 2030 [Regional Water Program: 2030 Vision]. CONAGUA, Natural Resources and Environmental Bureau, Mexico City

  • De Filippis G, Foglia L, Giudici M, Mehl S, Margiotta S, Negri SL (2016) Seawater intrusion in karstic, coastal aquifers: current challenges and future scenarios in the Taranto area (southern Italy). Sci Total Environ 573:1340–1351. https://doi.org/10.1016/j.scitotenv.2016.07.005

    Article  Google Scholar 

  • De Filippis G, Margiotta S, Caruso F, Negri SL (2020) Open questions about the hydrodynamic behaviour of the deep, coastal aquifer of the Salento peninsula (South-Eastern Italy): coupling expert knowledge, data, and numerical modelling for testing hydrogeological conceptual models. Sci Total Environ 715:136962. https://doi.org/10.1016/j.scitotenv.2020.136962

    Article  Google Scholar 

  • De Marsily G, Combes P, Globet P (1992) Comment on ‘Ground-water models cannot be validated’, by L.F. Konikow & J.D. Bredehoeft. Adv Water Resour 15:367–369

    Article  Google Scholar 

  • Doherty J (2010) PEST: model-independent parameter estimation, user manual, 5th edn. Watermark, Brisbane

  • Engelhardt I, De Aguinaga JG, Mikat H, Schüth C, Liedl R (2014) Complexity vs. simplicity: groundwater model ranking using information criteria. Groundwater 52:573–583. https://doi.org/10.1111/gwat.12080

    Article  Google Scholar 

  • Gallegos JJ (2011) Florida State University libraries modeling groundwater flow in karst aquifers: an evaluation of MODFLOW- CFP at the laboratory and sub-regional. PhD Thesis, Florida State University, USA

  • Ghasemizadeh R, Hellweger F, Butscher C, Padilla I, Vesper D, Field M, Alshawabkeh A (2012) Review: groundwater flow and transport modeling of karst aquifers, with particular reference to the north coast limestone aquifer system of Puerto Rico. Hydrogeol J 20:1441–1461. https://doi.org/10.1007/s10040-012-0897-4

    Article  Google Scholar 

  • Giacopetti M, Crestaz E, Materazzi M, Pambianchi G, Posavec K (2016) A multi-model approach using statistical index and information criteria to evaluate the adequacy of the model geometry in a fissured carbonate Aquifer (Italy). Water (Switzerland) 8. https://doi.org/10.3390/w8070271

  • Giudici M, Foglia L, Parravicini G, Ponzini G, Sincich B (2000) A quasi three-dimensional model of water flow in the subsurface of Milano (Italy): the stationary flow. Hydrol Earth Syst Sci 4:113–124. https://doi.org/10.5194/hess-4-113-2000

    Article  Google Scholar 

  • Giudici M, Margiotta S, Mazzone F, Negri SL, Vassena C (2012) Modelling hydrostratigraphy and groundwater flow of a fractured and karst aquifer in a Mediterranean basin (Salento peninsula, southeastern Italy). Environ Earth Sci 67:1891–1907. https://doi.org/10.1007/s12665-012-1631-1

    Article  Google Scholar 

  • Giudici M, Baratelli F, Cattaneo L, Comunian A, De Filippis G, Durante C, Giacobbo F, Inzoli S, Mele M, Vassena C (2019) A conceptual framework for discrete inverse problems in geophysics. https://air.unimi.it/retrieve/handle/2434/624631/1167595/122%20Giudici%20et%20al%202019.pdf. Accessed July 2020

  • Gondwe BRN, Merediz-Alonso G, Bauer-Gottwein P (2011) The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst. J Hydrol 400:24–40. https://doi.org/10.1016/j.jhydrol.2011.01.023

    Article  Google Scholar 

  • Gonzalez-Herrera R, Vega-Azamar R (2002) Materiales de suelos de Yucatán factibles de utilizarse como cubierta en sitios de disposición de desechos sólidos [Yucatán soils feasible to use as materials to cover in solid waste disposal sites]. Rev Int Contam Ambient 18:57–66

    Google Scholar 

  • González-Herrera R, Sánchez-y-Pinto I, Gamboa-Vargas J (2002) Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico. Hydrogeol J 10:539–552. https://doi.org/10.1007/s10040-002-0216-6

    Article  Google Scholar 

  • Graniel E, Carrillo J, Cardona A (2003) Dispersividad de solutos en el carst de Yucatán México [Solute dispersivity in the Yucatan kars]. Rev Acad Fac Ing Univ Autónoma Yucatán 3:49–56

    Google Scholar 

  • Guo W, Langevin CD (2002) User’s guide to SEAWAT: a computer program for simulation of three-dimensional variable-density ground-water flow. US Geological Survey, Miami

    Google Scholar 

  • Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52:218–242. https://doi.org/10.1002/2013RG000443

    Article  Google Scholar 

  • Hill MC, Tiedeman CR (2007) Evaluating model fit. In: Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley, Chichester, UK, pp 93–123

  • Højberg A, Refsgaard JC (2005) Model uncertainty: parameter uncertainty versus conceptual models. Water Sci Technol 52:177–186

