Skip to main content
Log in

Recharge and baseflow constrained by surface-water and groundwater chemistry: case study of the Chari River, Chad basin

Recharge et débit de base contraints par la chimie des eaux de surface et des eaux souterraines: étude du cas de la Rivière Chari, bassin du Tchad

Recarga y flujo de base condicionados por la composición química de las aguas superficiales y subterráneas: estudio de Caso del río Chari, Cuenca del Chad

从地表水和地下水化学来分析补给量和基流:以Chad盆地Chari河为例

Recarga e fluxo de base restringidos pela química das águas superficiais e subterrâneas: estudo de Caso do Rio Chari, bacia do Chade

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Chari-Logone watershed is the only hydrologically active part of the Lake Chad Basin (Central Africa). The Chari-Logone River and Lake Chad exchange water with the surrounding unconfined aquifers of sedimentary and crystalline rock types. In this study, the groundwater contribution to stream flow was quantified by taking advantage of a comprehensive hydrological and chemical database from the 1970s for the upper catchment, which has no equivalent to date. The study area was limited to the larger Chari catchment where the exchanges are mainly oriented from the aquifers to the stream. Upon identification of the mixing poles using end-member mixing analysis (EMMA), and a Monte Carlo inversion of a monthly mixing mass-balance model, an annual averaged base flow of 59 ± 10% of the total stream flow was estimated for 1969–1973. Then, a hydrological model accounting for baseflow and surface flow was calibrated using a 47-year-long monthly discharge time series, and the 4-years’ monthly averaged chemical data available. The simulations yielded an average baseflow of 64% of the annual discharge. The time-constant of the reservoir model (τ = 0.2 years) used to simulate the baseflow was interpreted in terms of hydraulic diffusivity, yielding a value in the order of 101 m2 s−1. This large value corresponds to a highly productive bedrock and thick sedimentary aquifers. The main contribution to the Chari stream flows is restricted to a 140,000-km2 subcatchment located in the southern tropical zone, where the recharge rate reaches 72 ± 6 mm year−1.

Résumé

Le bassin Chari-Logone est la seule partie hydrogéologiquement active du bassin du Lac Tchad (Centrafrique). La Rivière Chari-Logone et le Lac Tchad échangent leur eau avec les aquifères libres environnants de types sédimentaire et cristallin. Dans cette étude, la contribution des eaux souterraines au débit du cours d’eau a été quantifiée en mettant à profit une base de données hydrologiques et chimiques complète des années 1970 concernant le bassin supérieur, qui n’a pas d’équivalent à ce jour. L’aire d’étude a été limitée au bassin versant le plus grand du Chari, dans lequel les échanges sont principalement orientés des aquifères vers le cours d’eau. Lors de l’identification des pôles du mélange à l’aide de l’analyse de ses membres extrêmes et d’une inversion de Monte Carlo du modèle de son bilan massique mensuel, un débit de base annuel moyen de 59 ± 10% de l’écoulement total du cours d’eau a été estimé pour la période 1969–1973. Ensuite, un modèle hydrologique rendant compte du débit de base et de l’écoulement de surface a été calé en recourant à une série temporelle du débit mensuel sur une période de 47 ans et aux données chimiques moyennes mensuelles disponibles sur 4 ans. Les simulations ont donné un débit de base moyen correspondant à 64% du débit annuel. La constante de temps du modèle de réservoir (τ = 0.2 ans) utilisée pour simuler le débit de base a été interprétée en terme de diffusivité hydraulique, donnant une valeur de l’ordre de 101 m2 s−1. Cette valeur importante correspond à un substratum fortement productif et à des aquifères sédimentaires puissants. L’apport principal au débit du Chari est réduit à un sous-bassin versant de 140,000 km2 situé dans la zone tropicale méridionale, où le taux de la recharge atteint 72 ± 6 mm an−1.

