Skip to main content

Advertisement

Log in

Groundwater vulnerability to pollution in karst aquifers, considering key challenges and considerations: application to the Ubrique springs in southern Spain

Vulnérabilité des eaux souterraines aux pollutions d’aquifères karstiques, en tenant compte des principaux défis et considérations: application aux sources d’Ubrique dans le sud de l’Espagne

Retos y consideraciones en la vulnerabilidad a la contaminación del agua subterránea de acuíferos kársticos: aplicación en los manantiales de Ubrique, sur de España

喀斯特含水层的地下水易污性,主要挑战和因素: 在Spain南部Ubrique泉域的应用

Vulnerabilidade das águas subterrâneas à poluição em aquíferos cársticos, considerando os principais desafios e considerações: aplicação às nascentes de Ubrique no sul da Espanha

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater vulnerability mapping is one of the tools most often applied to analyse the sensitivity of karst aquifers to pollution. These maps aim to support stakeholders in decision-making and to promote land-use management compatible with water protection; however, the validation of these maps is still a challenge in many cases, triggering high uncertainty. For karst media, due to the strong heterogeneity in recharge mechanisms and hydraulic characteristics, validation is a significant stage and it must be inherent within the groundwater vulnerability assessment process. This work aims to assess the implementation of tools used for protecting the quality of water discharging or extracted from the Ubrique karst system in southern Spain, which supplies drinking water that is threatened by periodical pollution/turbidity episodes. A groundwater vulnerability map, attained by application of the COP method and validated by multiple in-situ observations, shows an extremely vulnerable system due to the absence of protective overlayers and the significant development of exokarst landforms, including shallow holes. This map could constitute the basis for defining protection zones for the Ubrique springs; however, their comprehensive protection requires the implementation of monitoring tools and an effective management strategy, through an early warning system that assures stable environmental and hydrogeological conditions and improves operational procedures associated with the drinking water service. This research establishes the strong relationship of the different methods applied to protect the source from contamination events, ranging from classical hydrodynamic and hydrochemical approaches to the implementation of protection zones and early warning groundwater quality monitoring networks.

Résumé

La cartographie de la vulnérabilité des eaux souterraines est un des outils le plus utilisé pour analyser la sensibilité des aquifères karstiques à la pollution. Ces cartes visent à accompagner les parties prenantes dans la prise de décision et à promouvoir une gestion de l’occupation des sols compatible avec la protection de la ressource en eau. Cependant, la validation des ces cartes reste un défi dans de nombreux cas, soulevant une forte incertitude. Pour les milieux karstiques, en raison de la forte hétérogénéité des mécanismes de recharge et des caractéristiques hydrauliques, la validation est une étape importante et doit être inhérente au processus d’évaluation de la vulnérabilité des eaux souterraines. Ce travail vise à évaluer la mise en œuvre d’outils utilisés pour protéger la qualité des eaux émergentes ou extraites du système karstique d’Ubrique dans le sud de l’Espagne, qui approvisionne en eau potable alors que menacé par des épisodes périodiques de pollution/turbidité. Une carte de vulnérabilité des eaux souterraines, obtenue à la suite de l’application de la méthode COP et validée par de multiples observations in situ, met en évidence un système extrêmement vulnérable en raison de l’absence de couches protectrices et du développement important de caractéristiques exokarstiques du relief, y compris des dolines/pertes. Cette carte pourrait constituer la base pour la définition des zones de protection pour les sources d’Ubrique. Cependant, leur protection intégrale nécessite la mise en place d’outils de suivi et d’une stratégie de gestion efficace, avec un système d’alerte qui garantit des conditions environnementales et hydrogéologiques stables et améliore les procédures opérationnelles associées au service d’eau potable. Cette recherche établit la relation forte entre les différentes méthodes appliquées pour protéger la source d’événements de contamination, allant d’approches hydrodynamiques et hydrochimiques classiques à la mise en place de zones de protection et de réseaux d’alerte précoce de surveillance de la qualité des eaux souterraines.

