Skip to main content
Log in

Predicting water flow in fully and partially saturated porous media: a new fractal-based permeability model

Prévision de l’écoulement de l’eau dans les milieux poreux totalement et partiellement saturés: un nouveau modèle de perméabilité basé sur les fractales

Predicción del flujo de agua en medios porosos total y parcialmente saturados: un nuevo modelo de permeabilidad basado en fractales

完全饱和与部分饱和多孔介质中的水流预测:基于分形的新渗透率模型

Previsão do fluxo de água em meios porosos saturados e não saturados: um novo modelo fractal da permeabilidade

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Predicting the permeability of porous media in saturated and partially saturated conditions is of crucial importance in many geo-engineering areas, from water resources to vadose zone hydrology or contaminant transport predictions. Many models have been proposed in the literature to estimate the permeability from properties of the porous media such as porosity, grain size or pore size. This study develops a model of the permeability for porous media saturated by one or two fluid phases with all physically based parameters using a fractal upscaling technique. The model is related to microstructural properties of porous media such as fractal dimension for pore space, fractal dimension for tortuosity, porosity, maximum radius, ratio of minimum pore radius and maximum pore radius, water saturation and irreducible water saturation. The model is favorably compared to existing and widely used models from the literature. Then, comparison with published experimental data for both unconsolidated and consolidated samples shows that the proposed model estimates the permeability from the medium properties very well.

Résumé

La prédiction de la perméabilité des milieux poreux dans des conditions de saturation et de saturation partielle est d’une importance cruciale dans de nombreux domaines de la géo-ingénierie, des ressources en eau à l’hydrologie de la zone vadose ou aux prévisions du transport de contaminants. De nombreux modèles ont été proposés dans la littérature pour estimer la perméabilité à partir des propriétés des milieux poreux, telles que la porosité, la taille des grains ou la taille des pores. Cette étude développe un modèle de perméabilité pour les milieux poreux saturés par une ou deux phases fluides avec tous les paramètres basés sur la physique en utilisant une technique de changement d’échelle fractal. Le modèle est lié aux propriétés microstructurelles des milieux poreux telles que la dimension fractale de l’espace des pores, la dimension fractale de la tortuosité, la porosité, le rayon maximal, le rapport entre le rayon minimal et le rayon maximal des pores, la saturation en eau et la saturation irréductible en eau. Le modèle est favorablement comparé aux modèles existants et largement utilisés dans la littérature. Ensuite, la comparaison avec les données expérimentales publiées pour les échantillons non consolidés et consolidés montre que le modèle proposé estime très bien la perméabilité à partir des propriétés du milieu.

Resumen

La predicción de la permeabilidad de los medios porosos en condiciones de saturación o de saturación parcial tiene una importancia fundamental en muchos ámbitos de la geoingeniería, desde los recursos hídricos hasta la hidrología de la zona vadosa o las predicciones de transporte de contaminantes. En la literatura se han propuesto muchos modelos para estimar la permeabilidad a partir de las propiedades de los medios porosos, como la porosidad, el tamaño de grano o el tamaño de poro. Este estudio desarrolla un modelo de permeabilidad para medios porosos saturados por una o dos fases fluidas con todos los parámetros basados en la física utilizando una técnica de escalado fractal. El modelo está relacionado con las propiedades microestructurales de los medios porosos, como la dimensión fractal del espacio de los poros, la dimensión fractal de la tortuosidad, la porosidad, el radio máximo, la relación entre el radio mínimo de los poros y el radio máximo de los poros, la saturación de agua y la saturación de agua irreducible. El modelo se compara favorablemente con los modelos existentes y ampliamente utilizados en la literatura. A continuación, la comparación con los datos experimentales publicados tanto para muestras no consolidadas como consolidadas muestra que el modelo propuesto estima muy bien la permeabilidad a partir de las propiedades del medio.

