Origin and geochemical evolution of groundwater in the Abaya Chamo basin of the Main Ethiopian Rift: application of multi-tracer approaches

Origine et évolution géochimique des eaux souterraines dans le bassin d’Abaya Chamo du Grand Rift éthiopien: application d’une approche multi-traceurs

Origen y evolución geoquímica de las aguas subterráneas en la cuenca de Abaya Chamo del Main Ethiopian Rift: aplicación de métodos de múltiples trazadores

运用多种示踪方法研究地下水的成因和地球化学演化,以埃塞俄比亚裂谷Abaya Chamo盆地为例

Origem e evolução geoquímica da água subterrânea na bacia de Abaya Chamo no Principal Rifte Etíope: aplicação das soluções de multimarcadores

Abstract

The fractured volcanic aquifer of the Abaya Chamo basin in the southern Ethiopian Rift represents an important source for water supply. This study investigates the geochemical evolution of groundwater and the groundwater flow system in this volcanic aquifer system using hydrochemistry and environmental tracers. Water types of groundwater were found to transform from Ca-Mg-HCO3 (western part of Lake Abaya area) to Na-HCO3 (northwestern part), from the highland down to the Rift Valley. Silicate hydrolysis and Ca/Na ion exchange are the major geochemical processes that control groundwater chemistry along the flow path. Groundwaters are of meteoric origin. The δ18O and δD content of groundwater ranges from −4.9 to −1.1‰ and –27 to 5‰, respectively. The δ18O and δD values that lie on the summer local meteoric water line indicate that the groundwater was recharged mainly by summer rainfall. δ13CDIC values of cold groundwater range from −12 to −2.7‰, whereas δ13CDIC of thermal groundwater ranges from −8.3 to +1.6‰. The calculated δ13CCO2(g) using δ13CDIC and DIC species indicates the uptake of soil CO2 for cold groundwater and the influx of magmatic CO2 through deep-seated faults for thermal groundwater. In the western part of Lake Abaya area, the shallow and deep groundwater are hydraulically connected, and the uniform water type is consistent with a fast flow of large gradient. In contrast, in the northern part of Lake Abaya area, water underwent deep circulation and slow flow, so the water types—e.g. high F (up to 5.6 mg/L) and Na+—varied laterally and vertically.

Résumé

L’aquifère volcanique fracturé du bassin d’Abaya Chamo dans le sud du Rift éthiopien représente une source importante d’approvisionnement en eau. Cette étude s’intéresse à l’évolution géochimique et à la circulation des eaux souterraines dans ce système aquifère volcanique en utilisant l’hydrochimie et les traceurs environnementaux. On a constaté que les faciès des eaux souterraines évoluent depuis un pôle Ca-Mg-HCO3 (partie ouest de la région du lac Abaya) à un pôle Na-HCO3 (partie nord-ouest), des hautes terres jusqu’à la vallée du Rift. L’hydrolyse des silicates et les échanges cationiques Ca/Na sont les principaux processus géochimiques qui contrôlent la chimie des eaux souterraines le long de l’axe d’écoulement. Les eaux souterraines ont une origine météorique. La teneur en δ18O et en δD des eaux souterraines varie de −4.9 à −1.1‰ et de −27 à 5‰, respectivement. Les teneurs en δ18O et δD qui se trouvent sur la droite météorique locale d’été indiquent que les eaux souterraines sont rechargées majoritairement par les précipitations estivales. Les teneurs en δ13CDIC des eaux souterraines froides varient de −12 à −2.7‰, tandis que le δ13CDIC des eaux souterraines thermales varie de −8.3 à +1.6‰. Le δ13CCO2(g) calculé à l’aide du δ13CDIC et du CITD indique une influence du CO2 du sol pour les eaux souterraines froides et un apport en CO2 magmatique par des failles profondes pour les eaux souterraines thermales. Dans la partie ouest de la région du lac Abaya, les eaux souterraines superficielles et profondes sont hydrauliquement connectées, et leur faciès uniforme est compatible avec une vitesse de circulation rapide à fort gradient. En revanche, dans la partie nord de la région du lac Abaya, l’eau provient d’une circulation profonde à faible vitesse, de sorte que les faciès—e.g. Na+ et F élevé (jusqu’à 5.6 mg/L)—varient latéralement et verticalement.