Resumen

La cartografía de vulnerabilidad del agua subterránea es una de las herramientas más aplicadas para analizar la sensibilidad de un acuífero kárstico a la contaminación. Estos mapas constituyen un elemento clave en el apoyo a la toma de decisiones para una ordinación del territorio compatible con la protección del agua. Sin embargo, aún hoy sigue siendo un reto la validación de estas cartografías, lo que conlleva a una alta incertidumbre en cuanto a su uso y aplicabilidad. En los medios kársticos, debido a su heterogeneidad en los mecanismos de recarga y en las características hidráulicas, la validación es una fase clave e inherente en el proceso de evaluación de la vulnerabilidad a la contaminación. Este trabajo tiene como objetivo evaluar la implementación de herramientas y técnicas de protección de la calidad de las aguas subterráneas del sistema kárstico de Ubrique, provincia de Cádiz, en el sur de España. Éstas se utilizan para abastecimiento urbano y que están puntualmente amenazadas por episodios periódicos de alta turbidez. La cartografía de vulnerabilidad de las aguas subterráneas, obtenida mediante la aplicación del método COP y validada por múltiples observaciones in situ, indican que este es un sistema extremadamente vulnerable debido, principalmente, a la ausencia de coberturas de suelo u otras litologías, así como al gran desarrollo de la karstificación que presentan los carbonatos, incluyendo sumideros kársticos. Este mapa podría constituir la base cartográfica para definir las zonas de protección de los manantiales de Ubrique. Sin embargo, su protección integral requiere la implementación de herramientas de seguimiento y una estrategia de gestión eficaz y holística, a través de un sistema de alerta temprana que asegure condiciones ambientales e hidrogeológicas estables y mejore los procedimientos operativos asociados al servicio de agua potable. Esta investigación, además, muestra la fuerte relación existente entre los diferentes métodos aplicados para proteger la fuente de eventos de contaminación, que van desde enfoques hidrodinámicos e hidroquímicos clásicos hasta la implementación de zonas de protección y de redes de seguimiento de calidad de aguas subterráneas para la alerta temprana.

摘要

地下水脆弱性分区图是最常用于分析岩溶含水层易污性的工具之一。这些图旨在支持利益相关者的决策,并促进与水保护相应的土地利用管理。但是,在许多情况下,对这些图的验证仍然是一个挑战,从而引发高度不确定性。对于岩溶介质,由于补给机制和水力特征存在很大的异质性,因此验证是重要的阶段,它必须涵盖在地下水脆弱性评估过程中。这项工作旨在用于西班牙南部Ubrique岩溶系统排泄或开采水水质保护评估工具的实施情况,该系统供应的饮用水受到周期性污染/浊度事件的威胁。通过使用COP方法获得的地下水脆弱性图,并通过多次现场观测得到了验证,该图显示了一个极其脆弱的系统,这是由于缺少保护性覆盖层以及包括浅孔在内的岩溶型地貌的显著发展。该图是制定Ubrique泉域保护区的基础。但是,对它们的全面保护需要通过预警系统来实施监控工具和有效的管理策略,以确保稳定的环境和水文地质条件并改善与饮用水服务有关的运行措施。这项研究建立了保护水源免受污染事件的不同方法之间的密切关系,覆盖了经典的水动力和水化学方法,保护区的实施和地下水水质预警网络的实施。

Resumo

O mapeamento da vulnerabilidade das águas subterrâneas é uma das ferramentas mais frequentemente aplicadas para analisar a sensibilidade dos aquíferos cársticos à poluição. Esses mapas visam apoiar as partes interessadas na tomada de decisões e promover a gestão do uso da terra compatível com a proteção da água. No entanto, a validação desses mapas ainda é um desafio em muitos casos, gerando grande incerteza. Para meios cársticos, devido à forte heterogeneidade nos mecanismos de recarga e nas características hidráulicas, a validação é uma etapa significativa e deve ser inerente ao processo de avaliação da vulnerabilidade da água subterrânea. Este trabalho tem como objetivo avaliar a implementação de ferramentas utilizadas para proteger a qualidade da água de descarga ou extraída do sistema cárstico de Ubrique, no sul da Espanha, que fornece água potável ameaçada por episódios periódicos de poluição/turbidez. Um mapa de vulnerabilidade da água subterrânea, obtido pela aplicação do método COP e validado por várias observações in situ, mostra um sistema extremamente vulnerável devido à ausência de camadas de proteção e ao desenvolvimento significativo de formas de relevo exocárstico, incluindo cavidades rasas. Este mapa pode constituir a base para a definição das zonas de proteção das nascentes de Ubrique. No entanto, sua proteção integral requer a implementação de ferramentas de monitoramento e uma estratégia de gestão eficaz, por meio de um sistema de alerta precoce que garanta condições ambientais e hidrogeológicas estáveis e melhore os procedimentos operacionais associados ao serviço de água potável. Esta pesquisa estabelece a forte relação entre os diferentes métodos aplicados para proteger a fonte de eventos de contaminação, que vão desde abordagens hidrodinâmicas e hidroquímicas clássicas até a implementação de zonas de proteção e redes de monitoramento da qualidade da água subterrânea de alerta precoce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andreo B, Goldscheider N, Vadillo I, Vías JM, Neukum C, Sinreich M, Jiménez P, Brechenmacher J, Carrasco F, Hötzl H, Perles JM, Zwahlen F (2006) Karst groundwater protection: first application of a Pan-European approach to vulnerability, hazard and risk mapping in the Sierra de Líbar (southern Spain). Sci Total Environ 357(1–3):54–73. https://doi.org/10.1016/j.scitotenv.2005.05.019

