Abstract
This study focuses on the development of two GIS-based approaches that are used jointly to evaluate the groundwater resources associated with granular aquifers in shield environments. The first approach is a multi-criteria analysis (MCA) using an analytical hierarchic process (AHP) based on geological and hydrogeological data for ranking the probability of finding readily available groundwater resources in a specific territory. The second approach relies on GIS-based geometric calculations that were developed for evaluating the extent and volume of aquifers. The approaches are applied on a 100 × 100 m grid in a 185,000-km2 area corresponding to watersheds of the James Bay area in Quebec, Canada. The MCA-AHP approach revealed that the unconfined granular aquifers that present the highest aquifer potential (AP) are sparsely distributed and mostly associated with glaciofluvial formations such as the Harricana and Sakami moraines. The geometric calculations approach allowed for estimating that the total volume of groundwater stored in the unconfined granular aquifers reaches approximately 40 km3. When used jointly, the two approaches reveal that the shallow unconfined aquifers that require increased groundwater protection account for approximately 5% of the territory. In areas of confined granular aquifers, the highest APs are located in river valleys and lowlands. A sensitivity analysis conducted on the MCA-AHP approach revealed that the grid size does not significantly affect the results. Therefore, the approach was expanded northward, to a 490,000-km2 territory reaching the Ungava Bay area. The proposed method could be adapted and applied in other shield areas.
Résumé
Cette étude se concentre sur le développement de deux approches basées sur les SIG qui sont utilisées conjointement pour évaluer les ressources en eau souterraine associées aux aquifères granulaires dans les environnements de boucliers. La première approche est une analyse multicritères (MCA) utilisant un processus hiérarchique analytique (AHP) basé sur des données géologiques et hydrogéologiques pour classer la probabilité de trouver des ressources en eau souterraine facilement disponibles dans un territoire spécifique. La seconde approche repose sur des calculs géométriques basés sur le SIG qui ont été développés pour évaluer l’étendue et le volume des aquifères. Les approches sont appliquées sur une grille de 100 × 100 m dans une zone de 185,000 km2 correspondant aux bassins versants de la région de la Baie James au Québec, Canada. L’approche MCA-AHP a révélé que les aquifères granulaires libres qui présentent le potentiel aquifère (PA) le plus élevé sont épars et principalement associés à des formations fluvio-glaciaires telles que les moraines Harricana et Sakami. Les calculs géométriques ont permis d’estimer que le volume total d’eau souterraine stockée dans les aquifères granulaires libres atteint environ 40 km3. Utilisées conjointement, les deux approches révèlent que les aquifères libres peu profonds qui nécessitent une protection accrue des eaux souterraines représentent environ 5 % du territoire. Dans les zones d’aquifères granulaires captifs, les PA les plus élevés sont situés dans les vallées fluviales et les basses terres. Une analyse de sensibilité menée sur l’approche MCA-AHP a révélé que la taille de la grille n’affecte pas significativement les résultats. Par conséquent, l’approche a été étendue vers le nord à un territoire de 490,000 km2 atteignant la région de la baie d’Ungava. La méthode proposée pourrait être adaptée et appliquée à d’autres zones de bouclier.