Resumen

El acuífero volcánico fracturado de la cuenca de Abaya Chamo, en el sur del Rift etíope, representa una importante fuente de abastecimiento de agua. En este estudio se investiga la evolución geoquímica y el flujo de las aguas subterráneas en este sistema de acuíferos volcánicos utilizando la hidroquímica y los trazadores ambientales. Se encontró que los tipos de agua subterránea se transforman de Ca-Mg-HCO3 (parte occidental de la zona del lago Abaya) a Na-HCO3 (parte noroccidental), desde las zonas altas hasta el valle del Rift. La hidrólisis de silicatos y el intercambio iónico Ca/Na son los principales procesos geoquímicos que controlan la química de las aguas subterráneas a lo largo de la trayectoria del flujo. Las aguas subterráneas son de origen meteórico. El contenido de δ18O y δD de las aguas subterráneas oscila entre −4.9 y –1.1‰ y −27 y 5‰, respectivamente. Los valores de δ18O y δD que se encuentran en la Línea Meteórica Local de verano indican que las aguas subterráneas se recargaron principalmente por las lluvias de verano. Los valores de δ13CDIC de las aguas subterráneas frías oscilan entre −12 y –2.7‰, mientras que los de δ13CDIC de las aguas subterráneas termales oscilan entre −8.3 y + 1.6‰. El δ13CCO2(g) calculado usando δ13CDIC y las especies DIC indica la captación de CO2 del suelo para las aguas subterráneas frías y el influjo de CO2 magmático a través de fallas profundas para las aguas subterráneas termales. En la parte occidental de la zona del lago Abaya, las aguas subterráneas someras y profundas están conectadas hidráulicamente, y el tipo de agua uniforme es consistente con un flujo rápido de alto gradiente. En cambio, en la parte septentrional de la zona del lago Abaya, el agua se sometió a una circulación profunda y a un flujo lento, por lo que los tipos de agua—por ejemplo, de alto F (hasta 5.6 mg/L) y Na+—variaron lateral y verticalmente.

摘要

埃塞俄比亚裂谷南部Abaya Chamo盆地的火山断裂含水层是重要的供水来源。本文利用水化学和环境示踪剂方法研究了火山岩含水层系统中地下水的地球化学演化和水流系统。地下水的水化学类型从高地的Ca-Mg-HCO3型(Abaya湖区西部)水向裂谷的Na-HCO3(Abaya湖西北部)水转化。由硅酸盐水解形成的Ca/Na离子交换是控制整个水流路径上地下水化学特征的主要地球化学过程。地下水来源是大气成因。地下水δ18O和δD含量分别为–4.9 ~ −1.1‰和–27 ~ 5‰。夏季局部大气降水线上的δ18O和δD值表明,地下水主要受夏季降水补给。冷水的δ13CDIC值在–12 ~ −2.7‰之间,而地下热水的δ13CDIC值在–8.3 ~ +1.6‰之间。利用δ13CDIC和DIC组分计算出的δ13CCO2(g)表明,冷的地下水会吸收土壤中的CO2,而岩浆中的CO2通过深部断层进入地下热水。在Abaya湖西部,浅层和深层地下水存在水力连通。水化学类型演化与大坡度的水流流动相一致。然而,在Abaya湖北部,地下水由于经历了深循环和缓慢流动,因此水化学类型(如高F(高达5.6 mg/L)和Na+)在横向和纵向上都有所不同。

