Skip to main content

Advertisement

Log in

Optimizing urban stormwater control strategies and assessing aquifer recharge through drywells in an urban watershed

Optimisation des stratégies de contrôle des eaux pluviales et évaluation de la recharge des aquifères au travers de puits à secs dans un basin versant urbain

Optimización de las estrategias de control de las aguas pluviales urbanas y evaluación de la recarga de los acuíferos mediante pozos secos en una cuenca urbana

通过流域内干井来优化城市雨水控制策略并评估含水层补给量

بهینه‌سازی راهکارهای کنترل سیلاب شهری و ارزیابی نقش چاهک‌های خشک در تغذیه آبخوان حوضه آبریز شهری

Otimizando as estratégias de controle das águas pluviais urbanas e avaliando a recarga dos aquíferos através dos poços secos em uma bacia urbana

Kentsel yağmur suyu kontrol stratejilerinin optimizasyonu ve kentsel bir havzadaki kuru kuyuların akifer beslemesinin değerlendirilmesi

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A coupled simulation-optimization model (SOM) is developed in this work that links the US Environmental Protection Agency’s Storm Water Management Model (SWMM) with a genetic algorithm. The SOM simulates rainfall-runoff processes in urban watersheds and optimizes the implementation of drywells (DWs), bio-retention cells (BCs), and permeable pavement (PP) for stormwater control and aquifer recharge in District 6 of Tehran Municipality, Iran. Feasible DWs are selected through site inspection and considering stormwater quality criteria to prevent aquifer contamination. This study compares the current rates of urban runoff and groundwater recharge (baseline scenario) with new stormwater management strategies, which were designed based on several levels of funding. Results show the highest rate of runoff reduction and infiltration, as well as the most cost-effective options, would be achieved when DWs are added to the combination of BCs and PP for stormwater management. The runoff reduction rate in the presence of DWs would rise by 11.7, 7.0, and 6.1% in comparison to their absence for 12-, 17-, and 22-million-dollar budget levels, respectively. Implementation of BCs and PP would cause infiltration of about 235, 274, and 279 thousand m3 for the three cited budget levels, while combining DWs with BCs and PP would increase infiltration by 19, 15.6, and 14% for the three levels of investment, respectively. These results demonstrate the benefits of using local nonfunctional wells and qanats to reduce peak flows, replenish urban aquifers, and improve the economic efficiency of urban stormwater management projects.

Résumé

Un modèle couplé de type simulation-optimisation (SOM) a été développé dans cette étude permettant de lier le modèle de gestion des eaux pluviales de l’Agence Américaine de la Protection Environnementale (SWMM) avec un algorithme générique. Le SOM simule les processus pluie-ruissellement dans des basins versants urbains et optimise l’implantation de puits taris (DWs), de cellules de bio-rétention (BCs) et d’un revêtement perméable (PP) pour le contrôle des eaux pluviales et la recharge des aquifères dans le district 6 de la municipalité de Téhéran, Iran. L’estimation de la faisabilité des DW se fait par l’inspection des sites et en prenant en compte des critères de qualité des eaux pluviales afin d’éviter la contamination de l’aquifère. Cette étude compare le taux de ruissellement urbain actuel et la recharge des aquifères (scenario de base) avec de nouvelles stratégies de gestion des eaux pluviales conçues à partir de plusieurs niveaux de financement. Les résultats montrent que les taux les rentables, seraient obtenues si les DWs sont ajoutés à une combinaison de BCs et PP pour la gestion des eaux pluviales. Les taux de réduction du ruissellement en présence de DWs augmenteraient de 11.7, 7.0 et 6.1% par rapport à leur absence pour respectivement 12, 17 et 22 millions de dollars de niveau de financement. La mise en place de BCs et PP permettrait l’infiltration d’environ 235, 274 et 279 milliers de m3 pour les trois niveaux de budget cités alors qu’une combinaison de DWs avec BCs et PP augmenterait l’infiltration de 19, 15.6 et 14% respectivement pour les trois niveaux de financement. Les résultats montrent les bénéfices de l’utilisation de puits locaux non fonctionnels et de qanats pour réduire les pics de flux, remplir les aquifères urbains et améliorer l’efficacité économique des projets de gestion des eaux pluviales.