Resumen

La cuenca hidrográfica de Chari-Logone es la única parte hidrológicamente activa de la cuenca del lago Chad (África central). El río Chari-Logone y el lago Chad intercambian agua con los acuíferos no confinados circundantes de rocas sedimentarias y cristalinas. En este estudio, la influencia de las aguas subterráneas en el caudal de los cursos de agua se cuantificó aprovechando una extensa base de datos hidrológicos y químicos de la década de 1970 para la cuenca superior, que no tiene equivalente hasta la fecha. El área de estudio se limitó a la cuenca superior del Chari, donde los cambios se orientan principalmente desde los acuíferos hacia el arroyo. Tras la identificación de los puntos de intercambio utilizando el análisis de mezcla de los miembros finales (EMMA), y una inversión de Monte Carlo de un modelo de balance de masa de mezcla mensual, se estimó un flujo base anual promediado de 59 ± 10% del flujo total del arroyo para 1969–1973. Luego, se calibró un modelo hidrológico que tenía en cuenta el flujo base y el flujo de superficial, utilizando una serie temporal de descargas mensuales de 47 años de duración, y los promedios mensuales de los cuatro años de datos químicos disponibles. Las simulaciones arrojaron un flujo de base promedio del 64% de la descarga anual. La constante temporal del modelo del reservorio (τ = 0.2 años) utilizado para simular el flujo base se interpretó en términos de difusividad hidráulica, dando un valor del orden de 101 m2 s−1. Este elevado valor corresponde a un lecho de roca altamente productivo y a acuíferos sedimentarios de alto espesor. La principal contribución a los flujos de la corriente de Chari se restringe a una subcuenca de 140,000-km2 situada en la zona tropical meridional, en la que la tasa de recarga alcanza los 72 ± 6 mm año−1.

摘要

Chari-Logone流域是Chad湖盆地(中部非洲)唯一的水文活动部分。 Chari-Logone河和Chad湖与周围沉积和结晶岩石的潜水含水层进行水量交换。在这项研究中, 利用流域上游从1970年代的综合水文和化学数据库, 定量分析了地下水对径流的贡献, 该数据库迄今尚无法替代。研究区域仅限于较大的Chari流域, 那里的交换主要是从含水层到河流。在使用端元混合分析(EMMA)确定混合极点后, 以及每月混合质量平衡模型的蒙特卡罗反演后, 估计1969–1973年平均年基流量为总径流量的59 ± 10%。然后, 使用47年的月排泄量的时间序列和四年的每月平均化学数据, 识别了解释基流和地表径量的水文模型。模拟得出的平均基流为年排放量的64%。用水力扩散率解释了用来模拟基流量的储层模型的时间常数(τ = 0.2年), 该水力扩散度约为101 m2 s−1。这个大值表示高富水基岩和厚的沉积含水层。对Chari径流的主要贡献仅限于位于南部热带地区的140,000 km2子汇水区, 那里的补给速率达到72 ± 6 mm year−1

Resumo

A bacia hidrográfica Chari-Logone é a única parte hidrologicamente ativa da Bacia do Lago Chade (África Central). O Rio Chari-Logone e o Lago Chade trocam água com os aquíferos não confinados circundantes de tipos de rochas sedimentares e cristalinas. Neste estudo, a contribuição da água subterrânea para o fluxo do rio foi quantificada tirando proveito de um banco de dados hidrológico e químico abrangente da década de 1970 para a bacia hidrográfica superior, que não tem equivalente até o momento. A área de estudo foi limitada à bacia hidrográfica de Chari maior, onde as trocas são principalmente orientadas dos aquíferos para o riacho. Após a identificação dos pólos de mistura usando análise de mistura de membro final (AMMF) e uma inversão de Monte Carlo de um modelo de equilíbrio de massa de mistura mensal, um fluxo de base médio anual de 59 ± 10% do fluxo total da corrente foi estimado para 1969–1973. Em seguida, um modelo hidrológico que considera o fluxo de base e o fluxo de superfície foi calibrado usando uma série de tempo de descarga mensal de 47 anos e os dados químicos médios mensais de quatro anos disponíveis. As simulações produziram um fluxo de base médio de 64% da vazão anual. A constante de tempo do modelo do reservatório (τ = 0.2 anos) usada para simular o escoamento de base foi interpretada em termos de difusividade hidráulica, resultando em um valor da ordem de 101 m2 s−1. Este grande valor corresponde a uma base rochosa altamente produtiva e a aquíferos sedimentares espessos. A principal contribuição para os fluxos do córrego Chari é restrita a uma sub-bacia hidrográfica de 140,000 km2 localizada na zona tropical do sul, onde a taxa de recarga atinge 72 ± 6 mm ano−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abderamane H, Razack M, Vassolo S (2013) Hydrogeochemical and isotopic characterization of the groundwater in the Chari-Baguirmi depression, Republic of Chad. Environ Earth Sci 69:2337–2350

