Skip to main content

Hydraulic tomography analysis of municipal-well operation data with geology-based groundwater models

Analyse par tomographie hydraulique des données d’exploitation d’un puits municipal à l’aide de modèles d’eaux souterraines fondés sur la géologie

Análisis por tomografía hidráulica de datos de explotación de pozos municipales con modelos de aguas subterráneas en función de la geología

采用基于地质的地下水模型的市政井运行数据的水力层析分析

Análise de tomografia hidráulica de dados de operação de poços municipais com modelos de água subterrânea baseados em geologia

A Correction to this article was published on 06 May 2021

This article has been updated

Abstract

The sustainable management of groundwater resources is essential to municipalities worldwide due to increasing water demand. Planning for the optimized use of groundwater resources requires reliable estimation of hydraulic parameters such as hydraulic conductivity (K) and specific storage (Ss). However, estimation of hydraulic parameters can be difficult with dedicated pumping tests while municipal wells are in operation. In this study, the K and Ss of a highly heterogeneous, multi-aquifer/aquitard system are estimated through the inverse modeling of water-level data from observation wells collected during municipal well operations. In particular, four different geological models are calibrated by coupling HydroGeoSphere (HGS) with the parameter estimation code PEST. The joint analysis of water-level records resulting from fluctuating pumping and injection operations amounts to a hydraulic tomography (HT) analysis. The four geological models are well calibrated and yield reliable estimates that are consistent with previously studies. Overall, this research reveals that: (1) the HT analysis of municipal well records is feasible and yields reliable K and Ss estimates for individual geological units where drawdown records are available; (2) these estimates are obtained at the scale of intended use, unlike small-scale estimates typically obtained through other characterization methods; (3) the HT analysis can be conducted using existing data, which leads to substantial cost savings; and (4) data collected during municipal well operations can be used in the development of new groundwater models or in the calibration of existing groundwater models, thus they are valuable and should be archived.

Résumé

La gestion durable des ressources en eaux souterraines est essentielle pour les municipalités à travers le monde en raison d’une demande en eau croissante. La planification d’une utilisation optimisée des ressources en eaux souterraines requiert une évaluation fiable des paramètres hydrauliques, tels que la conductivité hydraulique (K) et le coefficient d’emmagasinement (Ss). Cependant, l’estimation des paramètres hydrauliques à l’aide de test de pompage dédiés, alors que les puits communaux sont en fonctionnement, peut être difficile. Dans la présente étude, le K et le Ss d’un système très hétérogène constitué d’aquifères et aquitards multiples sont estimés par le biais d’une modélisation inverse des données de niveau d’eau provenant de puits d’observation, collectées pendant l’exploitation de l’ouvrage communal. En particulier, quatre modèles géologiques différents sont calés par couplage de HydroGeoSpher (HGS) et du code PEST, code d’estimation de paramètres. L’analyse conjointe des enregistrements du niveau d’eau tel. qu’il résulte d’opérations alternées de pompage et d’injection, revient à réaliser une analyse par tomographie hydraulique (TH). Les quatre modèles géologiques sont calés correctement et fournissent des estimations fiables compatibles avec les études précédentes. Dans l’ensemble, cette recherche révèle que: (1) l’analyse TH des enregistrements du puits communal est possible et fournit des estimations fiables de K et de Ss pour les unités géologiques prises séparément où l’enregistrement des rabattements est disponible; (2) ces estimations sont obtenues à l’échelle de l’utilisation projetée, à la différence des estimations à petite échelle habituellement obtenues grâce à d’autres méthodes de caractérisation; (3) l’analyse TH peut être conduite en utilisant les données existantes, ce qui conduit à de substantielles réductions de coûts; et (4) les données collectées lors de l’exploitation du puits communal peuvent être utilisées dans le développement de modèles nouveaux ou dans le calage de modèles existants des eaux souterraines, elles sont donc précieuses et doivent être archivées.