Resumo

O aquífero vulcânico fraturado da bacia de Abaya Chamo no sudoeste do Rifte Etíope representa uma importante fonte de abastecimento de água. Este estudo investiga a evolução geoquímica e o sistema de fluxo da água subterrânea no sistema aquífero vulcânico utilizando hidroquímica e marcadores ambientais. Os tipos de águas subterrâneas foram reconhecidos a fim de transformar Ca-Mg-HCO3 (parte oeste do Lago Abaya) para Na-HCO3 (parte noroeste), a partir das áreas altas em direção ao vale do Rifte. Hidrólise dos silicatos e troca iônica Ca/Na são os mais importantes processos que controlam a hidroquímica subterrânea ao longo do caminho de fluxo. As águas subterrâneas são de origem meteórica. Os isótopos de δ18O e δD variam de −4.9 a –1.1% e –27 a 5%, respectivamente. Os valores de δ18O e δD que seguem a tendência da linha meteórica local de verão indicam que estas águas são recarregadas principalmente na precipitação de verão. Os valores de δ13CDIC das águas subterrâneas frias variam de −12 a –2.7%, enquanto o δ13CDIC da água subterrânea termal apresenta uma faixa de −8.3 a + 1.6%. O δ13CCO2(g) calculado usando as espécies de δ13CDIC e DIC, indica a contribuição do CO2 do solo nas águas subterrâneas frias e o influxo magmáticos de CO2 através das falhas profundas para as águas subterrâneas termais. Na área a oeste do Lago Abaya, as águas subterrâneas rasas e profundas estão conectadas hidraulicamente, e o tipo de água uniforme é consistente com o fluxo rápido de grande gradiente. Por outro lado, no norte do Lago Abaya, a água submete-se a uma profunda circulação e fluxo lento, desta forma, os tipos de água—e.g. alto F (acima de 5.6 mg/L) e Na+—variaram lateralmente e verticalmente.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Adams S, Titus R, Pietersen K, Tredoux G, Harris C (2001) Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. J Hydrol 241(1):91–103

    Article  Google Scholar 

  2. Ahmed A, Clark I (2016) Groundwater flow and geochemical evolution in the Central Flinders Ranges, South Australia. Sci Total Environ 572:837–851

    Article  Google Scholar 

  3. Ako AA, Shimada J, Hosono T, Kagabu M, Richard A, Nkeng GE, Tongwa AF, Ono M, Eyong GET, Tandia BK, Mouncherou OF (2013) Flow dynamics and age of groundwater within a humid equatorial active volcano (Mount Cameroon) deduced by δD, δ18O, 3H and chlorofluorocarbons (CFCs). J Hydrol 502:156–176

    Article  Google Scholar 

  4. Alemayehu T (2006) Groundwater occurrence in Ethiopia. UNESCO, Paris

  5. Alemayehu T, Leis A, Eisenhauer A, Dietzel M (2011) Multi-proxy approach (2H/H, 18O/16O, 13C/12C and 87Sr/86Sr) for the evolution of carbonate-rich groundwater in basalt dominated aquifer of Axum area, northern Ethiopia. Chem Erde - Geochem 71(2):177–187

    Article  Google Scholar 

  6. Appelo CAJ, Postma D (2005) Geochemistry: groundwater and pollution, Taylor and Francis, London

    Google Scholar 

  7. Asai K, Satake H, Tsujimura M (2009) Isotopic approach to understanding the groundwater flow system within an andesitic stratovolcano in a temperate humid region: case study of Ontake Volcano, central Japan. Hydrol Process 23(4):559–571

    Article  Google Scholar 

  8. Ayenew T (2008) The distribution and hydrogeological controls of fluoride in the groundwater of central Ethiopian Rift and adjacent highlands. Environ Geol 54(6):1313–1324

    Article  Google Scholar 

  9. Ayenew T, Demlie M, Wohnlich S (2008) Hydrogeological framework and occurrence of groundwater in the Ethiopian aquifers. J Afr Earth Sci 52:97–113