    Article  Google Scholar 

  • Ali A, Lebel T (2009) The Sahelian standardized rainfall index revisited. Int J Climatol 29:1705–1714. https://doi.org/10.1002/joc.1832

    Article  Google Scholar 

  • Ardoin-Bardin S (2004) Variabilité hydroclimatique et impacts sur les resources en eau de grands basins hydrographiques en zone soudano-sahélienne [Hydroclimatic variability and impacts on the water resources of large hydrographic basins in the Sudano-Sahelian zone]. PhD Thesis, Université Montpellier II, Montpellier, France. Retrieved from https://tel.archives-ouvertes.fr/tel-00568025. Accessed November 2020

  • Bader JC, Lemoalle J, Leblanc M (2011) Modèle hydrologique du lac Tchad [Hydrological model of Lake Chad]. Hydrol Sci J 56:411–425. https://doi.org/10.1080/02626667.2011.560853.

    Article  Google Scholar 

  • Baiocchi A, Dragoni W, Lotti F, Piacentini SM, Piscopo V (2015) A multi-scale approach in hydraulic characterization of a metamorphic aquifer: what can be inferred about the groundwater abstraction possibilities. Water 7:4638–4656. https://doi.org/10.3390/w7094638

    Article  Google Scholar 

  • Barthold FK, Tyralla C, Schneider K, Vaché KB, Frede H-G, Breuer L (2011) How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis. Water Resour Res 47:W08519. https://doi.org/10.1029/2011WR010604

    Article  Google Scholar 

  • Bidwell VJ, Stenger R, Barkle GF (2008) Dynamic analysis of groundwater discharge and partial-area contribution to Pukemanga stream, New Zealand. Hydrol EarthSyst Sci 12:975–987

    Article  Google Scholar 

  • Billon B, Guiscafré J, Herbaud J, Oberlin G (1968) Monographie hydrologique du Chari [Hydrological monograph of the Chari]. ORSTOM, Paris. http://www.documentation.ird.fr/hor/fdi:16679. Accessed October 2020

  • Birkel C, Soulsby C (2015) Advancing tracer-aided rainfall–runoff modeling: a review of progress, problems and unrealised potential. Hydrol Process 29:5227–5240

    Article  Google Scholar 

  • Birkett CM (2000) Synergistic remote sensing of Lake Chad: variability of basin inundation. Remote Sens Environ 72:218–236

    Article  Google Scholar 

  • Boucher M, Favreau G, Vouillamoz JM, Nazoumou Y, Legchenko A (2009) Estimating specific yield and transmissivity with magnetic resonance sounding in an unconfined sandstone aquifer (Niger). Hydrogeol J 17:1805–1815

    Article  Google Scholar 

  • Bouchez C (2015) Bilan et dynamique des interactions rivières-lac (s)-aquifères dans le basin hydrologique du lac Tchad: approche couplée géochimie et modélisation des transferts [Water budget and dynamics of river-lake(s)-aquifer interactions in the Lake Chad watershed: geochemical and hydrological modeling coupled approach]. PhD Thesis, Université Aix-Marseille, France

    Google Scholar 

  • Bouchez C, Deschamps P, Goncalves J, Hamelin B, Sylvestre F, Doumnang JC, Mahamat Nour A, Baba Goni I, Favreau G, Genthon P, Seidel JL (2015) Investigation of 36Cl distribution: towards a new estimation of groundwater residence times in the confined aquifer of the LCB? Procedia Earth Planet Sci 13:147–150

    Article  Google Scholar 

  • Bouchez C, Gonçalvès J, Deschamps P, Vallet-Coulomb C, Hamelin B, Doumnang JC, Sylvestre F (2016) Hydrological, chemical, and isotopic budgets of Lake Chad: a quantitative assessment of evaporation, transpiration and infiltration fluxes. Hydrol Earth Syst Sci 20:1599–1619. https://doi.org/10.5194/hess-20-1599-2016

    Article  Google Scholar 

  • Bouchez C, Deschamps P, Goncalves J, Hamelin B, Mahamat Nour A, Vallet-Coulomb C, Sylvestre F (2019) Water transit time and active recharge in the Sahel inferred by bomb-produced 36Cl, Sci. Reports 9:7465

