Abstract
The Pahute Mesa Corrective Action Unit on the Nevada National Security Site (USA) contains several fractured aquifers that can potentially provide high-permeability pathways for migration of radionuclides away from underground nuclear testing locations. Though geometric properties of fractures such as length and orientations, can generally be obtained by geophysical methods and borehole image analyses, their hydraulic properties (primarily influenced by their apertures) are often unknown or have a high degree of uncertainty. This study presents a novel approach to determine fracture apertures at a site by integrating numerical models of flow with data of certain geometrical fracture attributes and hydraulic response of the system because of long-term pumping. Discrete fracture network (DFN) models were used in this study to construct a three-dimensional (3-D) flow model for lava-flow aquifers of Western Pahute Mesa (WPM). Models built using a 3-D DFN code, dfnWorks, were calibrated to hydraulic drawdown observations recorded at the site of a forced-gradient experiment (BULLION FGE). Multiple conceptualizations of boundary conditions, fracture aperture distributions, and realizations of the fracture network were considered to simulate flow and migration of particles between an injection well and a pumping well. Calibrating the DFN flow models to hydraulic drawdown data constrained the ranges of aperture values and helped develop a realistic description of the properties of fractured rocks in WPM. The aperture values resulting from this study are expected to enhance understanding of radionuclide transport in WPM and support the development of large-scale flow and transport models.
Résumé
L’unité d’action corrective de Pahute Mesa sur le site de sécurité nationale du Nevada (États-Unis d’Amérique) contient plusieurs aquifères fracturés qui peuvent potentiellement fournir des voies de haute perméabilité pour la migration des radionucléides loin des sites d’essais nucléaires souterrains. Bien que les propriétés géométriques des fractures, telles que la longueur et les orientations, puissent généralement être obtenues par des méthodes géophysiques et des analyses d’images de forage, leurs propriétés hydrauliques (principalement influencées par leurs ouvertures) sont souvent inconnues ou présentent un degré élevé d’incertitude. Cette étude présente une nouvelle approche pour déterminer les ouvertures des fractures sur un site en intégrant des modèles numériques d’écoulement avec des données de certains attributs géométriques des fractures et la réponse hydraulique du système du fait d’un pompage à long terme. Des modèles de réseaux de fractures discrètes (DFN) ont été utilisés dans cette étude pour construire un modèle d’écoulement tridimensionnel (3-D) pour les aquifères à écoulement de lave de la Mesa occidentale de Pahute (MOP). Les modèles construits à l’aide d’un code DFN 3D, dfnWorks, ont été calibrés en fonction des observations de rabattement enregistrées sur le site d’une expérience à gradient forcé (BULLION FGE). De multiples conceptualisations des conditions aux limites, des distributions des ouvertures de fracture et des réalisations du réseau de fractures ont été envisagées pour simuler l’écoulement et la migration des particules entre un puits d’injection et un puits de pompage. La calibration des modèles d’écoulement DFN via les données de rabattement a contraint les plages de valeurs des ouvertures et a permis de développer une description réaliste des propriétés des roches fracturées dans la MOP. Les valeurs d’ouverture résultant de cette étude devraient améliorer la compréhension du transport des radionucléides dans la MOP et soutenir le développement de modèles d’écoulement et de transport à grande échelle.
Resumen
La Pahute Mesa Corrective Action Unit en el Nevada National Security Site (EEUU) contiene varios acuíferos fracturados que pueden proporcionar potencialmente vías de alta permeabilidad para la migración de radionucleidos fuera de los lugares subterráneos para ensayos nucleares. Aunque las propiedades geométricas de las fracturas, como la longitud y la orientación, pueden obtenerse en general mediante métodos geofísicos y análisis de imágenes de perforaciones, sus propiedades hidráulicas (influenciadas principalmente por sus aperturas) son a menudo desconocidas o tienen un alto grado de incertidumbre. En este estudio se presenta un nuevo enfoque para determinar las aperturas de las fracturas en un sitio mediante la integración de modelos numéricos de flujo con datos de ciertos atributos geométricos de la fractura y la respuesta hidráulica del sistema debido al bombeo a largo plazo. En este estudio se utilizaron modelos de red de fracturas discretas (DFN) para construir un modelo tridimensional (3-D) de flujo para los acuíferos de flujo de lava de la Mesa de Pahute Occidental (WPM). Los modelos construidos utilizando un código DFN en 3-D, dfnWorks, fueron calibrados a las observaciones de disminución del nivel hidráulico registradas en el sitio de un experimento de gradiente forzado (BULLION FGE). Se tuvieron en cuenta múltiples conceptualizaciones de las condiciones límite, las distribuciones de las aperturas de las fracturas y las observaciones de la red de fracturas para simular el flujo y la migración de las partículas entre un pozo de inyección y un pozo de bombeo. La calibración de los modelos de flujo de la DFN a los datos de descenso hidráulico limitó los rangos de los valores de apertura y ayudó a desarrollar una descripción realista de las propiedades de las rocas fracturadas en WPM. Se espera que los valores de apertura resultantes de este estudio mejoren la comprensión del transporte de radionucleidos en WPM y apoyen el desarrollo de modelos de flujo y transporte a gran escala.