摘要

在从水资源到包气带水文学或者污染物运移预测的许多地球工程领域,饱和与部分饱和条件多孔介质的渗透性预测都至关重要。已有文献提出的许多模型根据多孔介质的性质,例如孔隙率,粒径或孔径来估算渗透率。本研究使用分形升尺度方法开发了一种利用单相或两相流体的基于物理的所有参数多孔介质的渗透率模型。该模型与多孔介质的微结构特性有关,例如孔隙的分形维数,曲折度,孔隙率,最大半径,最小孔隙半径与最大孔隙半径之比,水饱和度和残留水饱和度的分形维数。将该模型与文献中现有的和广泛使用的模型进行了比较,然后与未固结和固结样品已发表的实验数据进行了比较,结果表明所提出的模型可以很好地估计介质的渗透率。

Resumo

Conhecer a permeabilidade de meios porosos saturados e não saturados é crucial para a área de geologia de engenharia, tanto para estudos hidrológicos em zonas saturadas e não saturadas como para o transporte de contaminantes. Muitos modelos têm sido propostos na literatura para estimar a permeabilidade de meios porosos a partir de suas propriedades, como porosidade, granulometria ou tamanho dos poros. Este estudo desenvolveu um modelo de permeabilidade para meios porosos saturados por um ou dois fluidos com todos os parâmetros fisicamente parametrizados por uma técnica de escalonamento fractal. O modelo correlaciona as propriedades microestruturais dos meios porosos, como dimensão fractal de espaçamento dos poros, dimensão fractal de tortuosidade, porosidade, raio máximo, razão entre raio mínimo e máximo do poro, saturação de água e saturação imóvel (ou irredutível). O modelo é favoravelmente comparado aos modelos existentes e amplamente usados na literatura. Portanto, sua aplicação em dados experimentais publicados na literatura apresentou bons resultados comparativos nas estimativas de permeabilidade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbireddy COR, Clayton CRI (2009) A review of modern particle sizing methods. Geotech Eng 162:193–201

  • Abeykoon T, Udukumburage R, Gallage C, Uchimura T (2017) Comparison of direct and indirect measured soil-water characteristic curves for a silty sand. Int J GEOMATE 13:9–16

    Article  Google Scholar 

  • Andreola F, Leonelli C, Romagnoli M, Miselli P (2000) Techniques used to determine porosity. Am Ceramic Soc Bull 79:49–52

    Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Petroleum Trans AIME 146:54–62

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Dover, New York

  • Benzi R, Succi S, Vergassola M (1992) The lattice Boltzmann equation: theory and applications. Phys Rep 222:145–197

  • Biella G, Lozej A, Tabacco I (1983) Experimental study of some hydrogeophysical properties of unconsolidated porous media. Groundwater 21:741–751

  • Bolève A, Crespy A, Revil A, Janod F, Mattiuzzo JL (2007) Streaming potentials of granular media. Influence of the Dukhin and Reynolds numbers. J Geophys Res B08204

  • Boulin PF, Bretonnier P, Gland N, Lombard JM (2012) Contribution of the steady state method to water permeability measurement in very low permeability porous media. Oil Gas Sci Technol 67:387–401

  • Brooks R, Corey A (1964) Hydraulic properties of porous media and their relation to drainage design. Trans ASAE 7:28–28

  • Bryant S, Blunt M (1992) Prediction of relative permeability in simple porous media. Phys Rev A 46(4):2004–2011

  • Buckingham E (1907) Studies on the movement of soil moisture. US Department of Agriculture, Bureau of Soils no. 38, USDA, Washington, DC, 61 pp

  • Burdine N (1953) Relative permeability calculations from pore size distribution data: Journal of Petroleum Technology 5:71–78

  • Cai JC, Hu XY, Standnes DC, You LJ (2012a) An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloids Surf A: Physicochem Eng Aspects 414:228–233

  • Cai JC, You LJ, Hu XY, Wang J, Peng RH (2012b) Prediction of effective permeability in porous media based on spontaneous imbibition effect. Int J Modern Phys C 23. https://doi.org/10.1142/S0129183112500544

  • Cai J, Boming Y (2011) A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp Porous Media 89:251–263

    Article  Google Scholar 

  • Carles BA, Sanchez-Vila X, Freixa A, Romaní AM, Rubol S, Garcia DF (2017) A mechanistic model (BCC-PSSICO) to predict changes in the hydraulic properties for bio-amended variably saturated soils. Water Resour Res 53:93–109