    Google Scholar 

  • Bouchez J, Moquet J-S, Espinoza JC, Martinez J-M, Guyot J-L, Lagane C, Filizola N, Noriega L, Hidalgo Sanchez L, Pombosa R (2017) River mixing in the Amazon as a driver of concentration–discharge relationships. Water Resour Res 53:8660–8685

    Article  Google Scholar 

  • Boulvert Y (1968) Quelques aspects de l’influence de la topographie et du matériau original sur la répartition de sols ferrallitiques, sols ferrugineux tropicaux et vertisols dans la région de Bossangoa au Nord-Ouest de la République Centrafricaine [Some aspects of the influence of topography and original material on the distribution of ferrallitic soils, tropical ferruginous soils, and vertisols in the Bossangoa region of northwestern Central African Republic]. Cahiers ORSTOM Sér Pédol 6:259–275

    Google Scholar 

  • Cabot J (1965) Le bassin du moyen Logone (Monographie du Logone) [The middle basin of the Logone (Monograph of the Logone)]. ORSTOM report, ORSTOM, Paris, 355 pp. https://www.persee.fr/doc/ingeo_0020-0093_1965_num_29_5_5777. Accessed November 2020

  • Calmels D, Galy A, Hovius N, Bickle M, West AJ, Chen MC, Chapman H (2011) Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth Planet Sci Lett 303:48–58. https://doi.org/10.1016/j.epsl.2010.12.032

    Article  Google Scholar 

  • Candela L, Elorza FJ, Tamoh K, Jiménez-Martínez J, Aureli A (2014) Groundwater modelling with limited data sets: the Chari–Logone area (Lake Chad Basin, Chad). Hydrol Process 28:3714–3727

    Article  Google Scholar 

  • Carmouze JP (1972) Originalité de la régulation saline du lac Tchad (originality of the saline regulation of Lake Chad). C R Acad Sci Paris Ser D 275:1871–1874

    Google Scholar 

  • Carrera J, Vázquez-Suñé E, Castillo O, Sánchez-Vila X (2004) A methodology to compute mixing ratios with uncertain end-members. Water Resour Res 40:W12101. https://doi.org/10.1029/2003WR002263

  • Cartwright I, Morgenstern U (2016) Using tritium to document the mean transit time and sources of water contributing to a chain-of-ponds river system: implications for resource protection. Appl Geochem 75:9–19

    Article  Google Scholar 

  • Cartwright I, Morgenstern U, Hofmann H (2019) Concentration versus streamflow trends of major ions and tritium in headwater streams as indicators of changing water stores. Hydrol Processes 34:485–505. https://doi.org/10.1002/hyp.13600

    Article  Google Scholar 

  • Christophersen N, Hooper RP (1992) Multivariate analysis of stream water chemical data: the use of principal components analysis for the end-member mixing problem. Water Resour Res 28:99–107

    Article  Google Scholar 

  • Coe MT, Birkett CM (2004) Calculation of river discharge and prediction of lake height from satellite radar altimetry: example for the Lake Chad basin. Water Resour Res 40:W10205. https://doi.org/10.1029/2003WR002543

    Article  Google Scholar 

  • Coe MT, Foley JA (2001) Human and natural impacts on the water resources of the Lake Chad basin. J Geophys Res Atmos 106:3349–3356

    Article  Google Scholar 

  • Djoret D (2000) Etude de la recharge de la nappe du Chari Baguirmi (Tchad) par les méthodes chimiques et isotopiques [Study of the recharge of the Chari Baguirmi aquifer (Chad) by chemical and isotopic methods]. Avignon. PhD Thesis, Université d’Avignon et des Pays de Vaucluse, Avignon, France, pp. 186. Retrieved from http://www.theses.fr/2000AVIG0028. Accessed November 2020

  • Fontes JC, Maglione G, Roche MA (1970) Elements d’hydrologie isotopique dans le bassin du lac Tchad [Elements of isotope hydrology in the Lake Chad Basin]. Peaceful Uses of Atomic Energy in Africa (Proc. Symp. Kinshasa, 1969), IAEA, Vienna, pp 209–219

  • Gac JY (1980) Géochimie du bassin du lac Tchad. Bilan de l’altération, de l’érosion et de la sédimentation [Geochemistry of the Lake Chad Basin: weathering, erosion and sedimentation]. Travaux et documents de l’ORSTOM, Bondy, France, 252 pp. http://horizon.documentation.ird.fr/exldoc/pleins_textes/pleins_textes_6/Tra_d_cm/00039.pdf. Accessed October 2020