    Article  Google Scholar 

  • Andreo B, Ravbar N, Vías JM (2009) Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeol J 17(3):749–758. https://doi.org/10.1007/s10040-008-0391-1

    Article  Google Scholar 

  • Andreo B, Sánchez D, Martín-Algarra A (2014) Caracterización hidrogeológica y evaluación de los recursos hídricos de la Sierra de Grazalema (Cádiz) para su potencial implementación como reserva estratégica de agua en la cabecera de la Demarcación Hidrográfica del Guadalete-Barbate [Hydrogeological characterization and evaluation of the water resources of the Sierra de Grazalema (Cádiz) for potential implementation as a strategic water reserve at the head of the Guadalete-Barbate Hydrographic Demarcation]. Andalusian Water Agency Technical report, Sevilla, Spain, 128 pp

  • Auckenthaler A, Raso G, Huggenberger P (2002) Particle transport in a karst aquifer: natural and artificial tracer experiments with bacteria, bacteriophages and microspheres. Water Sci Technol 46(3):131–138. https://doi.org/10.2166/wst.2002.0072

    Article  Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160

    Article  Google Scholar 

  • Barberá JA, Andreo B (2012) Functioning of a karst aquifer from S Spain under highly variable climate conditions, deduced from hydrochemical records. Environ Earth Sci 65(8):2337–2349. https://doi.org/10.1007/s12665-011-1382-4

    Article  Google Scholar 

  • Barberá JA, Mudarra M, Andreo B, De la Torre B (2018) Regional-scale analysis of karst underground flow deduced from tracing experiments: examples from carbonate aquifers in Malaga province, southern Spain. Hydrogeol J 26(1):23–40. https://doi.org/10.1007/s10040-017-1638-5

    Article  Google Scholar 

  • Bartrand T, Grayman W, Haxton T (2017) Drinking water treatment source water early warning system state of the science review. EPA/600/R-17/405, US Environmental Protection Agency, Washington, DC

  • Batiot C, Liñán C, Andreo B, Emblanch C, Carrasco F, Blavoux B (2003) Use of TOC as tracer of diffuse infiltration in a dolomitic karst system: the Nerja Cave (Andalusia, southern Spain). Geophys Res Lett 30(22):2179. https://doi.org/10.1029/2003GL018546

    Article  Google Scholar 

  • Boyer DG, Pasquarell GC (1999) Agricultural land use impacts on bacterial water quality in a karst groundwater aquifer. J Am Water Resour Assoc 35(2):291–300. https://doi.org/10.1111/j.1752-1688.1999.tb03590.x

    Article  Google Scholar 

  • Butscher C, Huggenberger P (2008) Intrinsic vulnerability assessment in karst areas: a numerical modeling approach. Water Resour Res 44(3):W03408. https://doi.org/10.1029/2007WR006277

    Article  Google Scholar 

  • Celle-Jeanton H, Travy Y, Blavoux B (2001) Isotopic typology of the precipitation in the western Mediterranean region at three different time scales. Geophys Res Lett 28(7):1215–1218. https://doi.org/10.1029/2000GL012407

    Article  Google Scholar 

  • Daly C, Gibson WP, Taylor GH, Johnson GL, Pasteris P (2002) A knowledge-based approach to the statistical mapping of climate. Clim Res 22(2):99–113. https://doi.org/10.3354/cr022099