    Article  Google Scholar 

  • Jazayeri Noushabadi MR, Jourde H, Massonnat G (2011) Influence of the observation scale on permeability estimation at local and regional scales through well tests in a fractured and karstic aquifer (Lez aquifer, southern France). J Hydrol 403:321–336. https://doi.org/10.1016/j.jhydrol.2011.04.013

    Article  Google Scholar 

  • JICA (2004) Tratamiendo de aguas residuales tipo urbano, cap 12 [Urban wastewater treatment, chap 12]. In: KOKUSAI KOGYO CO. L (ed) Estudio de Manejo de Saneamiento Ambiental en la Costa del Estado de Quintana Roo en los Estados Unidos Mexicanos, Kokusai KO. Kokusai Kogyo, Q ROO, México, 89 pp

  • Ketabchi H, Mahmoodzadeh D, Ataie-Ashtiani B, Simmons CT (2016) Sea-level rise impacts on seawater intrusion in coastal aquifers: review and integration. J Hydrol 535:235–255. https://doi.org/10.1016/j.jhydrol.2016.01.083

    Article  Google Scholar 

  • Khadra WM, Stuyfzand PJ (2018) Simulation of saltwater intrusion in a poorly karstified coastal aquifer in Lebanon (eastern Mediterranean). Hydrogeol J 26:1839–1856. https://doi.org/10.1007/s10040-018-1752-z

    Article  Google Scholar 

  • Konikow LF, Bredehoeft JD (1992) Ground-water models cannot be validated. Adv Water Resour 15:75–83. https://doi.org/10.1016/0309-1708(92)90033-X

    Article  Google Scholar 

  • Kunianski EL (2016) Simulating groundwater flow in karst aquifers with distributed parameter models: comparison of porous-equivalent media and hybrid flow approaches. https://doi.org/10.3133/sir20165116

  • Levanon E, Yechieli Y, Gvirtzman H, Shalev E (2017) Tide-induced fluctuations of salinity and groundwater level in unconfined aquifers: field measurements and numerical model. J Hydrol 551:665–675. https://doi.org/10.1016/j.jhydrol.2016.12.045

    Article  Google Scholar 

  • Marín L, Perry E, Essaid H, Steinich B (2001) Hydrogeological investigations and numerical simulation of groundwater flow in the karstic aquifer of northwestern Yucatan, Mexico. In: First International Conference on Saltwater Intrusion and Coastal Aquifers Monitoring, Modeling, and Management. Essaouira, Morocco, April 2001

  • Mexican Geological Survey (2005) Carta Geológico-Minera Tizimín F16–7 Estado de Yucatán [Geological-Mineral Map F16–7: Tizimin Yucatan Mexico]. http://mapserver.sgm.gob.mx/Cartas_Online/geologia/115_F16-7_GM.pdf. Accessed 28 Feb 2021

  • Neuman SP, Wierenga PJ (2003) A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. Univ of Arizona, Tucson, AZ

  • Nilsson B, Højberg AL, Refsgaard JC, Troldborg L (2007) Uncertainty in geological and hydrogeological data. Hydrol Earth Syst Sci 11:1551–1561. https://doi.org/10.5194/hess-11-1551-2007

    Article  Google Scholar 

  • Pacheco-Castro R (2017) Statistical analysis of karst aquifer pollution, karst flow model validation at laboratory scale, and development of seepage meter. PhD Thesis, Florida State University, FL, USA

  • Perry E, Gamboe J, Reeve A, Sanborn R, Marin L, Villasuso M (1989) Geologic and environmental aspects of surface cementation, north coast, Yucatan, Mexico. Geology 17:818–821

    Article  Google Scholar 

  • Pool M, Abarca E, Carrera J (2007) Simplificaciones en la modelación de la intrusión marina: validez y alcance [Saline intrusion modelling simplifications: validity and scope]. Bol Geol Min 118:593–608

    Google Scholar 

  • Post VEA (2011) A new package for simulating periodic boundary conditions in MODFLOW and SEAWAT. Comput Geosci 37:1843–1849. https://doi.org/10.1016/j.cageo.2011.01.012

    Article  Google Scholar 

  • Post VEA, Werner AD (2017) Coastal aquifers: scientific advances in the face of global environmental challenges. J Hydrol 551:1–3. https://doi.org/10.1016/j.jhydrol.2017.04.046

    Article  Google Scholar 

  • Refsgaard JC, van der Sluijs JP, Højberg AL, Vanrolleghem PA (2007) Uncertainty in the environmental modelling process: a framework and guidance. Environ Model Softw 22:1543–1556. https://doi.org/10.1016/j.envsoft.2007.02.004

    Article  Google Scholar 

  • Refsgaard JC, Christensen S, Sonnenborg TO, Seifert D, Højberg AL, Troldborg L (2012) Review of strategies for handling geological uncertainty in groundwater flow and transport modeling. Adv Water Resour 36:36–50. https://doi.org/10.1016/j.advwatres.2011.04.006

    Article  Google Scholar 

  • Rocha H (2016) Groundwater use in the Mérida-Progreso region, Yucatán, and its implications in the coastal area ecosystems requirements. PhD Thesis, Universidad Autónoma de San Luis Potosí, México