摘要
内华达州国家安全区(美国)的Pahute Mesa纠正措施单元包含几个裂隙含水层,这些含水层有可能会为放射性核素从地下核试验场地迁移到其它地方提供高渗透性路径。通常,利用地球物理方法和钻孔图像可以获得和分析裂隙的几何特征,如长度和方向,但其水力性质(主要受其张开度的影响)却通常是未知的或具有高度不确定性。本研究提出了一种确定场地裂隙张开度的新方法。该方法将水流的数值模型与某些几何裂隙特征和长期抽水引起的系统水力响应的数据进行了结合。本研究采用离散裂隙网络(DFN)模型,建立了Pahute Mesa西部(WPM)熔岩流含水层的三维水流模型。使用三维离散裂隙网格代码dfnWorks建立的模型,利用在梯度驱动试验(BULLION FGE)现场记录的水力降深观测值进行校准。考虑了边界条件、裂隙张开度分布和裂隙网络实现等多种概念,模拟了注水井和抽水井之间物质的流动和运移。利用水力降深数据校准离散裂隙网络水流模型。该模型可以约束张开度的范围,并有助于Pahute Mesa西部裂隙岩石特性的真实描述。通过本研究得到的张开度有望提高对WPM放射性核素迁移的理解,并有助于发展大规模的水流和运移模型。
Resumo
A unidade de ação corretiva Pahute Mesa no Local de Segurança Nacional em Nevada (EUA) contém diversos aquíferos fraturados que potencialmente podem fornecer caminhos de alta permeabilidade para a migração de radionuclídeos externa às localidades de testes nucleares subterrâneos. Embora as propriedades geométricas das fraturas, como o tamanho e orientação, podem geralmente ser obtidas por métodos geofísicos e análises de imageamento de poços, as propriedades hidráulicas (primeiramente influenciadas pelas aberturas) são frequentemente desconhecidas ou com alto grau de incerteza. Esse estudo apresenta uma nova abordagem para determinar aberturas de fraturas em um local integrando modelos numéricos de fluxo com dados de certos atributos geométricos de fraturas e resposta hidráulica do sistema pelo bombeamento de longo período. Modelos de rede de fraturas discretas (RFD) foram utilizados nesse estudo para construir um modelo de fluxo tridimensional (3-D) para aquíferos com fluxo de lava em Pahute Mesa Ocidental (PMO). Modelos construídos utilizando um código 3-D RFD, dsnWorks, foram calibrados para as observações do rebaixamento hidráulico gravado no local de um experimento de gradiente-forçado (BULLION FGE); Conceitualizações múltiplas de condições de borda, distribuições de aberturas de fraturas, e realizações de redes de fraturas foram consideradas para simular o fluxo e a migração de partículas entre um poço injetor e um poço de bombeamento. A calibração dos modelos de fluxo RFD para os dados de rebaixamento hidráulico restringem os alcances dos valores de abertura e auxiliam o desenvolvimento de uma descrição realista das propriedades de rochas fraturadas em PMO. Os valores de aberturas resultantes do estudo são esperados para melhorar o entendimento do transporte de radionuclídeos em PMO e ajudar no desenvolvimento de fluxo de grande escala e modelos de transporte.