Resumen

La gestión sostenible de los recursos hídricos subterráneos es esencial en los municipios de cualquier parte del mundo debido a la creciente demanda de agua. La planificación del uso optimizado del agua subterránea requiere una estimación confiable de los parámetros hidráulicos, como la conductividad hidráulica (K) y el almacenamiento específico (Ss). Sin embargo, la estimación de los parámetros hidráulicos puede ser difícil con ensayos de bombeo específicos mientras los pozos municipales están en funcionamiento. En este estudio, el K y el Ss de un sistema altamente heterogéneo de acuíferos y acuíferos múltiples se estiman mediante la modelización inversa de los datos de nivel de agua obtenidos en pozos de observación durante las operaciones de los pozos municipales. En particular, se calibran cuatro modelos geológicos diferentes acoplando HydroGeoSphere (HGS) con el código de estimación de parámetros PEST. El análisis conjunto de los registros de nivel de agua resultantes de las operaciones de bombeo e inyección que fluctúan equivale a un análisis de tomografía hidráulica (HT). Los cuatro modelos geológicos están bien calibrados y arrojan estimaciones confiables que concuerdan con estudios anteriores. En general, esta investigación revela que (1) el análisis de HT de los registros de pozos municipales es factible y arroja estimaciones confiables de K y Ss para unidades geológicas individuales en las que se dispone de registros de depresión; (2) estas estimaciones se obtienen a la escala de uso prevista, a diferencia de las estimaciones a pequeña escala que se obtienen típicamente a través de otros métodos de caracterización; (3) el análisis de HT puede realizarse utilizando datos existentes, lo que conduce a un ahorro sustancial de costos; y (4) los datos recogidos durante las operaciones de pozos municipales pueden utilizarse en el desarrollo de nuevos modelos de aguas subterráneas o en la calibración de los modelos de aguas subterráneas existentes, por lo que son valiosos y deben ser por lo tanto almacenados.

摘要

由于需水量的不断增加,地下水资源的可持续管理对全世界城市来说都是至关重要的。地下水资源优化利用规划需要可靠地估算水力参数,例如渗透系数(K)和单位储水系数(Ss)。但是,在市政井运行期间,使用专用的抽水试验很难估计水力参数。在这项研究中,通过对市政井运行过程中收集的观测井水位数据进行反演,可以估算出高度非均质的多个含水层/隔水层系统的KSs。具体而言,通过将HydroGeoSphere(HGS)与参数估计代码PEST耦合,校准了四个不同的地质模型。波动的开采和注入产生的水位记录的联合分析类似水力层析成像(HT)分析。四种地质模型都经过了很好的校准,并且得出的可靠估计与先前的研究一致。总体而言,这项研究表明:(1)对城市井记录进行HT分析是可行的,并且可以对存在可用降深记录的单个地质单元进行可靠的KSs估计; (2)这些估计是在预期用途尺度上获得的,与通常通过其他表征方法获得的小尺度估算不同; (3)HT分析可以使用现有数据进行,从而可以节省大量成本; (4)在市政井运行过程中收集的数据可用于开发新的地下水模型或用于现有地下水模型的校准,因此它们很有价值,应该归档化处理。

Resumo

A gestão sustentável dos recursos hídricos subterrâneos é essencial para os municípios em todo o mundo devido à crescente demanda por água. O planejamento para o uso ideal dos recursos hídricos subterrâneos requer uma estimativa confiável dos parâmetros hidráulicos, como condutividade hidráulica (K) e armazenamento específico (Ss). No entanto, estimar os parâmetros hidráulicos pode ser difícil com testes de bombeamento dedicados enquanto os poços municipais estão em operação. Neste estudo, a K e o Ss de um sistema multiaquífero/aquitardo altamente heterogêneo são estimados através da modelagem inversa de dados de nível de água de poços de observação coletados durante operações de poços municipais. Em particular, quatro modelos geológicos diferentes são calibrados acoplando HydroGeoSphere (HGS) com o código de estimativa do parâmetro PEST. A análise conjunta dos registros de nível de água resultantes de operações de bombeamento e injeção flutuantes é equivalente a uma análise de tomografia hidráulica (TH). Os quatro modelos geológicos são bem calibrados e fornecem estimativas confiáveis ​​que são consistentes com estudos anteriores. No geral, esta pesquisa revela que: (1) a análise de TH de registros de poços municipais é viável e produz estimativas de K e Ss confiáveis ​​para unidades geológicas individuais onde os registros de retirada estão disponíveis; (2) essas estimativas são obtidas na escala de uso pretendida, ao contrário das estimativas em pequena escala normalmente obtidas por outros métodos de caracterização; (3) A análise de TH pode ser conduzida usando dados existentes, o que leva a economias de custo substanciais; e (4) os dados coletados durante as operações de poços municipais podem ser usados ​​no desenvolvimento de novos modelos de água subterrânea ou na calibração de modelos existentes de água subterrânea, portanto, são valiosos e devem ser arquivados.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Change history