    Article  Google Scholar 

  • Carman P (1938) Determination of the specific surface of powders, part II. J Soc Chem Industry 57:225–234

    Google Scholar 

  • Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24:755–769

    Article  Google Scholar 

  • Cerepi A, Cherubini A, Garcia B, Deschamps H, Revil A (2017) Streaming potential coupling coefficient in unsaturated carbonate rocks. Geophys J Int 210:291–302

    Article  Google Scholar 

  • Chauveteau G, Zaitoun A (1981) Basic rheological behavior of xanthan polysaccharide solutions in porous media: effect of pore size and polymer concentration. Proc. of the third European Symposium on Enhanced Oil Recovery, Bournemouth, UK, September 1981, pp 197–212

  • Chen H, Chen K, Yang M, Xu P (2020) A fractal capillary model for multiphase flow in porous media with hysteresis effect. Int J Multiphase Flow 125:103208

    Article  Google Scholar 

  • Chen X, Yao G (2017) An improved model for permeability estimation in low permeable porous media based on fractal geometry and modified Hagen-Poiseuille flow. Fuel 210:748–757

    Article  Google Scholar 

  • Chilindar GV (1964) Relationship between porosity, permeability and grain size distribution of sands and sandstones: deltaic and shallow marine deposits, vol I. Elsevier, Amsterdam, pp 71–75

  • Coates GR, Peveraro R, Hardwick A, Roberts D (1991) The magnetic resonance imaging log characterized by comparison with petrophysical properties and laboratory core data. Society of Petroleum Engineers, Richardson, TX

  • Daigle H (2016) Application of critical path analysis for permeability prediction in natural porous media. Adv Water Resour 96:43–54

    Article  Google Scholar 

  • Darcy H (1856) Les fontaines publiques de la ville de Dijon [The public fountains of the village of Dijon]. Dalmont, Paris

  • De Vries E, Raoof A, Genuchten M (2017) Multiscale modelling of dual-porosity porous media: a computational pore-scale study for flow and solute transport. Adv Water Resour 105:82–95

    Article  Google Scholar 

  • Doussan C, Ruy S (2009) Prediction of unsaturated soil hydraulic conductivity with electrical conductivity. Water Resour Res 45

  • Doyen PM (1988) Permeability, conductivity, and pore geometry of sandstone. J Geophys Res: Solid Earth 93:7729–7740

    Article  Google Scholar 

  • Dullien FAL (1992) Porous media: fluid transport and pore structure. Academic, San Diego

  • Fan Y, Grant G, Anderson SP (2019) Water within, moving through, and shaping the earth’s surface: introducing a special issue on water in the critical zone. Hydrol Processes 33:3146–3151

    Article  Google Scholar 

  • Feder J, Aharony A (1989) Fractals in physics: essays in Honour of Benoit B. Mandelbrot. North Holland, Amsterdam

  • Feng YJ, Yu BM, Zou MQ, Zhang DM (2004) A generalized model for the effective thermal conductivity of porous media based on self-similarity. J Phys D Appl Phys 37:3030–3040

    Article  Google Scholar 

  • Feng Y, Boming Y (2007) Fractal dimension for tortuous streamtubes in porous media. Fractals 15(04):385–390. https://doi.org/10.1142/S0218348X07003654

  • Ghanbarian B (2020a) Applications of critical path analysis to uniform grain packings with narrow conductance distributions: I single-phase permeability. Adv Water Res 137:103529

    Article  Google Scholar 

  • Ghanbarian B (2020b) Applications of critical path analysis to uniform grain packings with narrow conductance distributions: II water relative permeability. Adv Water Res 137:103524

    Article  Google Scholar 

  • Ghanbarian B, Ioannidis MA, Hunt AG (2017a) Theoretical insight into the empirical tortuosity-connectivity factor in the Burdine-Brooks-Corey water relative permeability model. Water Res Res 53(12):10395–10410. https://doi.org/10.1002/2017WR021753