    Article  Google Scholar 

  • Delannoy JJ (1987) Reconocimiento biofísico de Espacios Naturales de Andalucía [Biophysical survey of the natural spaces of Andalusia]. Junta de Andalucía, Madrid

  • Doerfliger N, Zwahlen F (1998) Practical guide, groundwater vulnerability mapping in karstic regions (EPIK). Swiss Agency for the Environment, Forests and Landscape. Bern, Switzerland, 56 pp

    Google Scholar 

  • Drew D, Hötzl H (eds) (1999) Karst hydrogeology and human activities: impacts, consequences and implications. International Contributions to Hydrogeology 20. Balkema, Rotterdam, The Netherlands, 338 pp

  • EEA (European Environment Agency) (2017) Climate change, impacts and vulnerability in Europe 2016: an indicator-based report. EEA report no. 1/2017. https://doi.org/10.2800/534806

  • Ender A, Goeppert N, Grimmeisen F, Goldscheider N (2017) Evaluation of β-D-glucuronidase and particle-size distribution for microbial water quality monitoring in northern Vietnam. Sci Total Environ 580:996–1006. https://doi.org/10.1016/j.scitotenv.2016.12.054

    Article  Google Scholar 

  • European Commission (2007) Common implementation strategy for the Water Framework Directive (200/60/EC): guidance document no. 16 on groundwater in drinking water protected areas. European Commission, Brussels

  • Ford D, Williams PD (2007) Karst hydrogeology and geomorphology. Wiley, Chippenham, UK

  • Foster S (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Van Duijvenbooden W, Van Waegeningh HG (eds) Vulnerability of soil and groundwater to pollutants 38. TNO Committee on hydrological research, TNO Committee, The Hague, pp 69–86

  • Foster S, Hirata R, Andreo B (2013) The aquifer pollution vulnerability concept: aid or impediment in promoting groundwater protection? Hydrogeol J 21(7):1389–1392. https://doi.org/10.1007/s10040-013-1019-7

    Article  Google Scholar 

  • Frank S, Goeppert N, Goldscheider N (2018) Fluorescence-based multi-parameter approach to characterize dynamics of organic carbon, faecal bacteria and particles at alpine karst springs. Sci Total Environ 615:1446–1459. https://doi.org/10.1016/j.scitotenv.2017.09.095

    Article  Google Scholar 

  • Genthon P, Bataille A, Fromant A, D’Hulst D, Bourges F (2005) Temperature as a marker for karstic waters hydrodynamics: inferences from 1 year recording at La Peyrére Cave (Ariège, France). J Hydrol 311(1–4):157–171. https://doi.org/10.1016/j.jhydrol.2005.01.015

    Article  Google Scholar 

  • Ghasemizadeh R, Yu X, Butscher C, Padilla IY, Alshawabkeh A (2016) Improved regional groundwater flow modeling using drainage features: a case study of the central northern karst aquifer system of Puerto Rico (USA). Hydrogeol J 24(6):1463–1478. https://doi.org/10.1007/s10040-016-1419-6

    Article  Google Scholar 

  • Gogu RD, Dassargues A (2000) Sensitivity analysis for the EPIK method of vulnerability assessment in a small karstic aquifer, southern Belgium. Hydrogeol J 8(3):337–345. https://doi.org/10.1007/s100400050019

    Article  Google Scholar 

  • Goldscheider N, Klute M, Sturm S, Hötzl H (2000) The PI method: a GIS based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol 46(3):157–166

    Google Scholar 

  • Goldscheider N (2005) Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeol J 13(4):555–564. https://doi.org/10.1007/s10040-003-0291-3

    Article  Google Scholar 

  • Goldscheider N, Drew D (eds) (2007) Methods in karst hydrogeology. International Contribution to Hydrogeology, vol 26. Taylor and Francis, London

    Google Scholar 

  • Goldscheider N, Meiman J, Pronk M, Smart C (2008) Tracer tests in karst hydrogeology and speleology. Int J Spel 37(1):27–40. https://doi.org/10.5038/1827-806X.37.1.3

    Article  Google Scholar 

  • Goldscheider N, Pronk M, Zopfi J (2010) New insights into the transport of sediments and microorganisms in karst groundwater by continuous monitoring of particle size distribution. Geol Croat 63(2):137–142. https://doi.org/10.4154/gc.2010.10