    Article  Google Scholar 

  10. Belkhiri L, Mouni L, Boudoukha A (2012) Geochemical evolution of groundwater in an alluvial aquifer: case of El Eulma aquifer, East Algeria. J Afr Earth Sci 66–67:46–55

    Article  Google Scholar 

  11. Bertrand G, Celle-Jeanton H, Huneau F, Loock S, Renac C (2010) Identification of different groundwater flowpaths within volcanic aquifers using natural tracers for the evaluation of the influence of lava flows morphology (Argnat basin, Chaîne des Puys, France). J Hydrol 391:223–234

    Article  Google Scholar 

  12. Bertrand G, Celle-Jeanton H, Loock S, Huneau F, Lavastre V (2013) Contribution of PCO2eq and 13CTDIC evaluation to the identification of CO2 sources in volcanic groundwater systems: influence of hydrometeorological conditions and lava flow morphologies—application to the Argnat Basin (Chaîne des Puys, Massif Central, France). Aquatic Geochem 19(2):147–171

    Article  Google Scholar 

  13. Bretzler A, Osenbrück K, Gloaguen R, Ruprecht JS, Kebede S, Stadler S (2011) Groundwater origin and flow dynamics in active rift systems: a multi isotope approach in the Main Ethiopian Rift—a multi-proxy approach. J Hydrol 402:274–289

    Article  Google Scholar 

  14. Carrillo-Rivera JJ, Varsányi I, Kovács LÓ, Cardona A (2007) Tracing groundwater flow systems with hydrogeochemistry in contrasting geological environments. Water Air Soil Pollut 184(1–4):77–103

    Article  Google Scholar 

  15. Cartwright I, Weaver T, Tweed S, Ahearne D, Cooper M, Czapnik K, Tranter J (2002) Stable isotope geochemistry of cold CO2-bearing mineral spring waters, Daylesford, Victoria, Australia: sources of gas and water and links with waning volcanism. Chem Geol 185(1):71–91

    Article  Google Scholar 

  16. Cerling TE, Harris JMJO (1999) Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. 120(3):347–363

  17. Chernet T (2011) Geology and hydrothermal resources in the northern Lake Abaya Area (Ethiopia). J Afr Earth Sci 61(2):129–141

    Article  Google Scholar 

  18. Chernet T, Travi Y, Valles V (2001) Mechanism of degradation of the quality of natural water in the lakes region of the Ethiopian Rift Valley. Water Res 35(12):2819–2832

    Article  Google Scholar 

  19. Clark I (2015) Groundwater geochemistry and isotopes. CRC, Boca Raton, FL

    Google Scholar 

  20. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL

    Google Scholar 

  21. Cordeiro S, Coutinho R, Cruz JV (2012) Fluoride content in drinking water supply in Sao Miguel volcanic island (Azores, Portugal). Sci Total Environ 432:23–36

    Article  Google Scholar 

  22. Corti G (2009) Continental rift evolution: from rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa. Earth-Sci Rev 96(1–2):1–53

    Article  Google Scholar 

  23. Corti G, Sani F, Philippon M, Sokoutis D, Willingshofer E, Molin P (2013) Quaternary volcano-tectonic activity in the Soddo region, western margin of the southern Main Ethiopian Rift. Tectonics 32(4):861–879

  24. Craig H, Lupton JE, Horowiff R M (1977) Isotopic geochemistry and hydrology of geothermal waters in the Ethiopian Rift Valley. Scripps Institute of Oceanography, University of California, San Diego

  25. Cruz JV, França Z (2006) Hydrogeochemistry of thermal and mineral water springs of the Azores archipelago (Portugal). J Volcanol Geothermal Res 151(4):382–398

    Article  Google Scholar 

  26. Cruz JV, Silva O (2001) Hydrogeologic framework of Pico Island, Azores, Portugal. Hydrogeol J 9(2):177–189

    Article  Google Scholar 

  27. Dafny E, Gvirtzman H, Burg A, Fleischerc L (2003) The hydrogeology of the Golan basalt aquifer, Israel. Israel J Earth Sci 52:139–153