References

  1. Alexander M, Berg SJ, Illman WA (2011) Field study of hydrogeologic characterization methods in a heterogeneous aquifer. Ground Water 49:365–382. https://doi.org/10.1111/j.1745-6584.2010.00729.x

    Article  Google Scholar 

  2. Aquanty Inc (2018) HydroGeoSphere: a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport.https://www.aquanty.com/hgs-download. Accessed 13 January 2021

  3. ARANZ Geo Ltd (2015) Leapfrog Hydro 2.2.3. 3D geological modeling software. ARANZ Geo Ltd, Christchurch, New Zealand

  4. Bajc AF, Newton MJ (2007) Mapping the subsurface of Waterloo region, Ontario, Canada: an improved framework of quaternary geology for hydrogeological applications. J Maps 219–230. https://doi.org/10.1080/jom.2007.9710840

  5. Bajc AF, Shirota J (2007) Three-dimensional mapping of surficial deposits in the regional municipality of Waterloo, southwestern Ontario. Groundwater Resources Study 3. Ontario Geological Survey, Sudbury, ON

    Google Scholar 

  6. Berg SJ, Illman WA (2011a) Capturing aquifer heterogeneity: comparison of approaches through controlled sandbox experiments. Water Resour Res 47:1–17. https://doi.org/10.1029/2011WR010429

    Article  Google Scholar 

  7. Berg SJ, Illman WA (2011b) Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system. Water Resour Res 47. https://doi.org/10.1029/2011WR010616

  8. Berg SJ, Illman WA (2013) Field study of subsurface heterogeneity with steady state hydraulic tomography. Ground Water 51:29–40. https://doi.org/10.1111/j.1745-6584.2012.00914.x

    Article  Google Scholar 

  9. Berg SJ, Illman WA (2015) Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site. Groundwater 53:71–89. https://doi.org/10.1111/gwat.12159

    Article  Google Scholar 

  10. Blackport Hydrogeology Inc (2012a) Tier three water budget and local area risk assessment: River wells, Pompeii, Woolner and Forwell well fields characterization study. Report prepared for the Regional Municipality of Waterloo. Blackport Hydrogeology, Waterloo, ON

  11. Blackport Hydrogeology Inc (2012b) Tier three water budget and local area risk assessment: Waterloo north, William street and Lancaster well fields characterization study. Report prepared for the regional municipality of Waterloo. Blackport Hydrogeology, Waterloo, ON

  12. Blackport RJ, Meyer PA, Martin PJ (2014) Toward an understanding of the Waterloo Moraine hydrogeology. Can Water Resour J 39(2):120–135

    Article  Google Scholar 

  13. Bohling GC, Zhan X, Butler JJ, Zheng L (2002) Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities. Water Resour Res 38. https://doi.org/10.1029/2001WR001176.60-1-60-15

  14. Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12(3):423–428

    Article  Google Scholar 

  15. Callow IP (1996) Optimizing aquifer production for multiple wellfield conditions in Kitchener, Ontario. MSc Thesis, University of Waterloo, Waterloo, ON