    Article  Google Scholar 

  • Goldscheider N, Chen Z, Auler AS, Bakalowicz M, Broda S, Drew D, Hartmann J, Jiang G, Moosdorf N, Stevanovic Z, Veni G (2020) Global distribution of carbonate rocks and karst water resources. Hydrogeol J 28:1661–1677. https://doi.org/10.1007/s10040-020-02139-5

    Article  Google Scholar 

  • Gregory JM, Whiteb NJ, Churchb JA, Bierkensc MFP, Boxd JE, van den Broekee MR, Cogleyf JG, Fettweisg X, Hannah E, Huybrechtsi P, Konikowj LF, Leclercqe PW, Marzeionk B, Oerlemanse J, Tamisieal ME, Wadam Y, Waken LM, van de Wale RSW (2013) Twentieth-century global-mean sea level rise: is the whole greater than the sum of the parts? J Clim 26(13):4476–4499. https://doi.org/10.1175/JCLI-D-12-00319.1

    Article  Google Scholar 

  • Grimmeisen F, Riepl D, Schmidt S, Xanke J, Goldscheider N (2018) Set-up of an early warning system for an improved raw water management of karst groundwater resources in the semi-arid side Wadis of the Jordan Valley. Geophysical Research Abstracts, vol 20, EGU2018–16731, EGU General Assembly, Munich, Germany

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Trans ASAE 1(2):96–99

    Google Scholar 

  • Hartmann A, Barberá JA, Lange J, Andreo B, Weiler M (2013) Progress in the hydrologic simulation of time variant recharge areas of karst systems: exemplified at a karst spring in southern Spain. Adv Water Resour 54:149–160. https://doi.org/10.1016/j.advwatres.2013.01.010

    Article  Google Scholar 

  • Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52(3):218–242. https://doi.org/10.1002/2013RG000443

    Article  Google Scholar 

  • Hunkeler D, Mudry J (2007) Hydrochemical methods. In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology. Taylor and Francis, London, UK, pp 93–121

    Google Scholar 

  • Jeannin PY, Eichenberger U, Sinreich M, Vouillamoz J, Malard A, Weber E (2013) KARSYS: a pragmatic approach to karst hydrogeological system conceptualisation: assessment of groundwater reserves and resources in Switzerland. Environ Earth Sci 69(3):999–1013. https://doi.org/10.1007/s12665-012-1983-6

    Article  Google Scholar 

  • Katsanou K, Lambrakis N (2017) First outcomes of the cop method application for the assessment of intrinsic vulnerability of in the karst system of Vouraikos catchment, Greece. J Earth Sci Environ Stud 3(1):324–331. https://doi.org/10.25177/JESES.3.1.1

    Article  Google Scholar 

  • Kavouri K, Plagnes V, Tremoulet J, Dörfliger N, Fayçal R, Marchet P (2011) PaPRIKa: a method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France). Hydrogeol J 19(2):339–353. https://doi.org/10.1007/s10040-010-0688-8

    Article  Google Scholar 

  • Kazakis N, Chalikakis K, Mazzilli N, Ollivier C, Manakos A, Voudouris K (2018) Management and research strategies of karst aquifers in Greece: literature overview and exemplification based on hydrodynamic modelling and vulnerability assessment of a strategic karst aquifer. Sci Total Environ 643:592–609. https://doi.org/10.1016/j.scitotenv.2018.06.184

    Article  Google Scholar 

  • Margat J (1968) Vulnérabilité des nappes d’eau souterraine à la pollution: Bases de la cartographie: Orléans, France [Vulnerability of groundwater to pollution: basis of mapping: Orléans, France]. Document 68 SGL 198 HYD, Bureau de Recherche Géologique et Minière, Paris

  • Marín AI, Dörfliger N, Andreo B (2012) Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in Mediterranean karst aquifers (France and Spain). Environ Earth Sci 65(8):2407–2421. https://doi.org/10.1007/s12665-011-1056-2

    Article  Google Scholar 

  • Marín AI, Andreo B (2015) Vulnerability to contamination of karst aquifers. In: Stevanović Z (eds) Karst aquifers: characterization and engineering. In: Professional practice in earth sciences. Springer, Cham, Switzerland, pp 251–266. https://doi.org/10.1007/978-3-319-12850-4_8