Resumen
Este estudio se centra en el desarrollo de dos enfoques basados en SIG que se utilizan conjuntamente para evaluar los recursos hídricos subterráneos asociados a acuíferos granulares en ambientes de escudo. El primer enfoque es un análisis multicriterio (MCA) que utiliza un proceso jerárquico analítico (AHP) basado en datos geológicos e hidrogeológicos para clasificar la probabilidad de encontrar recursos de agua subterránea fácilmente disponibles en un territorio específico. El segundo enfoque se basa en cálculos geométricos basados en SIG que se desarrollaron para evaluar la extensión y el volumen de los acuíferos. Los enfoques se aplican en una cuadrícula de 100 × 100 m en un área de 185,000 km2 correspondiente a las cuencas hidrográficas de la zona de la James Bay en Quebec (Canadá). El enfoque MCA-AHP reveló que los acuíferos granulares no confinados que presentan el mayor potencial acuífero (AP) están escasamente distribuidos y asociados en su mayoría a formaciones glaciofluviales como las morrenas de Harricana y Sakami. El enfoque de los cálculos geométricos permitió estimar que el volumen total de agua subterránea almacenada en los acuíferos granulares no confinados alcanza aproximadamente 40 km3. Cuando se utilizan conjuntamente, los dos enfoques revelan que los acuíferos no confinados poco profundos que requieren una mayor protección de las aguas subterráneas representan aproximadamente el 5% del territorio. En las zonas de acuíferos granulares confinados, los mayores AP se encuentran en los valles fluviales y en las tierras bajas. Un análisis de sensibilidad realizado en el enfoque MCA-AHP reveló que el tamaño de la cuadrícula no afecta significativamente a los resultados. Por lo tanto, el enfoque se amplió hacia el norte, a un territorio de 490,000 km2 que alcanza la zona de la bahía de Ungava. El método propuesto podría adaptarse y aplicarse en otras zonas de escudo.
摘要
本研究旨在开发基于GIS的两种方法来评估地盾环境中与颗粒含水层相关的地下水资源。第一种方法是使用基于地质和水文地质数据的层次分析法(AHP)进行的多准则分析(MCA), 用于对在特定区域内寻找可利用的地下水资源的可能性进行排序。第二种方法依赖于基于GIS的几何计算, 该计算是为评估含水层的范围和容量而开发的。这些方法在面积为185,000 km2的100 × 100 m网格上应用, 该区域位于加拿大魁北克James湾区的流域。MCA-AHP方法揭示了呈现最高含水层潜力(AP)的潜水颗粒含水层零星分布, 并且主要与诸如Harricana和Sakami冰碛的冰川河流层相关。几何计算方法估算的潜水颗粒含水层中存储的地下水总量约为40 km3。两种方法结合使用时, 发现需要加强地下水保护的浅层潜水含水层约占该地区的5%。在承压的颗粒含水层地区, 最高的受影响的是位于河谷和低地的人。对MCA-AHP方法进行的敏感性分析表明, 网格大小不会显著影响结果。因此该方法向北扩展到490,000 km2的区域, 到达了Ungava湾地区。所提出的方法可以被修改并应用于其他地盾区域。
Resumo
Este estudo se concentra no desenvolvimento de duas abordagens baseadas em SIG que são usadas juntamente para avaliar os recursos hídricos subterrâneos associados à aquíferos intergranulares em ambientes de escudo. A primeira abordagem é uma análise multicritério (AMC) usando o processo analítico hierárquico (AHP) com base em dados geológicos e hidrogeológicos para classificar a probabilidade de encontrar facilmente recursos hídricos subterrâneos disponíveis neste território específico. A segunda abordagem depende de cálculos geométricos baseados em SIG que foram desenvolvidos para a avaliação da extensão e volume dos aquíferos. As abordagens são aplicadas sobre uma grade de 100 × 100 m numa área de 185,000-km2 correspondente a área da bacia hidrográfica de James Bay em Quebec, Canadá. A abordagem AMC-AHP revelou que os aquíferos livres intergranulares apresentam o maior potencial aquífero (PA), os quais estão esparsamente distribuídos e comumente associados com formações glacio-fluviais como os depósitos de morena Harricana e Sakami. A abordagem de cálculos geométricos permitiu estimar que o volume total de água subterrânea armazenada nos aquíferos livres intergranulares alcançou aproximadamente 40 km3. Quando as usamos juntamente, as duas abordagens revelaram que os aquíferos livres rasos, que requerem maior proteção da água subterrânea, representam aproximadamente 5% do território. Nas áreas dos aquíferos granulares confinados, os maiores PAs estão localizados nos vales de rios e planícies. Uma análise de sensibilidade conduzida na abordagem AMC-AHP mostrou que o tamanho da grade não afeta significativamente os resultados. Portanto, a abordagem foi expandida para o norte, para um território de 490,000 km2 correspondente a área de Ungava Bay. O método proposto pode ser adaptado e ampliado em outras áreas de escudo.
This is a preview of subscription content, access via your institution.