  16. Cardiff M, Bakhos T, Kitanidis PK, Barrash W (2013a) Aquifer heterogeneity characterization with oscillatory pumping: sensitivity analysis and imaging potential. Water Resour Res 49:5395–5410. https://doi.org/10.1002/wrcr.20356

    Article  Google Scholar 

  17. Cardiff M, Barrash W, Kitanidis PK (2013b) Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities. Water Resour Res 49:7311–7326. https://doi.org/10.1002/wrcr.20519

    Article  Google Scholar 

  18. Carle SF, Fogg GE (1997) Modeling spatial variability with one and multi-dimensional continuous Markov chains. Math Geol 29(7):891–918

    Article  Google Scholar 

  19. Carr JC, Beatson RK, Cherrie JB, Mitchell TJ, Fright WR, McCallumm BR, Evans TR (2001) Reconstruction and representation of 3-D objects with radial basis functions. SIGGRAPH Computer Graphics Proceedings, Annual Conference Series, August 2001, AMC SIGGRAPH, pp 67–76. http://education.siggraph.org/. Accesssed March 2021

  20. CH2M HILL (2003a) Results of construction and testing of the ASR wells at the Mannheim Water Treatment Plant site: the Region of Waterloo. CH2M HILL, Englewood, CO

  21. CH2M HILL, Papadopulos Associates (2003b) Alder Creek Groundwater Study (final report): the Region of Waterloo. CH2M HILL, Englewood, CO

  22. Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. Am Geophys Union 27:526–534

    Article  Google Scholar 

  23. Doherty J (2005) PEST: model-independent parameter estimation user manual. Watermark, Brisbane, Australia

  24. Farvolden RN, Greenhouse JP, Karrow PF, Pehme PE, Ross LC (1987) Ontario Geoscience Research Fund Grant 128, subsurface quaternary stratigraphy of Kitchener-Waterloo, using borehole geophysics. OFR5623, Ontario Geological Survey, Sudbury, ON

    Google Scholar 

  25. Frank T, Tertois AL, Mallet JL (2007) 3-D reconstruction of complex geological interfaces from irregularly distributed and noisy point data. Comput Geosci 33:932–943

    Article  Google Scholar 

  26. Frind EO, Molson JW, Sousa MR, Martin PJ (2014) Insights from four decades of model development on the Waterloo moraine, a review. Can Water Resour J 39(2). https://doi.org/10.1080/07011784.2014.914799

  27. Golder Associates (2011) Tier three water budget and local area risk assessment: Mannheim well fields characterization. Report prepared for the regional municipality of Waterloo. Golder, Mississauga, ON

  28. Guo W (2017) Simulating the impact of water infrastructure on groundwater and surface water within the Laurel Creek watershed. UWSpace, Waterloo, ON

  29. Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 176:1905–1915

    Article  Google Scholar 

  30. Harp DR, Vesselinov VV (2011) Identification of pumping influences in long-term water level fluctuations. Ground Water 49(12). https://doi.org/10.1111/j.17456584.2010.00725.x

  31. Hazen A (1911) Discussion: dams on sand foundations. Am Soc Civil Eng 73:199–203

    Google Scholar 

  32. Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations. Bull. No. 36, Waterways Exper. Station, Corps of Eng., US Army, Vicksburg, MI, 50 pp

  33. Illman WA, Liu X, Craig A (2007) Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: multi-method and multiscale validation of hydraulic conductivity tomograms. J Hydrol 341:222–234. https://doi.org/10.1016/j.jhydrol.2007.05.011

    Article  Google Scholar 

  34. Illman WA, Craig AJ, Liu X (2008) Practical issues in imaging hydraulic conductivity through hydraulic tomography. Ground Water 46:120–132. https://doi.org/10.1111/j.1745-6584.2007.00374.x

    Article  Google Scholar 

  35. Illman WA, Liu X, Takeuchi S, Yeh TCJ, Ando K, Saegusa H (2009) Hydraulic tomography in fractured granite: Mizunami underground research site, Japan. Water Resour Res 45:1–18. https://doi.org/10.1029/2007WR006715