  • Marin AI, Andreo B, Mudarra M (2015) Vulnerability mapping and protection zoning of karst springs: validation by multitracer tests. Sci Total Environ 532:435–446. https://doi.org/10.1016/j.scitotenv.2015.05.029

    Article  Google Scholar 

  • Martín-Algarra M (1987) Evolución geológica alpina del contacto entre las Zonas Internas y Externas de la Cordillera Bética [Alpine geological evolution of the contact between the internal and external zones of the Betic Cordillera]. PhD Thesis, University of Granada, Spain, 1171 pp

  • Martín-Rodriguez JF, Sánchez D, Mudarra M, Andreo B, López-Rodríguez M, Navas-Gutiérrez MR (2016) Evaluación de recursos hídricos y balance hidrogeológico en acuíferos kársticos de montaña. Caso de la Sierra de Grazalema (Cádiz, España) [Evaluation of the water resources and hydrogeological balance in mountain karst aquifers: case of the Sierra de Grazalema (Cádiz, Spain)]. In: Las aguas subterráneas y la planificación hidrológica [Groundwater and hydrological planning]. Spanish-Portuguese Congress. IAH Spanish Chapter. Madrid (Spain), November 2016, pp 163–170

  • Martín-Rodriguez JF, Mudarra M, Andreo B, Sánchez D (2019) Analysis of the water turbidity in karst springs from S Spain and its relationship with other natural responses, Contribution ID: 712, Poster at 46th IAH Congress, Malaga, Spain, September 2019

  • Massei N, Wang HQ, Dupont JP, Rodet J, Laignel B (2003) Assessment of direct transfer and resuspension of particles during turbid floods at a karstic spring. J Hydrol 275(1–2):109–121. https://doi.org/10.1016/S0022-1694(03)00020-9

    Article  Google Scholar 

  • Mayaud C, Wagner T, Benischke R, Birk S (2014) Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria). J Hydrol 511:628–639. https://doi.org/10.1016/j.jhydrol.2014.02.024

    Article  Google Scholar 

  • Mudarra M, Andreo B (2011) Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of karst aquifers: the case of Alta Cadena (southern Spain). J Hydrol 397(3–4):263–280

    Article  Google Scholar 

  • Mudarra M, Andreo B, Barberá JA, Mudry J (2014) Hydrochemical dynamics of TOC and NO3 contents as natural tracers of infiltration in karst aquifers. Environ Earth Sci 71(2):507–523. https://doi.org/10.1007/s12665-013-2593-7

    Article  Google Scholar 

  • Mudarra M, Andreo B, Baker A (2011) Characterisation of dissolved organic matter in karst spring waters using intrinsic fluorescence: relationship with infiltration processes. Sci Total Environ 409(18):3448–3462. https://doi.org/10.1016/j.scitotenv.2011.05.026

    Article  Google Scholar 

  • Mudarra M, Hartmann A, Andreo B (2019) Combining experimental methods and modeling to quantify the complex recharge behavior of karst aquifers. Water Resour Res 55(2):1384–1404. https://doi.org/10.1029/2017WR021819

    Article  Google Scholar 

  • Mudry J (1987) Apport du traçage physico–chimique naturel à la connaissance hydrocinématique des aquifèrescarbonatés [Contribution of natural physico-chemical tracing to the hydrokinematic knowledge of carbonated aquifers]. PhD Thesis, University of Franche-Comté, France, 400 pp

  • Nebbache S, Loquet M, Vinceslas-Akpa M, Feeny V (1997) Turbidity and microorganisms in a karst spring. Eur J Soil Biol 33:89–103

    Google Scholar 

  • Neukum C, Hötzl H (2007) Standardization of vulnerability maps. Environ Geol 51(5):689–694. https://doi.org/10.1007/s00254-006-0380-4

    Article  Google Scholar 

  • Perrin J, Jeannin PY, Cornaton F (2007) The role of tributary mixing in chemical variations at a karst spring, Milandre, Switzerland. J Hydrol 332(1–2):158–173. https://doi.org/10.1016/j.jhydrol.2006.06.027

    Article  Google Scholar 

  • Perrin J, Pochon A, Jeannin P, Zwahlen F (2004) Vulnerability assessment in karstic areas: validation by field experiments. Environ Geol 46(2):237–245. https://doi.org/10.1007/s00254-004-0986-3