References
Adiat KAN, Nawawi MNM, Abdullah K (2012) Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool: a case of predicting potential zones of sustainable groundwater resources. J Hydrol 440–441:75–89. https://doi.org/10.1016/j.jhydrol.2012.03.028
Agarwal E, Agarwal R, Garg RD, Garg PK (2013) Delineation of groundwater potential zone: an AHP/ANP approach. J Earth Syst Sci 122(3):887–898. https://doi.org/10.1007/s12040-013-0309-8
Akinlalu AA, Adegbuyiro A, Adiat KAN, Akeredolu BE, Lateef WY (2017) Application of multi-criteria decision analysis in prediction of groundwater resources potential: a case of Oke-Ana, Ilesa area southwestern, Nigeria. NRIAG J Astronomy Geophys 6:184–200. https://doi.org/10.1016/j.nrjag.2017.03.001
Ala-aho P, Rossi PM, Kløve B (2013) Interaction of esker groundwater with headwater lakes and streams. J Hydrol 500:144–156. https://doi.org/10.1016/j.jhydrol.2013.07.014
Aladejana OO, Anifowose AYB, Fagbohun BJ (2016) Testing the ability of an empirical hydrological model to verify a knowledge-based groundwater potential zone mapping methodology. Modeling Earth Syst Environ 2:1–17. https://doi.org/10.1007/s40808-016-0234-3
Allard G, Roy M, Ghaleb B, Richard PJH, Larouche AC, Veillette JJ, Parent M (2012) Constraining the age of the last interglacial–glacial transition in the Hudson Bay lowlands (Canada) using U–Th dating of buried wood. Quat Geochronol 7:37–47. https://doi.org/10.1016/j.quageo.2011.09.004
Allard G, Dubé-Loubert H (2016) Géochimie de la fraction fine des tills et analyse des matériaux indicateurs de sediments glaciaires et fluvioglaciaires provenant de forages Rotasonic, région de la rivière Octave et Wawagosic (Abitibi) [Geochemistry of the fine fraction of tills and analysis of indicator materials of glacial and fluvioglacial sediments from Rotasonic boreholes, Octave River region and Wawagosic (Abitibi)]. DP-2016-13, Ministère de l’Énergie et des Ressources naturelles du Québec, Quebec City
Aller LT, Bennett J, Lehr H, Petty R, Hackett G (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. Rapport du US EPA-600/2-87-035, US EPA, Washington, DC
Arnoux M, Barbecot F, Gilbert-Brunet E, Gibson J, Rosa E, Noret A, Monvoisin G (2017) Geochemical and isotopic mass balances of kettle lakes in southern Quebec (Canada) as tools to document variations in groundwater quantity and quality. Environ Earth Sci 76:106
Arulbalaji P, Padmalal D, Sreelash K (2019) GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Sci Rep 9(1):2082. https://doi.org/10.1038/s41598-019-38567-x
Barthel R, Banzhaf S (2016) Groundwater and surface water interaction at the regional-scale: a review with focus on regional integrated models. Water Resour Manag 30(1):1–32. https://doi.org/10.1007/s11269-015-1163-z
Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology / un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci Bull 24:43–69. https://doi.org/10.1080/02626667909491834
Bondu R, Cloutier V, Rosa E, Roy M (2020) An exploratory data analysis approach for assessing the sources and distribution of naturally occurring contaminants (F, Ba, Mn, As) in groundwater from southern Quebec (Canada). Appl Geochemistry 114:104500. https://doi.org/10.1016/j.apgeochem.2019.104500
Blöschl G, Sivapalan M (1995) Scalue issues in hydrological modelling: a review. Hydrological Processes 9:251–290. https://doi.org/10.1002/hyp.3360090305
Böhner J, Selige T (2006) Spatial prediction of soil attributes using terrain analysis and climate regionalisation. Göttinger Geograph Abhandlung 115:13–28
Brito MG, Costa CN, Almeida JA, Vendas D, Verdial PH (2006) Characterization of maximum infiltration areas using GIS tools. Eng Geol 85(1):14–18. https://doi.org/10.1016/j.enggeo.2005.09.022