    Article  Google Scholar 

  36. Illman WA, Zhu J, Craig AJ, Yin D (2010a) Comparison of aquifer characterization approaches through steady state groundwater model validation: a controlled laboratory sandbox study. Water Resour Res 46:1–18. https://doi.org/10.1029/2009WR007745

    Article  Google Scholar 

  37. Illman WA, Berg SJ, Liu X, Massi A (2010b) Hydraulic/partitioning tracer tomography for trichloroethene source zone characterization: small-scale sandbox experiments. Environ Sci Technol 44(22):8609–8614. https://doi.org/10.1021/es101654j

    Article  Google Scholar 

  38. Illman WA, Berg SJ, Zhao Z (2015) Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation. Water Resour Res 51:3219–3237. https://doi.org/10.1002/2014WR016552

    Article  Google Scholar 

  39. International Water Supply Ltd (1973) Kitchener-Waterloo groundwater evaluation. In: Report to the regional municipality of Waterloo, International Water Supply, Barrie, ON

    Google Scholar 

  40. Karrow PF (1993) Quaternary geology of the Stratford- Conestogo area, southern Ontario. Report 283. Ontario Geological Survey, Sudbury, ON

    Google Scholar 

  41. Kozeny J (1927) Uber Kapillare Leitung Des Wassers in Boden [Capillary movement of water in soil]. Sitzungsber Akad. Wiss. Vienna, Math. Naturwiss. Kl., Abt.2a 136:271–306

  42. Lake Erie Region Source Protection Committee (2012) Grand River source protection area, Approved assessment report, Lake Erie Region Source Protection Committee, Cambridge, ON

  43. Liao HS, Curtis ZK, Sampath PV, Li SG (2020) Simulation of flow in a complex aquifer system subjected to long-term well network growth. Groundwater 58(2):301–322

    Article  Google Scholar 

  44. Luo N, Illman WA (2016) Automatic estimation of aquifer parameters using long-term water supply pumping and injection records. Hydrogeol J 24(6):1443–1461. https://doi.org/10.1007/s10040-016-1407-x

    Article  Google Scholar 

  45. Luo N, Illman WA (2017) Reply to comments by Christopher J. Neville on “Automatic estimation of aquifer parameters using long-term water supply pumping and injection records”. Hydrogeol J 25:2211–2214. https://doi.org/10.1007/s10040-017-1644-7

    Article  Google Scholar 

  46. Luo N, Zhao Z, Illman WA, Berg SJ (2017) Comparative study of transient hydraulic tomography with varying parameterizations and zonations: laboratory sandbox investigation. J Hydrol 554:758–779. https://doi.org/10.1016/j.jhydrol.2017.09.045

    Article  Google Scholar 

  47. Luo N, Illman WA, Zha YY, Park YJ, Berg SJ (2020) Three-dimensional hydraulic tomography analysis of long-term municipal wellfield operations: validation with synthetic flow and solute transport data. J Hydrol 590:125438. https://doi.org/10.1016/j.jhydrol.2020.125438

    Article  Google Scholar 

  48. Martin PJ, Frind EO (1998) Modelling methodology for a complex multi-aquifer system: the Waterloo moraine. Ground Water 36(4):679–690

    Article  Google Scholar 

  49. Matrix Solutions Inc, S.S. Papadopulos and Associates (2014a) Region of Waterloo tier three water budget and local area risk assessment; model calibration and water budget report. August 2014, Matrix, Saskatoon, SK

  50. Matrix Solutions Inc, S.S. Papadopulos and Associates (2014b) Region of Waterloo tier three water budget and local area risk assessment; final risk assessment report. September 2014, Matrix, Saskatoon, SK

  51. Mishra P, Vesselinov VV (2011) WELLS: multi-well variable-rate pumping-test analysis tool. https://gitlab.com/monty/wells. Accessed 7 Feb 2014

  52. Molson JW, Martin PJ, Frind EO (1995) WATFLOW version 1.0: a three-dimensional groundwater flow model, user′s guide. Waterloo Centre for Groundwater Research, Waterloo, ON