    Article  Google Scholar 

  • Polemio M, Casarano D, Limoni PP (2009) Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, southern Italy). Nat Hazards Earth Syst Sci 9(4):1461–1470. https://doi.org/10.5194/nhess-9-1461-2009

    Article  Google Scholar 

  • PNOA (2016) PNOA LiDAR. Instituto Geográfico Nacional, Gobierno de España PNOA (Plan Nacional de Ortofotografía Aérea). http://pnoa.ign.es/presentacion-y-objetivo. Accessed December 23, 2016

  • Pronk M, Goldscheider N, Zopfi J (2005) Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system. Hydrogeol J 14(4):473–484. https://doi.org/10.1007/s10040-005-0454-5

    Article  Google Scholar 

  • Pronk M, Goldscheider N, Zopfi J (2007) Particle-size distribution as indicator for faecal bacteria contamination of drinking water from karst springs. Environ Sci Technol 41(24):8400–8405. https://doi.org/10.1021/es071976f

    Article  Google Scholar 

  • Ravbar N, Goldscheider N (2007) Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsolog 36(3):461–475. https://doi.org/10.3986/ac.v36i3.174

    Article  Google Scholar 

  • Ravbar N, Goldscheider N (2009) Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeol J 17(3):725–733. https://doi.org/10.1007/s10040-008-0368-0

    Article  Google Scholar 

  • Ravbar N, Kovačič G, Petrič M, Kogovšek J, Brun C, Koželj A (2018) Climatological trends and anticipated karst spring quantity and quality: case study of the Slovene Istria. In: Parise M, Gabrovsek F, Kaufmann G, Ravbar N (eds) Advances in karst research: theory, fieldwork and applications. Geological Society, London, Special Publ. 466, pp 295–305. https://doi.org/10.1144/SP466.19

  • Ryan M, Meiman J (1996) An examination of short-term variations in water quality at a karst spring in Kentucky. Ground Water 34(1):23–30. https://doi.org/10.1111/j.1745-6584.1996.tb01861.x

    Article  Google Scholar 

  • Ryzinska-Paier G, Lendenfeld T, Correa K, Stadler P, Blaschke AP, Mach RL, Stadler H, Kirschner AKT, Farnleitner AH (2014) A sensitive and robust method for automated on-line monitoring of enzymatic activities in water and water resources. Water Sci Technol 69(6):1349–1358. https://doi.org/10.2166/wst.2014.032

    Article  Google Scholar 

  • Sánchez D, Barberá JA, Mudarra M, Andreo B, Martín JF (2018) Hydrochemical and isotopic characterization of carbonate aquifers under natural flow conditions, Sierra Grazalema Natural Park, southern Spain In: Parise M, Gabrovsek F, Kaufmann G, Ravbar N (eds) Advances in karst research: theory, fieldwork and applications. Geol Soc London Spec Publ 466:275–293. https://doi.org/10.1144/SP466.16

  • Sánchez D, Barberá JA, Mudarra M, Andreo B (2017) Hydrogeochemical tools applied to the study of carbonate aquifers: examples from some karst systems of southern Spain. Environ Earth Sci 74(1):199–215. https://doi.org/10.1007/s12665-015-4307-9

    Article  Google Scholar 

  • Sánchez D, Martín-Rodríguez JF, Mudarra M, Andreo B, López M, Navas MR (2016) Time-lag analysis of natural responses during unitary recharge events to assess the functioning of carbonate aquifers in Sierra de Grazalema Natural Park (southern Spain). Eurokarst 2016, Neuchâtel, Switzerland, pp 157–167

  • Shuster ET, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14:93–128. https://doi.org/10.1016/0022-1694(71)90001-1

    Article  Google Scholar 

  • Sorensen JPR, Lapworth DJ, Marchant BP, Nkhuwa DCW, Pedley S, Stuart ME, Bell RA, Chirwa M, Kabika J, Liemisa M, Chibesa M (2015) In-situ tryptophan-like fluorescence: a real-time indicator of faecal contamination in drinking water supplies. Water Res 81:38–46. https://doi.org/10.1016/j.watres.2015.05.035

    Article  Google Scholar 

  • Stevanović Z (2015) Karst aquifers: characterization and engineering. Springer. Cham, Switzerland, 692 pp