Brousseau D (2008) Caractérisation des dépôts meubles et reconstitution paléogéographique quaternaire de la région du réservoir Eastmain, Baie James, Québec [Surficial geology and paleogeography of the Eastmain reservoir region, James Bay, Québec]. Université du Québec à Montréal, Montréal
Burri NM, Weatherl R, Moeck C, Schirmer M (2019) A review of threats to groundwater quality in the Anthropocene. Sci Total Environ 684:136–154. https://doi.org/10.1016/j.scitotenv.2019.05.236
Chen L, Young MH (2006) Green-Ampt infiltration model for sloping surfaces. Water Resour Res 42:1–9. https://doi.org/10.1029/2005WR004468
Clarke GKC, Leverington DW, Teller JT, Dyke AS (2004) Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event. Quat Sci Rev 23:389–407. https://doi.org/10.1016/j.quascirev.2003.06.004
Cloutier V et al (2016) Atlas hydrogéologique de l’Abitibi-Témiscamingue [Atlas of the hydrogeology of Abitibi-Temisacmingue]. Les Presses de l’Université du Québec, Québec
Cloutier V, Dallaire P-L, Nadeau S, Roy M, Rosa E (2013) Projet d’acquisition de connaissances sur les eaux souterraines de l’Abitibi-Témiscamingue (partie 1) [Abitibi-Témiscamingue groundwater knowledge acquisition project, Part 1]. Final report. 135 p., 25 maps.
Cloutier V, Rosa E, Nadeau S, Dallaire P-L, Blanchette D,Roy M (2015) Projet d’acquisition de connaissances sur les eaux souterraines de l’Abitibi-Témiscamingue (partie 2) [Abitibi-Témiscamingue groundwater knowledge acquisition project, Part 2]. Final report. 313 p., 24 map
de Graaf IEM, Sutanudjaja EH, van Beek LPH, Bierkens MFP (2015) A high-resolution global-scale groundwater model. Hydrol Earth Syst Sci 19:823–837. https://doi.org/10.5194/hess-19-823-2015
de Graaf IEM, Gleeson T, van Beek LPH, Sutanudjaja EH, Bierkens MFP (2019) Environmental flow limits to global groundwater pumping. Nature 574:90–94. https://doi.org/10.1038/s41586-019-1594-4
Díaz-Alcaide S, Martínez-Santos P (2019) Review: Advances in groundwater potential mapping. Hydrogeol J 27:2307–2324. https://doi.org/10.1007/s10040-019-02001-3
Dionne J-C (1972) La dénomination des mers du postglaciaire au Québec [The name of the postglacial seas in Quebec]. Cahiers Géograph Québec 16:483–487. https://doi.org/10.7202/021086ar
Domenico PA, Schwartz FW (1990) Physical and Chemical Hydrogeology. John Wiley & Sons Inc, Hoboken, p 824
Döll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4:035006. https://doi.org/10.1088/1748-9326/4/3/035006
Döll P, Hoffmann-Dobrev H, Portmann, F, Siebert S, Eicker E, et al (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59–60:143–156. https://doi.org/10.1016/j.jog.2011.05.001
Dubé-Loubert H, Roy M, Allard G, Lamothe M, Veillette JJ (2012) Glacial and nonglacial events in the eastern James Bay lowlands, Canada. Can J Earth Sci 50:379–396. https://doi.org/10.1139/cjes-2012-0065
Dynesius M, Nilsson C (1994) Fragmentation and flow regulation of river systems in the northern third of the world. Science 266:753–762
Fan Y, Miguez-Macho G (2011) A simple hydrologic framework for simulating wetlands in climate and earth system models. Clim Dyn 37:253–278. https://doi.org/10.1007/s00382-010-0829-8
Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4:945–948. https://doi.org/10.1038/nclimate2425
Farr TG, Rosen P, Caro E, Crippen, R, Duren R, et al (2007) The Shuttle Radar Topography Mission. Rev Geophys 45. https://doi.org/10.1029/2005RG000183
Foster S, Chilton J, Nijsten G-J, Richts A (2013) Groundwater: a global focus on the ‘local resource’. Curr Opin Environ Sustain 5:685–695. https://doi.org/10.1016/j.cosust.2013.10.010
Freeze RA, Cherry J (1979) Groundwater. Printice-Hall Inc, Hoboken, p 624