Resumen

En este trabajo se desarrolla un modelo acoplado de simulación-optimización (SOM) que vincula el Modelo de Gestión de Aguas de Tormenta (SWMM) de la EPA con un algoritmo genético. El SOM simula los procesos de precipitación-escorrentía en cuencas urbanas y optimiza la aplicación de pozos secos (DW), células de bio-retención (BC) y pavimento permeable (PP) para el control de las aguas pluviales y la recarga de acuíferos en el Distrito 6 del Municipio de Teherán, Irán. Los DW viables se seleccionan mediante la inspección del sitio y teniendo en cuenta los criterios de calidad de las aguas pluviales para evitar la contaminación del acuífero. En este estudio se comparan las tasas actuales de escorrentía urbana y de recarga de aguas subterráneas (hipótesis de referencia) con las nuevas estrategias de gestión de las aguas pluviales, que se diseñaron sobre la base de varios niveles de financiamiento. Los resultados muestran que la mayor tasa de reducción de la escorrentía y la infiltración, así como las opciones más eficaces en función de los costos, se alcanzarían cuando se añadieran los DW a la combinación de BC y PP para la gestión de las aguas pluviales. La tasa de reducción de la escorrentía en presencia de DWs aumentaría en 11.7, 7.0 y 6.1% en comparación con su ausencia para los niveles presupuestados de 12, 17 y 22 millones de dólares, respectivamente. La aplicación de los BC y PP causaría una infiltración de unos 235, 274 y 279 mil m3 para los tres niveles de presupuesto citados, mientras que la combinación de DW con BC y PP aumentaría la infiltración en un 19, 15.6 y 14% para cada uno de dichos niveles respectivamente. Estos resultados demuestran los beneficios de la utilización de pozos y qanats locales no funcionales para reducir los caudales máximos, recargar los acuíferos urbanos y mejorar la eficiencia económica de los proyectos de gestión de las aguas pluviales urbanas.

摘要

在这项工作中, 我们开发了耦合的模拟优化模型(SOM), 该模型连接美国环境保护局的雨水管理模型(SWMM)与遗传算法。 SOM模拟了城市流域的降雨径流过程, 并优化了伊朗德Tehran市第六区的干井(DWs), 生物滞留单元(BCs)和渗透性路面(PPs)的实施, 以控制雨水和含水层。通过现场检视并考虑雨水质量标准以防止含水层污染来选择可行的DWs。这项研究将当前的城市径流量和地下水补给率(基准情景)与新的雨水管理方案进行了比较, 该方案是基于不同水平的资金而设计的。结果表明, 将DWs添加到BCs和PP的组合中以进行雨水管理时, 将实现最高的径流减少和入渗率, 以及最具成本效益的选择。与没有考虑DWs的分别为12-、17-和22百万美元的预算级别相比, 有DW的径流减少率将分别增加11.7, 7.0和6.1%。实施BCs和PP将导致三个设定的预算水平的入渗量分别约为235, 274和279万m3, 而将DW与BC和PP结合将使三个投资水平的渗透率分别增加19, 15.6和14%。这些结果表明, 使用当地的非功能性水井和坎儿井减少峰值流量, 补充城市含水层并提高城市雨水管理项目的经济效益是有好处的。