    Article  Google Scholar 

  28. Darling WG, Gizaw B, Arusei MK (1996) Lake–groundwater relationships and fluid–rock interaction in the East African Rift Valley: isotopic evidence. J Afr Earth Sci 22(4):423–431

    Article  Google Scholar 

  29. Deines P, Langmuir D, Harmon RS (1974) Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim Cosmochim Acta 38(7):1147–1164

    Article  Google Scholar 

  30. Demlie M, Wohnlich S, Gizaw B, Stichler W (2007) Groundwater recharge in the Akaki catchment, central Ethiopia: evidence from environmental isotopes (δ18O, δ2H and3H) and chloride mass balance. Hydrol Process 21(6):807–818

    Article  Google Scholar 

  31. Demlie M, Wohnlich S, Ayenew T (2008) Major ion hydrochemistry and environmental isotope signatures as a tool in assessing groundwater occurrence and its dynamics in a fractured volcanic aquifer system located within a heavily urbanized catchment, central Ethiopia. J Hydrol 353:175–188

    Article  Google Scholar 

  32. Dietzel M, Kirchhoff T (2002) Stable isotope ratios and the evolution of acidulous ground water. Aquatic Geochem 8(4):229–254

    Article  Google Scholar 

  33. Ebinger CJ, Yemane T, WoldeGabriel G, Aronson JL, Walter RC (1993) Late Eocene–Recent volcanism and faulting in the southern Main Ethiopian Rift. J Geol Soc 150(1):99–108

    Article  Google Scholar 

  34. Elango L, Kannan R (2007) Rock–water interaction and its control on chemical composition of groundwater, chap 11. In: Sarkar D, Datta R, Hannigan R (eds) Developments in environmental science, vol 5. Elsevier, Amsterdam, pp 229–243

  35. Elango L, Kannan R, Senthil Kumar M (2003) Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environ Geosci 10(4):157–166

  36. Furi W, Razack M, Abiye TA, Ayenew T, Legesse D (2011) Fluoride enrichment mechanism and geospatial distribution in the volcanic aquifers of the Middle Awash basin, Northern Main Ethiopian Rift. J Afr Earth Sci 60(5):315–327

    Article  Google Scholar 

  37. Furi W, Razack M, Haile T, Abiye TA, Legesse D (2010) The hydrogeology of Adama-Wonji basin and assessment of groundwater level changes in Wonji wetland, Main Ethiopian Rift: results from 2D tomography and electrical sounding methods. Environ Earth Sci 62(6):1323–1335

    Article  Google Scholar 

  38. Gastmans D, Hutcheon I, Menegário AA, Chang HK (2016) Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: case study from the northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil). J Hydrol 535:598–611

    Article  Google Scholar 

  39. Genereux DP, Webb M, Solomon DK (2009) The chemical and isotopic signature of old groundwater and magmatic solutes in a Costa Rican rainforest: evidence from carbon, helium, and chlorine. Water Resour Res 45:W08413

    Article  Google Scholar 

  40. Gizaw B (1996) The origin of high bicarbonate and fluoride concentrations in waters of the Main Ethiopian Rift Valley, East African Rift System. J Afr Earth Sci 22(4):391–402

    Article  Google Scholar 

  41. Haile T, Abiye TA (2012) The interference of a deep thermal system with a shallow aquifer: the case of Sodere and Gergedi thermal springs, Main Ethiopian Rift, Ethiopia. Hydrogeol J 20(3):561–574

    Article  Google Scholar 

  42. Haji M, Wang D, Li L, Qin D, Guo Y (2018, 1799) Geochemical evolution of fluoride and implication for F-enrichment in groundwater: example from the Bilate River Basin of Southern Main Ethiopian Rift. Water 10(12):1799. https://doi.org/10.3390/w10121799