    Google Scholar 

  53. Neville CJ (2017) Comment on “Automatic estimation of aquifer parameters using long-term water supply pumping and injection records”: paper published in Hydrogeology Journal (2016) 24:1443–1461, by Ning Luo and Walter A. Illman. Hydrogeol J 25:2207–2209. https://doi.org/10.1007/s10040-017-1643-8

    Article  Google Scholar 

  54. Paloschi GVR (1993) Subsurface stratigraphy of the Waterloo moraine. MSc Project, University of Waterloo, Waterloo, ON

  55. Refsgaard JC, Christensen S, Sonnenborg TO, Seifert D, Højberg AL, Troldborg L (2012) Review of strategies for handling geological uncertainty in groundwater flow and transport modeling. Adv Water Resour 36:36–50. https://doi.org/10.1016/j.advwatres.2011.04.006

    Article  Google Scholar 

  56. Regional Municipality of Waterloo (2014) Region of Waterloo: hydrogeology and source water: WRAS database design manual. Regional municipality of Waterloo, Waterloo, ON

  57. Rehfeldt KR, Boggs JM, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer: 3. geostatistical analysis of hydraulic conductivity. Water Resour Res 28(12):3309–3324

    Article  Google Scholar 

  58. Rudolph DL (1985) A quasi 3-dimensional finite element model for steady-state analysis of multi-aquifer systems. MSc Thesis, University of Waterloo, Waterloo, ON

  59. Rudolph DL, Sudicky EA (1990) Simulation of groundwater flow in complex multiaquifer systems: performance of quasi three-dimensional technique in the steady state case. Can Geotech J 27:590–600

    Article  Google Scholar 

  60. Sampath PV, Liao HS, Curtis ZK, Doran PJ, Herbert ME, May CA, Li SG (2015) Understanding the groundwater hydrology of a geographically-isolated prairie fen: implications for conservation. PLoS One 10(10):e0140430. https://doi.org/10.1371/journal.pone.0140430

    Article  Google Scholar 

  61. Sampath PV, Liao HS, Curtis ZK, Herbert ME, Doran PJ, May CA, Landis DA, Li SG (2016) Understanding fen hydrology across multiple scales. Hydrol Process 30(19):3390–3407

    Article  Google Scholar 

  62. Shepherd RG (1989) Correlations of permeability and grain-size. Groundwater 27(5):633–638. https://doi.org/10.1111/j.1745-6584.1989.tb00476.x

    Article  Google Scholar 

  63. Stantec Consulting Ltd (2009) Tier three water budget and local area risk assessment: Strange street well field characterization study. Report prepared for the regional municipality of Waterloo. Stantec, Kitchener, ON

  64. Stantec Consulting Ltd (2012a) Tier three water budget and local area risk assessment: Erb street well field characterization study. Report prepared for the regional municipality of Waterloo. Stantec, Kitchener, ON

  65. Stantec Consulting Ltd (2012b) Tier three water budget and local area risk assessment: Greenbrook well field characterization study. Report prepared for the regional municipality of Waterloo. Stantec, Kitchener, ON

  66. Stantec Consulting Ltd (2012c) Tier three water budget and local area risk assessment: parkway and Strasburg well field characterization study. Report prepared for the regional municipality of Waterloo. Stantec, Kitchener, ON

  67. Sudicky EA (1986) A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res 22(13):2069–2082

    Article  Google Scholar 

  68. Sudicky EA, Illman WA, Goltz IK, Adams JJ, McLaren RG (2010) Heterogeneity in hydraulic conductivity and its role on the macroscale transport of a solute plume: from measurements to a practical application of stochastic flow and transport theory. Water Resour Res 46(1). https://doi.org/10.1029/2008WR007558

  69. Tecplot Inc (2011) TECPLOT. Bellevue, WA. https://www.tecplot.com/. Accessed March 2021

  70. Terraqua Investigations Ltd (1992) Waterloo north aquifer system study. Report prepared for the regional municipality of Waterloo. Terraqua InvestigationsWaterloo, ON