  • Rodríguez-Huerta E, Rosas-Casals M, Hernández-Terrones LM (2020) A water balance model to estimate climate change impact on groundwater recharge in Yucatan peninsula, Mexico. Hydrol Sci J 65:470–486. https://doi.org/10.1080/02626667.2019.1702989

    Article  Google Scholar 

  • Sanchez I (1999) Modelo numérico del flujo subterráneo de la porción acuífera N–NW del estado de Yucatán: implicaciones hidrogeológicas [Groundwater flow numerical modelling in Yucatan N–NW aquifer portion: hydrogeological implications]. MSc Thesis, Universidad de Chihuahua, México

  • Sánchez Pinto IA, Cervantes-Martínez A, González Herrera RA, Vazquez-Campos ME, Gutierrez-Aguirre MA (2015) Evidencia de flujo preferencial al mar, del cenote Caletita, en Cozumel, México [Evidence of preferential flow to the sea from the cenote Caletita, in Cozumel, Mexico]. Ingeniería 19:1–12

  • Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol 276:137–158. https://doi.org/10.1016/S0022-1694(03)00064-7

    Article  Google Scholar 

  • Schlumberger Water Services (2006) Visual MODFLOW v 4.2: user manual. Schlumberger, Waterloo, ON, Canada

  • Seifert D, Sonnenborg TO, Refsgaard JC, Højberg AL, Troldborg L (2012) Assessment of hydrological model predictive ability given multiple conceptual geological models. Water Resour Res 48:1–16. https://doi.org/10.1029/2011WR011149

    Article  Google Scholar 

  • Solórzano-Rivas SC, Werner AD (2020) Applicability of analytical solutions to tidal propagation in circular islands. J Hydrol 589:125136. https://doi.org/10.1016/j.jhydrol.2020.125136

    Article  Google Scholar 

  • Stevanović Z (2015) Karst aquifers: characterization and engineering. Springer, Cham, Switzerland

    Google Scholar 

  • Uuh-Sonda JM, Gutiérrez-Jurado HA, Figueroa-Espinoza B, Méndez-Barroso LA (2018) On the ecohydrology of the Yucatan peninsula: evapotranspiration and carbon intake dynamics across an eco-climatic gradient. Hydrol Process 32:2806–2828. https://doi.org/10.1002/hyp.13230

    Article  Google Scholar 

  • Villasuso M, Méndez R (2000) Population, development, and environment on the Yucatán peninsula: from ancient Maya to 2030. In: Lutz, Wolgang, Prieto, Leonel, Sanderson W (ed) Population, development, and environment on the Yucatan peninsula. International Institute for Applied System Analysis, Luxembrugo Austria, pp 120–139

  • Villasuso-Pino M, Sanchez y Pinto I, Canul-Macario C, Casares-Salazar R, Baldazo G, Souza J, Poot P, Pech C (2011) Hydrogeology and conceptual model of the karstic coastal aquifer in northern Yucatan state, Mexico. Trop SubtroTrop Agroecosyst 13:243–260

    Google Scholar 

  • Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26. https://doi.org/10.1016/j.advwatres.2012.03.004

    Article  Google Scholar 

  • Woods JA, Teubner MD, Simmons CT, Narayan KA (2003) Numerical error in groundwater flow and solute transport simulation. Water Resour Res 39. https://doi.org/10.1029/2001WR000586

  • Worthington SRH (2015) Diagnostic tests for conceptualizing transport in bedrock aquifers. J Hydrol 529:365–372. https://doi.org/10.1016/j.jhydrol.2015.08.002

    Article  Google Scholar 

  • Xu Z, Hu BX, Davis H, Kish S (2015) Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2. J Contam Hydrol 182:131–145. https://doi.org/10.1016/j.jconhyd.2015.09.003

    Article  Google Scholar 

  • Ye M, Meyer PD, Neuman SP (2008) On model selection criteria in multimodel analysis. Water Resour Res 44:1–12. https://doi.org/10.1029/2008WR006803

    Article  Google Scholar 

  • Ye M, Pohlmann KF, Chapman JB, Pohll GM, Reeves DM (2010) A model-averaging method for assessing groundwater conceptual model uncertainty. Ground Water 48:716–728. https://doi.org/10.1111/j.1745-6584.2009.00633.x

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Coastal Process Laboratory (LIPC), Engineering Institute (UNAM) and the National Water Commission (CONAGUA), Regional Management of the Yucatan Peninsula, for the support and facilities provided for the realization of the present research. We are also very grateful to the associate editor and reviewers whose valuable comments contributed to improving this manuscript.

Funding

We also thank the National Coastal Resilience Laboratory (LANRESC) and the National Council of Science and Technology (CONACYT) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Hernández-Espriú.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 596 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canul-Macario, C., Salles, ., Hernández-Espriú, A. et al. Numerical modelling of the saline interface in coastal karstic aquifers within a conceptual model uncertainty framework. Hydrogeol J 29, 2347–2362 (2021). https://doi.org/10.1007/s10040-021-02379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02379-z

Keywords

Navigation