  43. Halcrow (2008) Rift Valley Lakes basin integrated natural resources development master plan. Ethiopian Valleys Development Studies Authorities, Ministry of Water Resources, Addis Ababa, Ethiopia

  44. Hoefs J (2009) Stable isotope geochemistry. Springer, Heidelberg, Germany

    Google Scholar 

  45. JICA (2012) The study on groundwater resources assessment in the Rift Valley Lakes Basin in the Federal Democratic Republic of Ethiopia. Japan International Cooperation Agency (JICA), Kokusai Kogyo, Ministry of Water and Energy (MoWE), Tokyo

  46. Kebede S (2013) Groundwater in Ethiopia: features, numbers and opportunities. Springer, Heidelberg, Germany, 283 pp

  47. Kebede S, Travi Y, Alemayehu T, Ayenew T (2005) Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia. Appl Geochem 20(9):1658–1676

    Article  Google Scholar 

  48. Kebede S, Travi Y, Asrat A, Alemayehu T, Ayenew T, Tessema Z (2008) Groundwater origin and flow along selected transects in Ethiopian rift volcanic aquifers. Hydrogeol J 16:55–73

    Article  Google Scholar 

  49. Kebede S, Travi Y, Stadler S (2010) Groundwaters of the central Ethiopian rift: diagnostic trends in trace elements, d18O and major elements. Environ Earth Sci 61:1641–1655

    Article  Google Scholar 

  50. Kebede S, Hailu A, Crane E, Dochartaigh Ó, Dochartaigh BÉ (2016) Africa groundwater atlas: hydrogeology of Ethiopia. British Geological Survey, Keyworth, UK, pp 1–17

  51. Koh D-C, Chae G-T, Yoon Y-Y, Kang B-R, Koh G-W, Park K-H (2009) Baseline geochemical characteristics of groundwater in the mountainous area of Jeju Island, South Korea: implications for degree of mineralization and nitrate contamination. J Hydrol 376(1–2):81–93

    Article  Google Scholar 

  52. Koh D-C, Genereux DP, Koh G-W, Ko K-S (2017) Relationship of groundwater geochemistry and flow to volcanic stratigraphy in basaltic aquifers affected by magmatic CO2, Jeju Island, Korea. Chem Geol 467:143–158

    Article  Google Scholar 

  53. Kulkarni H, Deolankar SB, Lalwani A, Joseph B, Pawar S (2000) Hydrogeological framework of the Deccan basalt groundwater systems, west-central India. Hydrogeol J 8(4):368–378

    Article  Google Scholar 

  54. Lamb HF, Melanie JL, Richard JT, Tenalem A, Mohammed U (2007) Oxygen and carbon isotope composition of authigenic carbonate from an Ethiopian lake: a climate record of the last 2000 years. Holocene 17(4):517–526

    Article  Google Scholar 

  55. Li C, Gao X, Wang Y (2015) Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Sci Total Environ 508:155–165

    Article  Google Scholar 

  56. Marini L, Ottonello G, Canepa M, Cipolli F (2000) Water–rock interaction in the Bisagno Valley (Genoa, Italy): application of an inverse approach to model spring water chemistry. Geochim Cosmochim Acta 64(15):2617–2635

    Article  Google Scholar 

  57. Mechal A, Birk S, Dietzel M, Leis A, Winkler G, Mogessie A, Kebede S (2016) Groundwater flow dynamics in the complex aquifer system of Gidabo River Basin (Ethiopian Rift): a multi-proxy approach. Hydrogeol J 25(2):519–538

    Article  Google Scholar 

  58. Minissale A, Corti G, Tassi F, Darrah TH, Vaselli O, Montanari D, Montegrossi G, Yirgu G, Selmo E, Teclu A (2017) Geothermal potential and origin of natural thermal fluids in the northern Lake Abaya area, Main Ethiopian Rift, East Africa. J Volcanol Geothermal Res 336:1–18