چکیده

در این پژوهش یک مدل بهینه‌ساز-شبیه‌ساز از ترکیب مدل مدیریت سیلاب ارائه شده توسط آژانس حفاظت محیط‌زیست ایالات متحده آمریکا (SWMM) و الگوریتم ژنتیک ایجاد شده است. این مدل بهینه‌ساز-شبیه‌ساز فرآیندهای بارش-رواناب در حوضه آبریز شهری را شبیه‌سازی می‌کند و محل اجرای چاهک خشک، سلول‌های ماندزیستی و روکش‌های نفوذپذیر را با هدف کنترل سیلاب و تغذیه آبخوان در منطقه 6 شهری تهران بهینه می‌کند. چاه‌ها و قنات‌های خشک موجود در منطقه مورد مطالعه که قابلیت استفاده به عنوان چاهک خشک را دارند، از طریق بازرسی میدانی تعیین شدند. در این گزینش کیفیت رواناب ورودی به چاه‌ها برای جلوگیری از آلودگی آبخوان یکی از معیارهای انتخاب بوده است. در این پژوهش حجم سیلاب شهری و سیلاب قابل استفاده جهت تغذیه آبخوان در شرایط موجود (سناریوی پایه) با دو سناریو مدیریت سیلاب شهری در قالب چندین سطح بودجه مقایسه شده است. نتایج نشان می‌دهد که بیشترین میزان کاهش سیلاب و تغذیه آبخوان زمانی حاصل می‌شود که چاهک‌های خشک همزمان با سلول‌های ماندزیستی و روکش‌های نفوذپذیر برای مدیریت رواناب استفاده شوند. بعلاوه سناریو شامل هر سه روش کنترل سیلاب، مقرون به‌صرفه‌ترین گزینه بوده است. با اضافه شدن چاهک‌های خشک به سناریو کنترل سیلاب شامل سلول‌های ماندزیستی و روکش‌های نفوذپذیر، حجم رواناب به ترتیب 7/11، 0/7 و 1/6 درصد برای سه سطح بودجه 12، 17 و 22 میلیون دلاری، کاهش داشته است. اجرای سلول‌های ماندزیستی و روکش‌های نفوذپذیر باعث نفوذ تقریباً 235 ، 274 و 279 هزارمترمکعب سیلاب به آبخوان برای سه سطح بودجه ذکر شده می‌شود، در حالیکه اضافه شدن چاهک‌های خشک به ترکیب سلول‌های ماندزیستی و روکش‌های نفوذپذیر، سبب افزایش 19، 6/15 و 14 درصدی حجم‌های نفوذ اشاره شده در بالا به ترتیب در سه سطح بودجه می‌شود. نتایج بدست آمده مزایای استفاده از چاه‌های محلی متروکه و قنات‌های خشک به عنوان چاهک خشک را برای کاهش دبی اوج سیلاب، تغذیه آبخوان و بهبود بهره‌وری اقتصادی پروژه‌های مدیریت سیلاب شهری نشان می‌دهد. جنبه‌های اقتصادی-اجتماعی، مدلسازی مدیریت سیلاب شهری، بهینه‌سازی-شبیه‌سازی، الگوریتم ژنتیک، تغذیه آبخوان.کلمات کلیدی:

Resumo

Uma combinação do modelo de otimização - simulação (MOS) que integra o modelo da agência de proteção ambiental dos EUA com um algoritmo genérico é desenvolvida neste trabalho. O MOS simula os processos de precipitação - escoamento em bacias urbanas e otimiza a implementação dos poços secos (PSs), das células de biorretenção (CBs), e o pavimento permeável para o controle das águas pluviais e recarga de aquíferos no distrito 6 do município de Tehran, Irã. Os possíveis PSs são selecionados através de inspeções e considerando os critérios de drenagem para evitar contaminação dos aquíferos. Este estudo compara as atuais taxas de escoamento e recarga de água subterrânea (cenário de nível de base) com novas estratégias de gerenciamento das águas pluviais, as quais foram concebidas baseadas em vários níveis de financiamento. Os resultados mostram que a mais alta taxa de redução de escoamento e infiltração, bem como as opções mais econômicas, seriam alcançadas quando os PSs fossem adicionados à combinação dos CBs e PP para o gerenciamento das águas pluviais. A taxa de redução do escoamento com a presença de PSs poderia aumentar em 11.7, 7.0, e 6.1%, em comparação com sua ausência para os níveis dos orçamentos de 12, 17, e 22 milhões de dólares, respectivamente. A implementação das CBs e PP poderia gerar a infiltração de aproximadamente 235, 274, e 279 milhares de m3 para os três níveis de orçamentos citados, enquanto a combinação de PSs com CBs e PP aumentaria a infiltração em 19, 15.6, e 14% para os três níveis de investimentos, respectivamente. Estes resultados demonstram os benefícios do uso dos poços locais não funcionais e qanats para reduzir os fluxos de pico, reabastecer os aquíferos urbanos, e melhorar a eficiência econômica dos projetos de gerenciamento das águas pluviais.