  71. Terraqua Investigations Ltd (1995) Study of the hydrogeology of the Waterloo moraine. Report prepared for the regional municipality of Waterloo. Terraqua InvestigationsWaterloo, ON

  72. Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Am Geophys Union 16:519–524

    Article  Google Scholar 

  73. Traum JA, Phillips SP, Bennett GL, Zamora C, Metzger LF (2014) Documentation of a Groundwater Flow Model (SJRRPGW) for the San Joaquin River Restoration Program Study Area, California (no. 2014-5148). US Geological Survey, Reston, VA

  74. Vesselinov VV, Neuman SP, Illman WA (2001) Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 2. equivalent parameters, high-resolution stochastic imaging and scale effects. Water Resour Res 37(12):3019–3042

    Article  Google Scholar 

  75. Wu CM, Yeh TCJ, Zhu J, Tim HL, Hsu NS, Chen CH, Sancho AF (2005) Traditional analysis of aquifer tests: comparing apples to oranges? Water Resour Res 41:1–12. https://doi.org/10.1029/2004WR003717

    Article  Google Scholar 

  76. Yeh TCJ, Lee CH (2007) Time to change the way we collect and analyze data for aquifer characterization. Ground Water 45(2):116–118. https://doi.org/10.1111/j.1745-6584.2006.00292.x

    Article  Google Scholar 

  77. Yeh TCJ, Liu S (2000) Hydraulic tomography: development of a new aquifer test method. Water Resour Res 36:2095. https://doi.org/10.1029/2000WR900114

    Article  Google Scholar 

  78. Zhao Z, Illman WA (2017) On the importance of geological data for three-dimensional steady-state hydraulic tomography analysis at a highly heterogeneous aquifer-aquitard system. J Hydrol 544:640–657. https://doi.org/10.1016/j.jhydrol.2016.12.004

    Article  Google Scholar 

  79. Zhao Z, Illman WA (2018) Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site. J Hydrol 559:392–410. https://doi.org/10.1016/j.jhydrol.2018.02.024

    Article  Google Scholar 

  80. Zhao Z, Illman WA, Berg SJ (2016) On the importance of geological data for hydraulic tomography analysis: laboratory sandbox study. J Hydrol 542:156–171. https://doi.org/10.1016/j.jhydrol.2016.08.061

    Article  Google Scholar 

  81. Zhao Z, Illman WA, Zha Y, Yeh TCJ, Mok CMB, Berg SJ, Han D (2019) Transient hydraulic tomography analysis of fourteen pumping tests at a highly heterogeneous multiple aquifer–aquitard system. Water 11(9):1864. https://doi.org/10.3390/w11091864

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Region Municipality of Waterloo (RMOW), in particular, Tammy Middleton, Eric Hodgins, and Richard Wootton for supporting this project. We also thank Emily Ballent of RMOW for her support in providing access to data and providing technical reports that made this research possible.

Funding

Walter A. Illman acknowledges support from the Collaborative Research and Development (CRD) and Discovery grants from the Natural Sciences and Engineering Research Council (NSERC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xin Tong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: 1) Missing characters are found in sections “Introduction”, “Description of groundwater models”, and “Model validation results”; 2) The headings “Model 1. 5-layer geological mode” should be “Model 1. 5-layer geological model” and “Model 3. Waterloo and model 4. regional models” should be “Model 3. Waterloo and Model 4. Regional models”; and 3) All "regional model" should be "Regional model" in the text and captions (Figs. 4-10).

Supplementary information

ESM 1

(PDF 2049 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Illman, W.A., Berg, S.J. et al. Hydraulic tomography analysis of municipal-well operation data with geology-based groundwater models. Hydrogeol J 29, 1979–1997 (2021). https://doi.org/10.1007/s10040-021-02320-4

Download citation

Keywords

  • Hydraulic tomography
  • Conceptual models
  • Groundwater management
  • Model calibration and validation
  • Subsurface heterogeneity