  • Gaillardet J, Dupré B, Louvat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30. https://doi.org/10.1016/S0009-2541(99)00031-5

    Article  Google Scholar 

  • Hendershot WH, Savoie S, Courchesne F (1992) Simulation of stream-water chemistry with soil solution and groundwater flow contributions. J Hydrol 136:237–252. https://doi.org/10.1016/0022-1694(92)90013-L

    Article  Google Scholar 

  • Herrmann A, Stichler W (1980) Groundwater–runoff relationships. Catena 7:251–263

    Article  Google Scholar 

  • Hooper RP (2003) Diagnostic tools for mixing models of stream water chemistry. Water Resour Res 39:1055. https://doi.org/10.1029/2002WR001528

    Article  Google Scholar 

  • Isiorho SA, Matisoff G, Wehn KS (1996) Seepage relationships between Lake Chad and the Chad aquifers. Groundwater 34:819–826

    Article  Google Scholar 

  • Jha MK, Namgial D, Kamii Y (2008) Peiffer S (2008) hydraulic parameters of coastal aquifer systems by direct methods and an extended tide–aquifer interaction technique. Water Resour Manag 22:1899–1923. https://doi.org/10.1007/s11269-008-9259-3

    Article  Google Scholar 

  • Jayatilaka CJ, Stormb B, Mudgwaya LB (1998) Simulation of water flow on irrigation bay scale with MIKE-SHE. J Hydrol 208:108–130. https://doi.org/10.1016/S0022-1694(98)00151-6

    Article  Google Scholar 

  • Jimenez-Martınez J, Longuevergne L, Le Borgne T, Davy P, Russian A, Bour O (2013) Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: insights from a frequency domain analysis. Water Resour Res 49:3007–3023. https://doi.org/10.1002/wrcr.20260

    Article  Google Scholar 

  • Kirchner JW (2016) Aggregation in environmental systems, part 1: seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrol Earth Syst Sci 20:279–297. https://doi.org/10.5194/hess-20-279-2016

    Article  Google Scholar 

  • Klaus J, McDonnell JJ (2013) Hydrograph separation using stable isotopes: review and evaluation. J Hydrol 505:47–64

    Article  Google Scholar 

  • Leduc C, Sabljak S, Taupin JD, Marlin C, Favreau G (2000) Recharge of the quaternary water table in the northwestern Lake Chad basin (southeastern Niger) estimated from isotopes. C R Acad Sci Paris IIa 330(5):355–361

    Article  Google Scholar 

  • Leblanc M, Razack M, Dagorne D, Mofor L, Jones C (2003) Application of Meteosat thermal data to map soil infiltrability in the central part of the Lake Chad basin, Africa. Geophys Res Lett 30(19). https://doi.org/10.1029/2003GL018094

  • Lemoalle J, Magrin G, Ngaressem GM, Ngounou Ngatcha B, Raimond C, Issa S, Amadou B (2014) Le développement du Lac Tchad: situation actuelle et futurs possibles: expertise collégiale réalisée par l’IRD à la demande de la Commission du Lac Tchad—contributions intégrales des experts [The development of Lake Chad: current situation and possible future prospects—collegial expertise conducted by IRD at the request of the Lake Chad Commission. Full contributions of the experts]. IRD, Marseille, France

  • Li L, Bao C, Sullivan PL, Brantley S, Shi Y, Duffy C (2017) Understanding watershed hydrogeochemistry: 2. synchronized hydrological and geochemical processes drive stream chemostatic behavior. Water Resour Res 53:2346–2367. https://doi.org/10.1002/2016WR018935

    Article  Google Scholar 

  • Louis P (1970) Contribution géophysique à la connaissance géologique du bassin du lac Tchad [Geophysical contribution to the geological knowledge of the Lake Chad Basin]. Report no. 42, ORSTOM, Paris, 355 pp

  • Luo Y, Arnold J, Allen P, Chen X (2015) Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China. Hydrol Earth Syst Sci 16:1259–1267

    Article  Google Scholar 

  • Mahamat Nour A, Vallet-Coulomb C, Bouchez C, Ginot P, Doumnang JC, Sylvestre F, Deschamps P (2019) Geochemistry of the Lake Chad tributaries under strongly varying hydro-climatic conditions. Aquat Geochem. https://doi.org/10.1007/s10498-019-09363-w