ÖZET

Bu çalışmada Amerika Birleşik Devletleri Çevre Koruma Ajansı tarafından sağlanan storm water management model (yağmur suyu yönetim modeli; SWMM) ile genetik algoritma birleştirilerek bir optimizasyon simülasyon modeli oluşturulmuştur. Bu simülasyon-optimizasyon modeli, bir kentsel havzadaki yağış-akış süreçlerini simüle edip ve Tahran’ın altinci kentsel bölgesinde yağmur suyu kontrolü ve akifer beslemesi amacıyla kuru kuyuların, biyolojik tutma alanlarının, ve geçirgen kaldırımların uygulamasını optimize ediyor. Uygulanabilir kuru kuyular, akifer kontaminasyonunu önlemek için, saha incelemesi ile ve yağmur suyu kalite kriterleri dikkate alınarak tespit edilmiştir. Bu çalışma, mevcut kentsel yüzey akışı ve yeraltı suyu şarjı oranlarını (temel senaryo), çeşitli finansman düzeylerine dayalı olarak tasarlanmış yeni yağmur suyu yönetimi stratejileriyle karşılaştırmaktadır. Sonuçlar, yağmur suyu yönetimi için biyolojik tutma alanlarının ve geçirgen kaldırımların kombinasyonuna kuru kuyuların, eklendiğinde, en yüksek akış azaltma ve akifer beslemesinin elde edildiğini göstermektedir. Biyolojik tutma alanları ve geçirgen kaldırımları içeren yağmur suyu kontrol senaryosuna kuru kuyuların eklenmesiyle, akış azaltma oranı, 12-, 17- ve 22-miliyon dolarlık bütçe seviyelerine göre sırasıyla, 11.70, 7.00 ve 6.10% artacaktır. Biyolojik tutma alanlarıın ve geçirgen kaplamaların uygulanması, belirtilen üç bütçe seviyesi için yaklaşık 235, 274 ve 279 bin metreküp sızmaya neden olurken, kuru kuyuların biyolojik tutma alanları ve geçirgen kaplamaların ile birleştirimesi, üç yatırım seviyesi için sızmayı 19, 15.6 ve 14% artıracaktır. Sonuçlar, pik akışları azaltmak, kentsel akiferleri beslemek ve kentsel yağmur suyu yönetim projelerinin ekonomik verimliliğini artırmak için yerel işlevsiz kuyular ve kehrizlerin kullanılmasının faydalarını göstermektedir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aggarwal V, Maurya N, Jain G (2013) Pricing urban water supply. Environ Urban ASIA 4(1):221–241

    Article  Google Scholar 

  • Ahiablame LM, Engel BA, Chaubey I (2012) Effectiveness of low impact development practices: literature review and suggestions for future research. Water Air Soil Pollut 223

  • Akbari-Alashti H, Bozorg-Haddad O, Fallah-Mehdipour E, Mariño MA (2014) Multi-reservoir real-time operation rules: a new genetic programming approach. Proc Inst Civ Eng Water Manage 167(10):561–576. https://doi.org/10.1680/wama.13.00021

    Article  Google Scholar 

  • Alamdari N, Sample DJ (2019) A multiobjective simulation-optimization tool for assisting in urban watershed restoration planning. J Clean Prod 213:251–261

    Article  Google Scholar 

  • Asgari H-R, Bozorg-Haddad O, Pazoki M, Loáiciga HA (2016) Weed optimization algorithm for optimal reservoir operation. J Irrig Drain Eng 142(2):04015055. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000963