Gleeson T, Befus KM, Jasechko S, Luijendijk E, Cardenas MB (2016) The global volume and distribution of modern groundwater. Nat Geosci 9:161–167. https://doi.org/10.1038/ngeo2590
Gleeson T, Novakowski K, Cook PG, Kyser TK (2009) Constraining groundwater discharge in a large watershed: Integrated isotopic, hydraulic, and thermal data from the Canadian shield. Water Resour Res 45(8). https://doi.org/10.1029/2008WR007622
Grabs T, Seibert J, Bishop K, Laudon H (2009) Modeling spatial patterns of saturated areas: a comparison of the topographic wetness index and a dynamic distributed model. J Hydrol 373:15–23. https://doi.org/10.1016/j.jhydrol.2009.03.031
Gray JT, Lauriol B (1985) Dynamics of the late Wisconsin ice sheet in the Ungava peninsula interpreted from geomorphological evidence. Arct Alp Res 17:289–310. https://doi.org/10.1080/00040851.1985.12004037
Hajkowicz S, Collins K (2007) A review of multiple criteria analysis for water resource planning and management. Water Resour Manag 21:1553–1566. https://doi.org/10.1007/s11269-006-9112-5
Hardy L (1977) La déglaciation et les épisodes lacustre et marin sur le versant québécois des basses terres de la baie de James [Deglaciation, and lacustrine and marine episodes on the Québec portion of the James Bay lowlands]. Géog Phys Quat 31:261–273. https://doi.org/10.7202/1000277ar
Hardy L (1982a) Le wisconsinien supérieur à l’est de la Baie James (Québec) [Upper Wisconsinian east of James Bay]. Natural Can 109:333–351
Hardy L (1982b) La moraine frontale de Sakami, Québec subarctique [The Sakami Moraine, Subarctic Québec]. Géog Phys Quat 36:51–61. https://doi.org/10.7202/032469ar
Hétu B, Buffin-Bélanger T, Savard M, Bolduc S (2015) La plaine alluviale de la rivière Eastmain, Jamésie (Québec): stratigraphie, sédimentologie, paléoécologie [The alluvial plain of Eastmain River, Jamesie (Québec): stratigraphy, sedimentology and paleoecology]. In: Bibeau P, Denton D, Burroughs A (eds) Ce que la rivière nous procurait. Presse de l’Université d’Ottawa, Ottawa, pp 73–111
Hoekstra AY, Chapagain AK (2007) Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour Manag 21:35–48. https://doi.org/10.1007/s11269-006-9039-x
Huang IB, Keisler J, Linkov I (2011) Multi-criteria decision analysis in environmental sciences: ten years of applications and trends. Sci Total Environ 409:3578–3594. https://doi.org/10.1016/j.scitotenv.2011.06.022
Huscroft J, Gleeson T, Hartmann J, Börker J (2018) Compiling and mapping global permeability of the unconsolidated and consolidated earth: GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0). Geophys Res Lett 45:1897–1904. https://doi.org/10.1002/2017GL075860
Jha MK, Chowdhury A, Chowdary VM, Peiffer S (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manag 21:427–467. https://doi.org/10.1007/s11269-006-9024-4
Joerin F, Cool G, Rodriguez MJ, Gignac M, Bouchard C (2010) Using multi-criteria decision analysis to assess the vulnerability of drinking water utilities. Environ Monit Assess 166:313–330. https://doi.org/10.1007/s10661-009-1004-8
Larocque M, Broda S (2016) Groundwater–surface water interactions in Canada. Can Water Resour J Revue Can Ressour Hydriq 41(4):451–454. https://doi.org/10.1080/07011784.2016.1176537
Larocque M, Cloutier V, Levison J, Rosa E (2018) Results from the Quebec groundwater knowledge acquisition program. Can Water Resour J Rev Can Ressour Hydriq 43:69–74. https://doi.org/10.1080/07011784.2018.1472040
Lepage S, Ingram RG (1986) Salinity intrusion in the Eastmain River estuary following a major reduction of freshwater input. J Geophys Res: Oceans 91:909–915. https://doi.org/10.1029/JC091iC01p00909