    Article  Google Scholar 

  59. Molin P, Corti G (2015) Topography, river network and recent fault activity at the margins of the Central Main Ethiopian Rift (East Africa). Tectonophysics 664:67–82

    Article  Google Scholar 

  60. Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22(2):169–176

    Article  Google Scholar 

  61. Möller P, Rosenthal E, Inbar N, Magri F (2016) Hydrochemical considerations for identifying water from basaltic aquifers: the Israeli experience. J Hydrol 5:33–47

    Google Scholar 

  62. Négrel P, Petelet-Giraud E, Millot R (2016) Tracing water cycle in regulated basin using stable δ18O–δ2H isotopes: the Ebro River basin (Spain). Chem Geol 422:71–81

    Article  Google Scholar 

  63. Ochoa-González GH, Carreón-Freyre D, Cerca M, López-Martínez M (2015) Assessment of groundwater flow in volcanic faulted areas: a study case in Queretaro, Mexico. Geofís Int 54(3):199–220

    Google Scholar 

  64. Olaka LA, Wilke FD, Olago DO, Odada EO, Mulch A, Musolff A (2016) Groundwater fluoride enrichment in an active rift setting: central Kenya Rift case study. Sci Total Environ 545–546:641–653

    Article  Google Scholar 

  65. Prada S, Cruz JV, Figueira C (2016) Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira, Portugal. J Hydrol 536:409–425

    Article  Google Scholar 

  66. Qin D, Zhao Z, Guo Y, Liu W, Haji M, Wang X, Xin B, Li Y, Yang Y (2017) Using hydrochemical, stable isotope, and river water recharge data to identify groundwater flow paths in a deeply buried karst system. Hydrol Process 31(24):4297–4314

    Article  Google Scholar 

  67. Rango T, Bianchini G, Beccaluva L, Ayenew T, Colombani N (2008) Hydrogeochemical study in the Main Ethiopian Rift: new insights to the source and enrichment mechanism of fluoride. Environ Geol 58(1):109–118

    Article  Google Scholar 

  68. Rango T, Petrini R, Stenni B, Bianchini G, Slejko F, Beccaluva L, Ayenew T (2010) The dynamics of central Main Ethiopian Rift waters: evidence from dD, d18O and 87Sr/86Sr ratios. Appl Geochem 25:1860–1871

    Article  Google Scholar 

  69. Rango T, Kravchenko J, Atlaw B, McCornick PG, Jeuland M, Merola B, Vengosh A (2012) Groundwater quality and its health impact: an assessment of dental fluorosis in rural inhabitants of the Main Ethiopian Rift. Environ Int 43:37–47

    Article  Google Scholar 

  70. Rapprich V, Žáček V, Verner K, Erban V, Goslar T, Bekele Y, Legesa F, Hroch T, Hejtmánková P (2016) Wendo Koshe Pumice: the latest Holocene silicic explosive eruption product of the Corbetti Volcanic System (southern Ethiopia). J Volcanol Geotherm Res 310:159–171

    Article  Google Scholar 

  71. Reimann C, Bjorvatn K, Frengstad B, Melaku Z, Tekle-Haimanot R, Siewers U (2003) Drinking water quality in the Ethiopian section of the East African Rift Valley, I: data and health aspects. Sci Total Environ 311:65–80

    Article  Google Scholar 

  72. Rooney TO, Bastow ID, Keir D (2011) Insights into extensional processes during magma assisted rifting: evidence from aligned scoria cones. J Volcanol Geotherm Res 201(1–4):83–96

    Article  Google Scholar 

  73. Shoeller H (1967) Geochemistry of groundwater. In: Brown RH, Konoplyantsev AA, Ineson J, Kovalevsky VS (eds) Groundwater studies: an international guide for research and practice. UNESCO, Paris, pp 1–18