    Google Scholar 

  • Taheri K, Taheri M, Mohsenipour F (2015) LEPT, a simplified approach for assessing karst vulnerability in regions by sparse data: a case in Kermanshah province, Iran. 14th Sinkholes and the Engineering and Environmental Impacts of Karst: Proceedings of the Fourteenth Multidisciplinary Conference. https://doi.org/10.5038/9780991000951.1032

  • Turk J, Malard A, Jeannin PY, Petrič M, Gabrovšek F, Ravbar N, Vouillamoz J, Slabe T, Sordet V (2014) Hydrogeological characterization of groundwater storage and drainage in an alpine karst aquifer (the Kanin Massif, Julian Alps). Hydrol Process 29:1986–1998. https://doi.org/10.1002/hyp.10313

    Article  Google Scholar 

  • UN-WATER (2018) Sustainable Development Goal 6. Synthesis report on water and sanitation. United Nations – Water. https://www.unwater.org/app/uploads/2018/12/SDG6_SynthesisReport2018_WaterandSanitation_04122018.pdf. Accessed January 2021

  • Vías JM, Andreo B, Perles MJ, Carrasco F (2005) A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ Geol 47(4):586–595. https://doi.org/10.1007/s00254-004-1185-y

    Article  Google Scholar 

  • Vías J, Andreo B, Perles M, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeol J 14(6):912–925

    Article  Google Scholar 

  • Vías JM, Andreo B, Ravbar N, Hötzl H (2010) Mapping the vulnerability of groundwater to the contamination of four carbonate aquifers in Europe. J Environ Manage 91(7):1500–1510. https://doi.org/10.1007/s10040-006-0023-6

    Article  Google Scholar 

  • Yildirim M, Topkaya B (2007) Groundwater protection: a comparative study of four vulnerability mapping methods. CLEAN Soil Air Water Poll 35(6):594–600. https://doi.org/10.1002/clen.200700144

    Article  Google Scholar 

  • Zaporozec A (1994) Concept of groundwater vulnerability. In: Vrba J, Zaporozec A (eds) Guidebook on mapping groundwater vulnerability. International Contributions to Hydrogeology, vol 16. Heise, Hannover, Germany, pp 3–8

  • Zhang J, Qiu H, Li X, Niu J, Nevers MB, Hu X, Phanikumar MS (2018) Real-time nowcasting of microbiological water quality at recreational beaches: a wavelet and artificial neural network-based hybrid modeling approach. Environ Sci Technol 52(15):8446–8455. https://doi.org/10.1021/acs.est.8b01022

    Article  Google Scholar 

  • Zhang Y, Gao X, Smith K, Inial G, Liu S, Conil LB, Pan B (2019) Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. Water Res 164:114888. https://doi.org/10.1016/j.watres.2019.114888

  • Zheng C, Liu J (2013) China’s “Love Canal” moment? Science 340(6134):810–810. https://doi.org/10.1126/science.340.6134.810-a

    Article  Google Scholar 

  • Zwahlen F (ed) (2004) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report of COST Action 620. European Commission, Directorate-General XII Science. Research and Development, Brussels

    Google Scholar 

Download references

Acknowledgements

The authors thank the local government of the village of Ubrique and water managers for their collaboration. Finally, we want to acknowledge the associate editor and anonymous reviewers for their constructive comments, which contributed to improving the manuscript.

Funding

This work was developed under the Research Group RNM-308 of Junta de Andalucía and is a contribution to the European Project “Karst Aquifer Resources availability and quality in the Mediterranean Area (KARMA)” PRIMA, ANR-18-PRIM-0005. The associated project PCI2019-103675 was funded by the Spanish Research Agency through the scientific programme “Programación Conjunta Internacional”. Additionally, it contributes to the project PID2019-111759RB-I00 funded by the Autonomous Government of Andalusia (Spain), with support of the Environmental and Water Agency of Andalusia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana I. Marín.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the special issue “Five decades of advances in karst hydrogeology”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marín, A.I., Martín Rodríguez, J.F., Barberá, J.A. et al. Groundwater vulnerability to pollution in karst aquifers, considering key challenges and considerations: application to the Ubrique springs in southern Spain. Hydrogeol J 29, 379–396 (2021). https://doi.org/10.1007/s10040-020-02279-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02279-8

Keywords

Navigation