    Article  Google Scholar 

  • Babaei S, Ghazavi R, Erfanian M (2018) Urban flood simulation and prioritization of critical urban sub-catchments using SWMM model and PROMETHEE II approach. Physics Chem Earth, Parts A/B/C 105:3–11

    Article  Google Scholar 

  • Bahrami M, Bozorg-Haddad O, Loáiciga A, H. (2019) Optimizing stormwater low-impact development strategies in an urban watershed considering sensitivity and uncertainty. Environ Monit Assess 191:340

    Article  Google Scholar 

  • Beganskas S, Fisher AT (2017) Coupling distributed stormwater collection and managed aquifer recharge: field application and implications. J Environ Manag 200:366–379

    Article  Google Scholar 

  • Bell CD, McMillan SK, Clinton SM, Jefferson AJ (2016) Hydrologic response to stormwater control measures in urban watersheds. J Hydrol 541:1488–1500

    Article  Google Scholar 

  • Blick SA, Kelly F, Skupien JJ (2004) New Jersey stormwater best management practices manual/standard for dry wells. Dept. of Environmental Protection, State of New Jersey, Trenton, NJ

  • Bosley I, Kern E (2008) Hydrologic evaluation of low impact development using a continuous, spatially-distributed model. Virginia Tech, Blacksburg, VA

  • Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10:121–142

  • Bozorg-Haddad O, Mariño MA (2011) Optimum operation of wells in coastal aquifers. Water Manage 3(164):135–146

    Google Scholar 

  • Bozorg-Haddad O, Moradi-Jalal M, Mirmomeni M, Kholghi MKH, Mariño MA (2009) Optimal cultivation rules in multi-crop irrigation areas. Irrig Drain 58(1):38–49. https://doi.org/10.1002/ird.381

    Article  Google Scholar 

  • Bozorg-Haddad O, Khosroshahi S, Zarezadeh M, Javan P (2013) Development of simulation-optimization model for protection of flood areas. J Water Soil 27:462–471

    Google Scholar 

  • Dahlke HE, LaHue GT, Mautner MRL, Murphy NP, Patterson NK, Waterhouse H, Yang F, Foglia L (2019) Managed aquifer recharge as a tool to enhance sustainable groundwater management in California: examples from field and modeling studies. In: Advances in Chemical Pollution, Environmental Management and Protection, vol 3. Elsevier, Amsterdam

  • Dandy GC, Marchi A, Maier HR, Kandulu J, MacDonald DH, Ganji A (2019) An integrated framework for selecting and evaluating the performance of stormwater harvesting options to supplement existing water supply systems. Environ Model Softw 122:104554

    Article  Google Scholar 

  • Dietz ME (2007) Low impact development practices: a review of current research and recommendations for future directions. Water Air Soil Pollut 186:351–363

  • Dillon P, Pavelic P, Toze S, Rinck-Pfeiffer S, Martin R, Knapton A, Pidsley D (2006) Role of aquifer storage in water reuse. Desalination 188(1):123–134

    Article  Google Scholar 

  • Drake JA, Bradford A, Marsalek J (2013) Review of environmental performance of permeable pavement systems: state of the knowledge. Water Qual Res J Can 48(3):203–222

    Article  Google Scholar 

  • Eckart K, McPhee Z, Bolisetti T (2017) Performance and implementation of low impact development: a review. Sci Total Environ 607-608:413–432

    Article  Google Scholar 

  • Eckart K, McPhee Z, Bolisetti T (2018) Multiobjective optimization of low impact development stormwater controls. J Hydrol 562:564–576

    Article  Google Scholar 

  • Edwards EC, Harter T, Fogg GE, Washburn B, Hamad H (2016) Assessing the effectiveness of drywells as tools for stormwater management and aquifer recharge and their groundwater contamination potential. J Hydrol 539:539–553

    Article  Google Scholar 

  • Elliott AH, Trowsdale SA (2007) A review of models for low impact urban stormwater drainage. Environ Model Softw 22(3):394–405