Machiwal D, Jha MK, Mal BC (2010) Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resour Manag 25:1359–1386. https://doi.org/10.1007/s11269-010-9749-y
Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, New York
Malczewski J (2006) GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20:703–726. https://doi.org/10.1080/13658810600661508
Mallick J, Singh CK, Al-Wadi H, Ahmed M, Rahman A, Shashtri S, Mukherjee S (2015) Geospatial and geostatistical approach for groundwater potential zone delineation. Hydrol Process 29:395–418. https://doi.org/10.1002/hyp.10153
Mardhel V, Pinson S, Allier D (2021) Description of an indirect method (IDPR) to determine spatial distribution of infiltration and runoff and its hydrogeological applications to the French territory. J Hydrol 592:125609. https://doi.org/10.1016/j.jhydrol.2020.125609
Mattivi P, Franci F, Lambertini A, Bitelli G (2019) TWI computation: a comparison of different open source GISs. Open Geospatial Data, Software Standards 4:6. https://doi.org/10.1186/s40965-019-0066-y
McCabe MF et al (2017) The future of earth observation in hydrology. Hydrol Earth Syst Sci 21:3879–3914 https://doi.org/10.5194/hess-21-3879-2017
Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2:e1500323–e1500323. https://doi.org/10.1126/sciadv.1500323
Messier D, Ingram RG, Roy D (1986) Physical and biological modifications in response to La Grande hydroelectric complex. In: Martini IP (ed) Canadian inland seas, vol 44. Elsevier, Amsterdam, pp 403–424. https://doi.org/10.1016/S0422-9894(08)70913-9
Métivier V, Massicotte B, Tremblay A, Dupuis P (2017) Monitoring saltwater intrusion in Rupert Bay, Québec, Canada, after the partial diversion of a major tributary. Environ Monit Assess 190:38. https://doi.org/10.1007/s10661-017-6388-2
Ministère de l’Énergie et Ressources naturelles (2016) Géobase du réseau hydrographique du Québec [Geobase of the hydrologic network of Quebec]. Guide de l’utilisateur. Version 1.1. Ministère de l’Énergie et Ressources naturelles, Quebec City, 99 pp
Ministère de l’Énergie et Ressources naturelles (2018) Système d’information géominière du Québec [The spatial reference geomining information system of Quebec]. www.sigeom.mines.gouv.qc.ca. Accessed April 2020
Ministère de l’Énergie et Ressources naturelles (2020a) Projets miniers (Mining projects). Map. Scale 1/8.500.00, Ministère de l’Énergie et Ressources naturelles, Quebec City
Ministère de l’Énergie et Ressources naturelles (2020b) Modèles numériques de terrain hydro cohérents à l’échelle régionale [Regional hydro-coherent digital elevation model]. www.mern.gouv.qc.ca. Accessed April 2020
Ministère des Forêts, de la Faune et des Parcs (2016) Norme de cartographie des dépôts de surface du nord québécois [Standard for mapping surface deposits in northern Quebec]. Projet du Plan Nord. Direction des Inventaires Forestiers, Ministère des Forêts, de la Faune et des Parcs, Quebec City, 13 pp
Ministère des Ressources naturelles et de la Faune (2009) Normes de cartographie écoforestière. Troisième inventaire écoforestier [Ecoforestry mapping standards. Third ecoforestry inventory]. Direction des Inventaires Forestiers, Ministère des Ressources naturelles et de la Faune, Quebec City, 109 pp
Mohammadi-Behzad HR, Charchi A, Kalantari N, Nejad AM, Vardanjani HK (2019) Delineation of groundwater potential zones using remote sensing (RS), geographical information system (GIS) and analytic hierarchy process (AHP) techniques: a case study in the Leylia–Keynow watershed, southwest of Iran. Carbon Evapor 34:1307–1319. https://doi.org/10.1007/s13146-018-0420-7
Murthy KSR, Mamo AG (2009) Multi-criteria decision evaluation in groundwater zones identification in Moyale-Teltele subbasin, South Ethiopia. Int J Remote Sens 30:2729–2740. https://doi.org/10.1080/01431160802468255