  • Ghanbarian B, Allen H, Todd S, Nicholas J (2017b) Upscaling soil saturated hydraulic conductivity from pore throat characteristics. Adv Water Resour 104:105–113

    Article  Google Scholar 

  • Glover P, Zadjali II, Frew KA (2006) Permeability prediction from MICP and NMR data using an electrokinetic approach. Geophysics 71:F49–F60

  • Glover PWJ, Dery N (2010) Streaming potential coupling coefficient of quartz glass bead packs: dependence on grain diameter, pore size, and pore throat radius. Geophysics 75:F225–F241

    Article  Google Scholar 

  • Glover PWJ, Walker E (2009) Grain-size to effective pore-size transformation derived from electrokinetic theory. Geophysics 74(1):E17–E29

    Article  Google Scholar 

  • Guarracino L (2007) Estimation of saturated hydraulic conductivity Ks from the Van Genuchten shape parameter. Water Resour Res 43, W11502

  • Guarracino L, Jougnot D (2018) A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media. J Geophys Res: Solid Earth 123:52–65

    Article  Google Scholar 

  • Guarracino L, Rotting T, Carrera J (2014) A fractal model to describe the evolution of multiphase flow properties during mineral dissolution. Adv Water Resour 67:78–86

    Article  Google Scholar 

  • Hidajat I, Singh M, Cooper J, Mohanty KK (2002) Permeability of porous media from simulated NMR response. Transp Porous Media 48:225–247

    Article  Google Scholar 

  • Hu X, Hu S, Jin F, Huang S (2017) Physics of petroleum reservoirs. Springer, Heidelberg

    Book  Google Scholar 

  • Hunt A (2001) Applications of percolation theory to porous media with distributed local conductances. Adv Water Resour 24:279–307

    Article  Google Scholar 

  • Ioannidis MA, Chatzis I, Lemaire C, Perunarkilli R (2006) Unsaturated hydraulic conductivity from nuclear magnetic resonance measurements. Water Resour Res 42(7). https://doi.org/10.1029/2006WR004955

  • Johnson DL, Plona TJ, Kojima H (1986) Probing porous media with 1st sound, 2nd sound, 4th sound and 3rd sound: physics and chemistry of porous media, vol II. AIP Conf Proceed 154:243. https://doi.org/10.1063/1.36398

  • Jougnot D, Revil A, Lu N, Wayllace A (2010) Transport properties of the Callovo Oxfordian clay rock under partially saturated conditions. Water Resour Res 46, W08514

  • Jougnot D, Linde N, Revil A, Doussan C (2012) Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils. Vadose Zone J 11:272–286

    Article  Google Scholar 

  • Jouniaux L, Bernard ML, Zamora M, Pozzi JP (2000) Streaming potential in volcanic rocks from Mount Pelee. J Geophys Res B 105:8391–8401

    Article  Google Scholar 

  • Jurin J (1719) II. An account of some experiments shown before the royal society; with an enquiry into the cause of the ascent and suspension of water in capillary tubes. Philos Trans R Soc Lond 30:739–747

    Google Scholar 

  • Katz AJ, Thompson AH (1985) Fractal sandstone pores: implications for conductivity and pore formation: Phys. Rev Lett 54(12):1325–1328

    Article  Google Scholar 

  • Katz AJ, Thompson AH (1986) Quantitative prediction of permeability in porous rock. Phys Rev B 34(11):8179–8181

    Article  Google Scholar 

  • Kimura M (2018) Prediction of tortuosity, permeability, and pore radius of water-saturated unconsolidated glass beads and sands. J Acoustical Soc Am 141:3154–3168

    Article  Google Scholar 

  • Koch K, Revil A, Holliger K (2012) Relating the permeability of quartz sands to their grain size and spectral induced polarization characteristics. Geophys J Int 190:230–242

    Article  Google Scholar 

  • Kostek S, Schwartz LM, Johnson DL (1992) Fluid permeability in porous media: comparison of electrical estimates with hydrodynamical calculations. Phys Rev B 45(1):186–195

    Article  Google Scholar 

  • Kozeny J (1927) Uber kapillare Leitung des Wassers im Boden Aufsteigversikeung und Anwendung auf die Bemasserung. Math-naturw 136, Sitzber. Akad. Wiss., Vienna, pp 271–306