    Article  Google Scholar 

  • EPA (1999) The class V underground injection control study, Office of Ground Water and Drinking. Environmental Protection Agency, Washington, DC

  • Esat V, Hall MJ (1994) Water resources system optimization using genetic algorithms. In: Proc. 1st Int. Conf. on Hydroinformatics, Balkema, Dordrecht, The Netherlands, pp 225–231

  • Fletcher TD, Shuster W, Hunt WF, Ashley R, Butler D, Arthur S, Trowsdale S, Barraud S, Semadeni-Davies A, Bertrand-Krajewski J-L (2015) SUDS, LID, BMPs, WSUD and more: the evolution and application of terminology surrounding urban drainage. Urban Water J 12(7):525–542

    Article  Google Scholar 

  • Gailey RM, Fogg GE, Lund JR, Medellín-Azuara J (2019) Maximizing on-farm groundwater recharge with surface reservoir releases: a planning approach and case study in California, USA. Hydrogeol J. https://doi.org/10.1007/s10040-019-01936-x

  • Ghodsi SH, Zahmatkesh Z, Goharian E, Kerachian R, Zhu Z (2019) Optimal design of low impact development practices in response to climate change. J Hydrol 580:124266

    Article  Google Scholar 

  • Gibb A (1975) Pre-investment survey of sewerage needs and facilities in Tehran. Final report, vol 3, Surface water master plan, Tehran Regional Water Board, Tehran, World Health Organization, Geneva

  • Gonzalez-Merchan C, Barraud S, Le Coustumer S, Fletcher T (2012) Monitoring of clogging evolution in the stormwater infiltration system and determinant factors. Eur J Environ Civ Eng 16(sup1):s34–s47

    Article  Google Scholar 

  • Haghshenas Haghighi M, Motagh M (2019) Ground surface response to continuous compaction of aquifer system in Tehran, Iran: results from a long-term multi-sensor InSAR analysis. Remote Sens Environ 221:534–550

    Article  Google Scholar 

  • Hamilton PA, Miller TL, Myers DN (2004) Water quality in the nation’s streams and aquifers: overview of selected findings, 1991–2001. US Geol Surv Circ 1265

  • Hanak E, Lund JR (2012) Adapting California’s water management to climate change. Clim Chang 111

  • Huang C-L, Hsu N-S, Liu H-J, Huang Y-H (2018) Optimization of low impact development layout designs for megacity flood mitigation. J Hydrol 564:542–558

    Article  Google Scholar 

  • Klöcking B, Haberlandt U (2002) Impact of land use changes on water dynamics: a case study in temperate meso and macroscale river basins. Physics Chem Earth, Parts A/B/C 27(9):619–629

    Article  Google Scholar 

  • Kong F, Ban Y, Yin H, James P, Dronova I (2017) Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environ Model Softw 95:132–142

    Article  Google Scholar 

  • Li C, Peng C, Chiang P-C, Cai Y, Wang X, Yang Z (2019) Mechanisms and applications of green infrastructure practices for stormwater control: a review. J Hydrol 568:626–637

    Article  Google Scholar 

  • Liu A, Guan Y, Egodawatta P, Goonetilleke A (2016) Selecting rainfall events for effective water sensitive Urban Design: a case study in Gold Coast City, Australia. Ecol Eng 92:67–72

    Article  Google Scholar 

  • Liu Y, Bralts VF, Engel BA (2015) Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model. Sci Total Environ 511:298–308

    Article  Google Scholar 

  • Liu Y, Theller LO, Pijanowski BC, Engel BA (2016) Optimal selection and placement of green infrastructure to reduce impacts of land use change and climate change on hydrology and water quality: an application to the Trail Creek watershed, Indiana. Sci Total Environ 553:149–163

    Article  Google Scholar 

  • Loáiciga HA (2017) The safe yield and climatic variability: implications for groundwater management. Groundwater J 55(3):334–345. https://doi.org/10.1111/gwat.12481