Nadeau S, Rosa E, Cloutier V (2018) Stratigraphic sequence map for groundwater assessment and protection of unconsolidated aquifers: a case example in the Abitibi-Témiscamingue region, Québec, Canada. Can Water Resour J Revue Can Ressour Hydriq 43:113–135. https://doi.org/10.1080/07011784.2017.1354722
Nadeau S, Rosa E, Cloutier V, Daigneault R-A, Veillette J (2015) A GIS-based approach for supporting groundwater protection in eskers: application to sand and gravel extraction activities in Abitibi-Témiscamingue, Quebec, Canada. J Hydrol: Region Stud 4:535–549. https://doi.org/10.1016/j.ejrh.2015.05.015
Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world. Large River Syst Sci 308:405. https://doi.org/10.1126/science.1107887
Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072
Quiroz Londoño OM, Romanelli A, Lima ML, Massone HE, Martínez DE (2016) Fuzzy logic-based assessment for mapping potential infiltration areas in low-gradient watersheds. J Environ Manag 176:101–111. https://doi.org/10.1016/j.jenvman.2016.03.038
Rey N, Rosa E, Cloutier V, Lefebvre R (2018) Using water stable isotopes for tracing surface and groundwater flow systems in the Barlow-Ojibway Clay Belt, Quebec, Canada. Can Water Resour J Revue Can Ressour Hydriq 1:22. https://doi.org/10.1080/07011784.2017.1403960
Rodhe A, Seibert J (1999) Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators. Agric For Meteorol 98–99:325–340. https://doi.org/10.1016/S0168-1923(99)00104-5
Rosa E, Dallaire P-L, Nadeau S, Cloutier V, Veillette J, van Bellen S, Larocque M (2018) A graphical approach for documenting peatland hydrodiversity and orienting land management strategies. Hydrol Process 32:873–890. https://doi.org/10.1002/hyp.11457
Rouleau A (1999) Aperçu de l’hydrogéologie en socle précambrien au Québec et des problématiques minières [An overview of the hydrogeology of the Precambrian basement in Quebec and related mining problems]. Hydrogéologie 4:23–32
Roy M, Dell’Oste F, Veillette JJ, de Vernal A, Hélie JF, Parent M (2011) Insights on the events surrounding the final drainage of Lake Ojibway based on James Bay stratigraphic sequences. Quat Sci Rev 30:682–692. https://doi.org/10.1016/j.quascirev.2010.12.008
Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York
Sander P (2007) Lineaments in groundwater exploration: a review of applications and limitations. Hydrogeol J 15:71–74. https://doi.org/10.1007/s10040-006-0138-9
Saranya T, Saravanan S (2020) Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Model Earth Syst Environ 6:1105–1122. https://doi.org/10.1007/s40808-020-00744-7
Saravanan S, Saranya T, Jennifer JJ, Singh L, Selvaraj A, Abijith D (2020) Delineation of groundwater potential zone using analytical hierarchy process and GIS for Gundihalla watershed, Karnataka, India. Arab J Geosci 13:695. https://doi.org/10.1007/s12517-020-05712-0
Seppälä M (1999) Geomorphological aspects of road construction in a cold environment, Finland. Geomorphology 31:65–91. https://doi.org/10.1016/s0169-555x(99)00073-2
Schetagne R, Lalumière R, Terrien J (2006) Suivi environnemental du complexe La Grande. Évolution de la qualité de l’eau [Environmental monitoring of the La Grande complex. Evolution of water quality]. Rapport technique d’analyse des données de 1978 à 2000. GENIVAR Groupe conseil inc. et direction Barrages et Environnement, Hydro-Québec Production, WPS Global, Montreal
Singh LK, Jha MK, Chowdary VM (2018) Assessing the accuracy of GIS-based multi-criteria decision analysis approaches for mapping groundwater potential. Ecol Indic 91:24–37. https://doi.org/10.1016/j.ecolind.2018.03.070