  • Li K, Horne RN (2004) Universal capillary pressure and relative permeability model from fractal characterization of rock. Proceedings, twenty-ninth workshop on geothermal reservoir engineering, Stanford University, Stanford, CA

  • Li K, Horne RN (2006a) Fractal modeling of capillary pressure curves for the geysers rocks. Geothermics 35:198–207

    Article  Google Scholar 

  • Li K, Horne RN (2006b) Comparison of methods to calculate relative permeability from capillary pressure in consolidated water-wet porous media. Water Resour Res 42(6). https://doi.org/10.1029/2005WR004482

  • Li M, Wilkinson D, Patchigolla K (2005) Comparison of particle size distributions measured using different techniques. Particulate Sci Technol 23:265–284

    Article  Google Scholar 

  • Liang M, Yang S, Yu B (2014) A fractal streaming current model for charged microscale porous media. J Electrost 72(6):441–446

  • Liang M, Yang S, Miao T, Yu B (2015) Analysis of electroosmotic characters in fractal porous media. Chem Eng Sci 127:202–209

  • Lis SA (2019) Petrophysical rock typing and permeability prediction in tight sand stone reservoir. Acta Geophysica 67:1895–1911

  • Lourenço S, Gallipoli D, Toll D, Evans F, Medero G (2007) Determination of the soil water retention curve with tensiometers. In: Schanz T (eds) Experimental unsaturated soil mechanics. Springer Proceedings in Physics 112. Springer, Heidelberg. https://doi.org/10.1007/3-540-69873-6_9

  • Mahiya GF (1999) Experimental measurement of steam-water relative permeability. MSc Thesis, Stanford University, Stanford, CA

  • Maineult A, Jougnot D, Revil A (2018) Variations of petrophysical properties and spectral induced polarization in response to drainage and imbibition: a study on a correlated random tube network. Geophys J Int 212:1398–1411

    Article  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. Freeman, New York

  • Meng H, Shi Q, Liu T, Liu F, Chen P (2019) The percolation properties of electrical conductivity and permeability for fractal porous media. Energies 12:1085

    Article  Google Scholar 

  • Moghadasi J, Muller Steinhagen H, Jamialahmadi M, Sharif A (2004) Theoretical and experimental study of particle movement and deposition in porous media during water injection. J Pet Sci Eng 43:163–181

    Article  Google Scholar 

  • Ngo N, Tamma K (2001) Microscale permeability predictions of porous fibrous media. Int J Heat Mass Transf 44:3135–3145

    Article  Google Scholar 

  • Nnaemeka Ezekwe (2010) Petroleum reservoir engineering practice. Prentice Hall, Upper Saddle River

  • Othman M, Helwani Z, Martunus (2010) Simulated fractal permeability for porousmembranes. Appl Math Model 34:2452–2464

    Article  Google Scholar 

  • Rahimi H (1977) Comparison of direct and indirect methods for determining the coefficient of permeability of clays. PhD Thesis, Oklahoma State University, Stillwater, OK

  • Revil A, Cathles LM III (1999) Permeability of shaly sands. Water Resour Res 3:651–662

    Article  Google Scholar 

  • Revil A, Florsch N (2010) Determination of permeability from spectral induced polarization in granular media. Geophys J Int 181:1480–1498

    Google Scholar 

  • Revil A, Kessouri P, Torres-Verdin C (2014) Electrical conductivity, induced polarization, and permeability of the Fontainebleau sandstone. Geophysics 79:D301–D318

    Article  Google Scholar 

  • Richesson S, Sahimi M (2019) Hertz-Mindlin theory of contacting grains and the effective-medium approximation for the permeability of deforming porous media. Geophys Res Lett 46:8039–8045

    Article  Google Scholar 

  • Rosenzweig R, Shavit U, Furman A (2009) The influence of biofilm spatial distribution scenarios on hydraulic conductivity of unsaturated soils. Vadose Zone J 8:1080–1084