    Article  Google Scholar 

  • Loáiciga HA, Sadeghi KM, Shivers S, Kharaghani S (2016) Stormwater control measures: optimization methods for sizing and selection. J Water Resour Plann Manage. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000503

  • Luan B, Yin R, Xu P, Wang X, Yang X, Zhang L, Tang X (2019) Evaluating green Stormwater infrastructure strategies efficiencies in a rapidly urbanizing catchment using SWMM-based TOPSIS. J Clean Prod 223:680–691

    Article  Google Scholar 

  • Macro K, Matott LS, Rabideau A, Ghodsi SH, Zhu Z (2019) OSTRICH-SWMM: a new multi-objective optimization tool for green infrastructure planning with SWMM. Environ Model Softw 113:42–47

    Article  Google Scholar 

  • Mahab Q, Pöyri (2010) Tehran surface water master plan in 2010. Municipality of Tehran, Iran

  • Mahmoudpour M, Khamehchiyan M, Nikudel MR, Ghassemi MR (2016) Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran. Eng Geol 201:6–28

    Article  Google Scholar 

  • Malinowski PA, Wu JS, Pulugurtha S, Stillwell AS (2018) Green infrastructure retrofits with impervious area reduction by property type: potential improvements to urban stream quality. J Sustain Water Built Environ 4(4):04018012

  • Mani M, Bozorg-Haddad O, Loáiciga HA (2019) A new framework for the optimal management of urban runoff with low-impact development stormwater control measures considering service-performance reduction. J Hydroinform 21(5):727–744

  • Montaseri M, Hesami Afshar M, Bozorg-Haddad O (2015) Development of simulation-optimization model (MUSIC-GA) for urban stormwater management. Water Resour Manag 29:4649–4665

    Article  Google Scholar 

  • Mouritz M (1992) Sustainable urban water systems. Policy & Professional Praxis, Murdoch University. Murdoch, Australia

  • Niazi M, Nietch C, Maghrebi M, Jackson N, Bennett BR, Tryby M, Massoudieh A (2017) Storm water management model: performance review and gap analysis. J Sustain Water Built Environ 3(2)

  • NRCS USDA (2009) Hydrologic soil groups, chap 7. NRCS–National Engineering Handbook (NEH), part 71–7.5, NRCS, USDA, Washington, DC

  • Pauleit S, Ennos R, Golding Y (2005) Modeling the environmental impacts of urban land use and land cover change: a study in Merseyside, UK. Landsc Urban Plan 71(2):295–310

    Article  Google Scholar 

  • Pitt R, Talebi L (2012) Evaluation and demonstration of Stormwater dry Wells and cisterns in Millburn township, New Jersey. The University of Alabama, EPA, Tuscaloosa, AL

  • Pyne DG (2005) Aquifer storage and recharge. ASR, Gainsville, FL

    Google Scholar 

  • Randall M, Sun F, Zhang Y, Jensen MB (2019) Evaluating Sponge City volume capture ratio at the catchment scale using SWMM. J Environ Manag 246:745–757

    Article  Google Scholar 

  • Rossman LA (2010) Storm water management model user’s manual, version 5.0. National Risk Management Research Laboratory, Office of Research, Cincinnati, OH

  • Sadeghi KM, Kharaghani S, Tam W, Gaerlan N, Loáiciga HA (2019) Green stormwater infrastructure (GSI) for stormwater management in the City of Los Angeles: Avalon Green Alleys Network. Environ Processes. https://doi.org/10.1007/s40710-019-00364-z

  • Saraswat C, Kumar P, Mishra BK (2016) Assessment of stormwater runoff management practices and governance under climate change and urbanization: an analysis of Bangkok, Hanoi and Tokyo. Environ Sci Pol 64:101–117

    Article  Google Scholar 

  • Schoonover JE, Lockaby BG, Helms BS (2006) Impacts of land cover on stream hydrology in the West Georgia Piedmont, USA. J Environ Quality 35(6):2123–2131