  • Mahmood R, Jia S (2019) Assessment of hydro-climatic trends and causes of dramatically declining stream flow to Lake Chad, Africa, using a hydrological approach. Sci Total Environ 675:122–140. https://doi.org/10.1016/j.scitotenv.2019.04.219

    Article  Google Scholar 

  • Massuel S (2001) Modélisation hydrodynamique de la nappe phréatique quaternaire du bassin du lac Tchad [Hydrodynamic modeling of the Quaternary unconfined aquifer in the Lake Chad Basin]. Master’s Thesis, Univ. Montpellier II/Univ. d’Avignon et des pays du Vaucluse, Avignon, France, 85 pp

  • Maurice L, Taylor RG, Tindimugaya C, MacDonald AM, Johnson P, Kaponda A, Owor M, Sanga H, Bonsor HC, Darling WG, Gooddy D (2018) Characteristics of high-intensity groundwater abstractions from weathered crystalline bedrock aquifers in East Africa. Hydrogeol J. https://doi.org/10.1007/s10040-018-1836-9

  • Mendoza GF, Steenhuis TS, Walter MT, Parlange JY (2003) Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis. J Hydrol 279:57–69

    Article  Google Scholar 

  • Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solutions to inverse problems. J Geophys Res 100(B7):12431–12447. https://doi.org/10.1029/94JB03097

    Article  Google Scholar 

  • Mouelhi S, Michel C, Perrin C, Andréassian V (2006) Linking stream flow to rainfall at the annual time step: the Manabe bucket model revisited. J Hydrol 328:283–296. https://doi.org/10.1016/j.jhydrol.2005.12.022

    Article  Google Scholar 

  • Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for base flow and recession analyses. Water Resour Res 26:1465–1473

    Article  Google Scholar 

  • Négrel P, Allègre CJ, Dupré B, Lewin E (1993) Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: the Congo Basin case. Earth Planet Sci Lett 120:59–76. https://doi.org/10.1016/0012-821X(93)90023-3

    Article  Google Scholar 

  • Ngounou Ngatcha B, Mudry JN, Sarrot Reynauld J (2007) Groundwater recharge from rainfall in the southern border of Lake Chad in Cameroon. World Appl Sci J 2:125–131

    Google Scholar 

  • Ngounou Ngatcha B, Mudry J, Leduc C (2008) Water resources management in the Lake Chad basin: diagnosis and action plan. Appl Groundw Stud Afr 13:65–84

    Google Scholar 

  • Olivry JC, Chouret A, Vuillaume G, Lemoalle J, Bricquet JP (1996) Hydrologie du lac Tchad [Hydrology of the Lake Chad], vol 12. ORSTOM, Paris

  • Pacheco FAL, Van der Weijden CH (2014) Role of hydraulic diffusivity in the decrease of weathering rates over time. J Hydrol 512:87–106

    Article  Google Scholar 

  • Perrin C, Michel C, Andreassian V (2001) Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J Hydrol 242:275–301

    Article  Google Scholar 

  • Pias J (1968) Contribution à l’étude des formations sédimentaires tertiaires et quaternaires de la cuvette tchadienne et des sols qui en dérivent (République du Tchad) [Contribution to the study of Tertiary and Quaternary sedimentary formations in the Chadian Basin and soils derived from them (Republic of Chad)] Nos. 3–4, ORSTOM, Paris, 527 pp

  • Poulin C, Hamelin B, Vallet-Coulomb C, Amngar G, Loukman B, Cretaux JF, Doumnang JC, MahamatNour A, Menot G, Sylvestre F, Deschamps P (2019) Unraveling the hydrological budget of isolated and seasonally contrasted subtropical lakes. Hydrol Earth Syst Sci 23:1705–1724

    Article  Google Scholar 

  • Pulido-Velazquez MA, Sahuquillo-Herraiz A, Ochoa-Rivera C, Pulido-Velazquez D (2005) Modeling of stream–aquifer interaction: the embedded multireservoir model. J Hydrol 313:166–181

    Article  Google Scholar 

  • Rousseau-Gueutin P, Love AJ, Vasseur G, Robinson NI, Simmons CT, de Marsily G (2013) Time to reach near-steady state in large aquifers. Water Resour Res 49:6893–6908. https://doi.org/10.1002/wrcr.20534