    Article  Google Scholar 

  • Sander R, Pan Z, Connell LD (2017) Laboratory measurement of low permeability unconventional gas reservoir rocks: a review of experimental methods. J Natural Gas Sci Eng 37:248–279

    Article  Google Scholar 

  • Samsó R, Garcia J, Molle P, Forquet N (2016) Modelling bioclogging in variably saturated porous media and the interactions between surface/subsurface flows: application. J Environ Manag 165:271–279

  • Sen P, Scala C, Cohen MH (1981) A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. J Soil Mech Found Division 46:781–795

    Google Scholar 

  • Soldi M, Guarracino L, Jougnot D (2017) A simple hysteretic constitutive model for unsaturated flow. Transp Porous Media 120:271–285

    Article  Google Scholar 

  • Soldi M, Guarracino L, Jougnot D (2019) An analytical effective excess charge density model to predict the streaming potential generated by unsaturated flow. Geophys J Int 216:380–394

    Google Scholar 

  • Soldi M, Guarracino L, Jougnot D (2020) An effective excess charge model to describe hysteresis effects on streaming potential. J Hydrol 588, 124949

  • Swanson BF (1981) A simple correlation between permeabilities and mercury capillary pressures. J Petrol Technol 33(12):2498–2504

  • Thanh LD, Jougnot D, Van Do P, Van Nghia AN (2019) A physically based model for the electrical conductivity of water-saturated porous media. Geophys J Int 219:866–876

    Article  Google Scholar 

  • Thanh L, Jougnot D, Do P, Ca N, Hien N (2020a) A physically based model for the streaming potential coupling coefficient in partially saturated porous media. Water 12:1588

    Article  Google Scholar 

  • Thanh L, Jougnot D, Do P, Mendieta M, Ca N, Hoa V, Hien N (2020b) Electroosmotic coupling in porous media, a new model based on a fractal upscaling procedure. Transp Porous Media 134:249–274

    Article  Google Scholar 

  • Thanh LD, Jougnot D, Van Do P, Van Nghia AN, Tuyen VP, Ca NX, Hien NT (2020c) A physically-based model for the electrical conductivity of partially saturated porous media. Geophys J Int 223(3):993–1006

  • Thanh LD, Van Do P, Van Nghia N, Ca NX (2018) A fractal model for streaming potential coefficient in porous media. Geophys Prospect 66:753–766

    Article  Google Scholar 

  • Vinogradov J, Jaafar MZ, Jackson MD (2010) Measurement of streaming potential coupling coefficient in sandstones saturated with natural and artificial brines at high salinity. J Geophys Res 115. https://doi.org/10.1029/2010JB007593

  • Wei W, Cai J, Hu X, Han Q (2015) An electrical conductivity model for fractal porous media. Geophys Res Lett 42:4833–4840

    Article  Google Scholar 

  • Xiao B, Zhang X, Wang W, Long G, Chen H, Kang H, Ren W (2018) A fractal model for water flow through unsaturated porous rocks. Fractals 26:1840015

    Article  Google Scholar 

  • Xu P, Yu B (2008) Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Adv Water Resour 31:74–81

    Article  Google Scholar 

  • Yu B, Cheng P (2002) A fractal permeability model for bi-dispersed porous media. Int J Heat Mass Transf 45:2983–2993

    Article  Google Scholar 

  • Yu B, Liu W (2004) Fractal analysis of permeabilities for porous media. AICHE J 50:46–57

    Article  Google Scholar 

  • Zainaldin SA, Glover PWJ, Lorinczi P (2017) Synthetic fractal modelling of heterogeneous and anisotropic reservoirs for use in simulation studies: implications on their hydrocarbon recovery prediction. Transp Porous Med 116:181–212

Download references

Acknowledgements

This research is funded by Thuyloi University Foundation for Science and Technology under grant number TLU.STF.19-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luong Duy Thanh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A., N.V.N., Jougnot, D., Thanh, L.D. et al. Predicting water flow in fully and partially saturated porous media: a new fractal-based permeability model. Hydrogeol J 29, 2017–2031 (2021). https://doi.org/10.1007/s10040-021-02364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02364-6

Keywords

Navigation