    Google Scholar 

  74. Tardy Y (1971) Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chem Geol 7(4):253–271

    Article  Google Scholar 

  75. Tekle-Haimanot R, Haile G (2014) Chronic alcohol consumption and the development of skeletal fluorosis in a fluoride endemic area of the Ethiopian Rift Valley. J Water Resour Protect 06(02):149–155

    Article  Google Scholar 

  76. Tekle-Haimanot R, Melaku Z, Kloos H, Reimann C, Fantaye W, Zerihun L, Bjorvatn K (2006) The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sci Total Environ 367(1):182–190

    Article  Google Scholar 

  77. UNDP (1973) Geology geochemistry and hydrology of Hot Springs of the East African systems within Ethiopia. United Nations Development Programme, New York

  78. Vaselli O, Minissale A, Tassi F, Magro G, Seghedi I, Ioane D, Szakacs A (2002) A geochemical traverse across the Eastern Carpathians (Romania): constraints on the origin and evolution of the mineral water and gas discharges. Chem Geol 182(2):637–654

    Article  Google Scholar 

  79. Vivona R, Preziosi E, Madé B, Giuliano G (2007) Occurrence of minor toxic elements in volcanic-sedimentary aquifers: a case study in central Italy. Hydrogeol J 15(6):1183–1196

    Article  Google Scholar 

  80. Vogel JC, Grootes PM, Mook WG (1970) Isotopic fractionation between gaseous and dissolved carbon dioxide. Zeitschrift Physik A Hadrons Nuclei 230(3):225–238

    Article  Google Scholar 

  81. WoldeGabriel G, Aronson JL, Walter RC (1990) Geology, geochronology, and rift basin development in the central sector of the Main Ethiopia Rift. Geol Soc Am Bull 102(4):439

    Article  Google Scholar 

  82. WoldeGabriel G, Yemane T, Suwa G, White T, Asfaw B (1991) Age of volcanism and rifting in the Burji-Soyoma area, Amaro Horst, southern Main Ethiopian Rift: geo- and biochronologic data. J Afr Earth Sci 13(3):437–447

    Article  Google Scholar 

  83. Wondwossen F, Åstrøm AN, Bjorvatn K, Bårdsen A (2004) The relationship between dental caries and dental fluorosis in areas with moderate- and high-fluoride drinking water in Ethiopia. Commun Dentistry Oral Epidemiol 32(5):337–344

    Article  Google Scholar 

  84. Zanettin B, Justin-Visentin E, Nicoletti M, Petrucciani C (1978) The evolution of Chencha escarpment and Ganjule Graben in Southern Ethiopin Rift. N Jb Geol Palaont Mh (8):473–490

  85. Zinabu GM, Kebede-Westhead E, Desta Z (2002) Long-term changes in chemical features of waters of seven Ethiopian Rift-Valley lakes. Hydrobiologia 477(1):81–91

    Article  Google Scholar 

Download references

Acknowledgments

This report is based on the PhD study of the first author at the Chinese Academy of Science, Institute of Geology and Geophysics (IGGCAS). IGGCAS (Institute of Geology and Geophysics, Chinese Academy of Science) is gratefully acknowledged for managing the grant and facilitating field works in Ethiopia. We thank the editor (Dr. Jean-Michel Lemieux) and three anonymous reviewers for their helpful comments in improving the manuscript.

Funding

CAS-TWAS President’s Fellowship program is acknowledged for a PhD research grant to the first author.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammed Haji.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haji, M., Qin, D., Guo, Y. et al. Origin and geochemical evolution of groundwater in the Abaya Chamo basin of the Main Ethiopian Rift: application of multi-tracer approaches. Hydrogeol J (2021). https://doi.org/10.1007/s10040-020-02291-y

Download citation

Keywords

  • Volcanic aquifer
  • Hydrochemistry
  • Stable isotopes
  • Water
  • Rock interaction
  • Groundwater flow
  • Ethiopia