  • Shokri A, Bozorg-Haddad O, Mariño MA (2013) Algorithm for increasing the speed of evolutionary optimization and its accuracy in multi-objective problems. Water Resour Manag 27(7):2231–2249. https://doi.org/10.1007/s11269-013-0285-4

    Article  Google Scholar 

  • Snyder DT, Morgan DS, McGrath TS (1994) Estimation of groundwater recharge from precipitation, runoff into drywells, and on-site waste-disposal systems in the Portland Basin, Oregon and Washington. US Geol Surv Water Resour Invest Rep 92-4010

  • Soltanjalili M, Bozorg-Haddad O, Mariño MA (2011) Effect of breakage level one in design of water distribution networks. Water Resour Manag 25(1):311–337. https://doi.org/10.1007/s11269-010-9701-1

    Article  Google Scholar 

  • Sun Y-w, Pomeroy C, Li Q-y, Xu C-d (2019) Impacts of rainfall and catchment characteristics on bioretention cell performance. Water Sci Eng 12(2):98–107

    Article  Google Scholar 

  • Torres MN, Fontecha JE, Zhu Z, Walteros JL, Rodríguez JP (2020) A participatory approach based on stochastic optimization for the spatial allocation of sustainable urban drainage systems for rainwater harvesting. Environ Model Softw 123:104532

    Article  Google Scholar 

  • TRWC, TRC (2012) Detailed data collection from peizometric wells, wells, springs: Tehran Province. Tehran Regional Water Company, Tehran

  • USEPA (2000) Low impact development (LID): a literature review. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Wang M, Zhang D, Adhityan A, Ng WJ, Dong J, Tan SK (2016) Assessing cost-effectiveness of bioretention on stormwater in response to climate change and urbanization for future scenarios. J Hydrol 543:423–432

    Article  Google Scholar 

  • Winston RJ, Asce M, Arend K, Dorsey JD, Johnson JP, Hunt WF, Wre D (2020) Hydrologic performance of a permeable pavement and stormwater harvesting treatment train stormwater control measure. J Sustain Water Built Environ 6(1)

  • Wu J, Kauhanen PG, Hunt JA, Senn DB, Hale T, McKee LJ (2019) Optimal selection and placement of green infrastructure in urban watersheds for PCB control. J Sustain Water Built Environ 5(2)

  • Xu C, Tang T, Jia H, Xu M, Xu T, Liu Z, Long Y, Zhang R (2019) Benefits of coupled green and grey infrastructure systems: evidence based on analytic hierarchy process and life cycle costing. Resour Conserv Recycl 151:104478

    Article  Google Scholar 

  • Yang Y, Chui TFM (2018) Optimizing surface and contributing areas of bioretention cells for stormwater runoff quality and quantity management. J Environ Manag 206:1090–1103

    Article  Google Scholar 

  • York C, Goharian E, Burian SJ (2015) Impacts of large-scale stormwater green infrastructure implementation and climate variability on receiving water response in the Salt Lake City area. Am J Environ Sci 11(4):278–292

    Article  Google Scholar 

  • Zahmatkesh Z, Burian SJ, Karamouz M, Tavakol-Davani H (2015) Low-impact development practices to mitigate climate change effects on urban stormwater runoff: case study of New York City. J Irrig Drain Eng 141(1)

  • Zhang K, Chui TFM (2018) A comprehensive review of spatial allocation of LID-BMP-GI practices: strategies and optimization tools. Sci Total Environ 621:915–929

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to Prof. Daniel P. Loucks for his constructive comments on the manuscript, which helped us to improve its quality and make it more readable.

Funding

The authors thank Iran’s National Science Foundation (INSF) for their support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Bozorg-Haddad.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 982 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroomandnia, A., Bozorg-Haddad, O., Bahrami, M. et al. Optimizing urban stormwater control strategies and assessing aquifer recharge through drywells in an urban watershed. Hydrogeol J 29, 1379–1398 (2021). https://doi.org/10.1007/s10040-021-02316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02316-0

Keywords

Navigation