Sørensen R, Zinko U, Seibert J (2006) On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol Earth Syst Sci 10:101–112. https://doi.org/10.5194/hess-10-101-2006
Taylor RG et al (2013) Ground water and climate change. Nat Clim Chang 3:322–329. https://doi.org/10.1038/nclimate1744
Thompson JC, Moore RD (1996) Relations between topography and water table depth in a shallow forest soil. Hydrol Process 10:1513–1525. https://doi.org/10.1002/(SICI)1099-1085(199611)10:11<1513::AID-HYP398>3.0.CO;2-V
Veillette J (1983) Déglaciation de la vallée supérieure de l’Outaouais, le lac Barlow et le Sud du lac Ojibway, Québec [Déglaciation of the upper Ottawa River valley, Lake Barlow and south of Lake Ojibway, Québec]. Géog Phys Quat 37:67–84
Veillette JJ (1994) Evolution and paleohydrology of glacial lakes Barlow and Ojibway. Quat Sci Rev 13:945–971 https://doi.org/10.1016/0277-3791(94)90010-8
Veillette JJ (1995) New evidence for northwestward glacial ice flow, James Bay region, Quebec. In: Current Research 1995-C, Geological Survey of Canada, Ottawa, pp 249–258
Veillette JJ, Roy M (1995) The spectacular cross-striated outcrops of James Bay, Quebec. In: Current Research 1995-C, Geological Survey of Canada, Ottawa, pp 243–248
Veillette JJ, Dyke AS, Roy M (1999) Ice-flow evolution of the Labrador sector of the Laurentide ice sheet: a review, with new evidence from northern Quebec. Quat Sci Rev 18:993–1019. https://doi.org/10.1016/S0277-3791(98)00076-6
Veillette JJ, Roy M, Paulen RC, Ménard M, St-Jacques G (2017) Uncovering the hidden part of a large ice stream of the Laurentide Ice Sheet, northern Ontario, Canada. Quat Sci Rev 155:136–158 https://doi.org/10.1016/j.quascirev.2016.11.008
Vincent J-S (1977) Le Quaternaire recent de la region du cours inférieur de la Grande rivière, Québec [The Quaternary deposits of the lower course of La Grande River, Quebec]. Etude 76-19, Geological Survey of Canada, Ottawa
Yao AB, Albert Goula B, Kane A, Jules Mangoua OM, Kouassi KA (2016) Cartographie du potentiel en eau souterraine du bassin versant de la lobo (Centre-Ouest, Côte d’Ivoire): approche par analyse multicritère [Groundwater potential map of the lobo basin (Central-West Ivory Coast): multi-criteria analysis approach]. Hydrol Sci J – J Sci Hydrol 61:856–867
Youan Ta M, Lasm T, Jourda JPJ, Bachir Saley M, Adja Miessan G, Kouamé K, Biémi J (2011) Cartographie des eaux souterraines en milieu fissuré par analyse multicritère [Groundwater map in a fractured environment by multicriteria analysis]. Rev Int Géomat 21:43–71
Acknowledgements
The essential contribution of the Cree Nation of Eastmain Chief and band council, tallymen, community members and of the Cree Nation Government is acknowledged. The authors wish to highlight the essential contributions of Melissa Saganash and Kenneth Cheezo to the development of this research project. The authors thank the two anonymous reviewers and editor for constructive comments that greatly contributed to this manuscript.
Funding
This project was possible thanks to funding from the Ministère de l’Environnement et de la Lutte contre les changements climatiques du Québec (MELCC: project no. 2058049), the UQAT foundation (FUQAT: project no. 2058036) and the Cree Human Resources Development (CHRD) program.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nadeau, S., Rosa, E., Cloutier, V. et al. Spatial analysis approaches for the evaluation and protection of groundwater resources in large watersheds of the Canadian Shield. Hydrogeol J 29, 2053–2075 (2021). https://doi.org/10.1007/s10040-021-02367-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-021-02367-3
Keywords
- Groundwater protection
- Multi-criteria analysis
- Land management
- Geographic information systems
- Canada