    Article  Google Scholar 

  • Rupp DE, Schmidt J, Woods RA, Bidwell VJ (2009) Analytical assessment and parameter estimation of a low-dimensional groundwater model. J Hydrol 377:143–154

    Article  Google Scholar 

  • Roche (1980) Traçage Salin et isotopique des eaux du bassin versant du lac Tchad (saline and isotopic tracing of the waters of the Lake Chad watershed]. Travaux et documents de l’ORSTOM, ORSTOM, Bondy, France, 373 pp

  • Sahuquillo A (1983) An eigenvalue numerical technique for solving unsteady groundwater continuously in time. Water Resour Res 19:87–93

    Article  Google Scholar 

  • Schneider JL, Wolff JP (1992) Carte géologique et Cartes hydrogéologiques à 1/1 500 000 de la République du Tchad: mémoire explicatif [Geological map and 1:1,500,000 hydrogeological maps of the Republic of Chad: explanatory memorandum], vol 2. BRGM, Orléans, France

    Google Scholar 

  • Schneider J-L (1989) Géologie et hydrogéologie de la République du Tchad [Geology and hydrogeology of the Chad Republic]. PhD Thesis, Université d’Avignon, France

  • SIEREM (2015) Systèmed’Informations Environnementales sur les Ressourcesen Eau et leur Modélisation [Environmental information system on water resources and their modeling]. http://www.hydrosciences.fr/SIEREM/. Accessed October 2020

  • Singh KP (1968) Some factors affecting baseflow. Water Resour Res 4:985–999

    Article  Google Scholar 

  • Sklash MG, Farvolden RN, Fritz P (1976) A conceptual model of watershed response to rainfall, developed through the use of oxygen-18 as a natural tracer. Can J Earth Sci 13:271–183

    Article  Google Scholar 

  • Stockinger MP, Bogena HR, Lücke A, Diekkrüger B, Cornelissen T, Vereecken H (2016) Tracer sampling frequency influences estimates of young water fraction and streamwater transit time distribution. J Hydrol 541:952–964. https://doi.org/10.1016/j.jhydrol.2016.08.007

    Article  Google Scholar 

  • Tallaksen LM (1995) A review of baseflow recession analysis. J Hydrol 165:349–370

    Article  Google Scholar 

  • Tardy Y, Bustillo V, Boeglin J-L (2004) Geochemistry applied to the watershed survey: hydrograph separation, erosion and soil dynamics—a case study: the basin of the Niger River, Africa. Appl Geochem 19:469–518

    Article  Google Scholar 

  • Uribe J, Muñoz JF, Gironás J, Oyarzún R, Aguirre E, Aravena R (2015) Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall–runoff model: Salar del Huasco basin, Chile. Hydrogeol J 23:1535–1551. https://doi.org/10.1007/s10040-015-1300-z

    Article  Google Scholar 

  • Venter O, Sanderson EW, Magrach A, Allan JR, Beher J et al (2018) 2009 human footprint, 2018 release. NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY. https://doi.org/10.7927/H46T0JQ4

  • Zhu W, Jia S, Lall U, Cao Q, Rashid M (2019) Relative contribution of climate variability and human activities on the water loss of the Chari/Logone River discharge into Lake Chad: a conceptual and statistical approach. J Hydrol 569:519–531. https://doi.org/10.1016/j.jhydrol.2018.12.015

    Article  Google Scholar 

Download references

Acknowledgements

The two anonymous reviewers as well as the Editors are acknowledged for their valuable and constructive comments.

Funding

This work was supported by the French National Research Institute for Sustainable Development (IRD) in the framework of the project “Préservation du Lac Tchad: Contribution à la stratégie de développement du lac” funded by “Fond Français de l’Environnement Mondial” and by “Agence Française pour le Développement.” This work also benefitted from the support of FSP GELT (Fonds de Solidarité Prioritaire “Grands Ecosystèmes Lacustres Tchadiens”) program funded by the French Ministry of Foreign Affairs and of the LABEX OT-Med program of the French Investissement d’Avenir program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Gonçalvès.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalvès, J., Mahamat Nour, A., Bouchez, C. et al. Recharge and baseflow constrained by surface-water and groundwater chemistry: case study of the Chari River, Chad basin. Hydrogeol J 29, 703–722 (2021). https://doi.org/10.1007/s10040-020-02259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02259-y

Keywords

Navigation