Similar content being viewed by others
References
Barbier E (2002) Geothermal energy technology and current status: an overview. Renew Sust Energ Rev 6:3–65. https://doi.org/10.1016/S1364-0321(02)00002-3
Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25:861–884. https://doi.org/10.1016/S0309-1708(02)00042-8
Best DJ, Fisher NI (1979) Efficient simulation of the von Mises distribution. J Royal Stat Soc: Series C (Appl Stat) 28:152–157. https://doi.org/10.2307/2346732
Bodvarsson GS, Boyle W, Patterson R, Williams D (1999) Overview of scientific investigations at Yucca Mountain: the potential repository for high-level nuclear waste. J Contam Hydrol 38:3–24. https://doi.org/10.1016/S0169-7722(99)00009-1
Brown S, Caprihan A, Hardy R (1998) Experimental observation of fluid flow channels in a single fracture. J Geophys Res: Solid Earth 103(B3):5125–5132. https://doi.org/10.1029/97JB03542
Cacas MC, Ledoux E, de Marsily G, Tillie B, Barbreau A, Durand E, Feuga B, Peaudecerf P (1990a) Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 2. the transport model. Water Resour Res 26:491–500. https://doi.org/10.1029/WR026i003p00491
Cacas MC, Ledoux E, de Marsily G, Tillie B, Barbreau A, Durand E, Feuga B, Peaudecerf P (1990b) Modeling fracture flow with a stochastic discrete fracture network: calibration and validation—1. the flow model. Water Resour Res 26:479–489. https://doi.org/10.1029/WR026i003p00479
IT Corporation (1997) BULLION forced-gradient experiment implementation plan. IT Corporation report ITLV/10972–195, IT Corporation, Westville, South Africa
Day-Lewis FD, Slater LD, Robinson J, Johnson CD, Terry N, Werkema D (2017) An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites. J Environ Eng 204(2):709–720. https://doi.org/10.1016/j.jenvman.2017.04.033
Dershowitz WS (1984) Rock joint systems. PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA
Dershowitz WS, Herda HH (1992) Interpretation of fracture spacing and intensity. In: The 33th Us Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association, Alexandria, VA
Dershowitz WS, Lee G, Geier J, et al (1993) FracMan user documentation. Golder Assoc., Salt Lake City, UT
Detwiler RL, Pringle SE, Glass RJ (1999) Measurement of fracture aperture fields using transmitted light: an evaluation of measurement errors and their influence on simulations of flow and transport through a single fracture. Water Resour Res 35:2605–2617. https://doi.org/10.1029/1999WR900164
Dijk P, Berkowitz B, Bendel P (1999) Investigation of flow in water-saturated rock fractures using nuclear magnetic resonance imaging (NMRI). Water Res Res 35(2):347–360. https://doi.org/10.1029/1998WR900044
Doherty J, Brebber L, Whyte P (1994) PEST: model-independent parameter estimation. Watermark Computing, Brisbane, Australia
Drellack SLJ, Prothro LB, Roberson KE (1997) Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site. In: Inf. PBD Sep 1997. https://digital.library.unt.edu/ark:/67531/metadc691651/m1/125/. Accessed 12 Feb 2017
de Dreuzy J-R, Davy P, Bour O (2001a) Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. effective connectivity. Water Resour Res 37:2065–2078. https://doi.org/10.1029/2001WR900011
de Dreuzy J-R, Davy P, Bour O (2001b) Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2. permeability of networks based on lognormal distribution of apertures. Water Resour Res 37:2079–2095. https://doi.org/10.1029/2001WR900010
de Dreuzy J-R, Méheust Y, Pichot G (2012) Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks (DFN). J Geophys Res Solid Earth 117:B11207. https://doi.org/10.1029/2012JB009461
Ekstrom MP, Dahan CA, Chen MY, Lloyd PM, Rossi DJ (1987) Formation imaging with microelectrical scanning arrays. In: SPWLA 27th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts, Houston, TX
Elshall AS, Pham HV, FT-C T et al (2015) Parallel inverse modeling and uncertainty quantification for computationally demanding groundwater-flow models using covariance matrix adaptation. J Hydrol Eng 20:04014087. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001126
Erhel J, de Dreuzy J, Poirriez B (2009) Flow simulation in three-dimensional discrete fracture networks. SIAM J Sci Comput 31:2688–2705. https://doi.org/10.1137/080729244
Fenelon JM, Sweetkind DS, Laczniak RJ (2010) Groundwater flow systems at the Nevada Test Site, Nevada: a synthesis of potentiometric contours, hydrostratigraphy, and geologic structures. US Geological Survey, Reston, VA
Geldon AL (2004) Hydraulic tests of Miocene volcanic rocks at Yucca mountain and Pahute Mesa and implications for groundwater flow in the Southwest Nevada volcanic field, Nevada and California. Geological Society of America, Boulder
GitHub (2020) A method to represent a well in a three-dimensional discrete fracture network model for dfnWorks 2.0. https://github.com/pvh1983/dfnWEL. Accessed October 2020
Glass RJ, Nicholl MJ (1995) Quantitative visualization of entrapped phase dissolution within a horizontal flowing fracture. Geophys Res Lett 22:1413–1416. https://doi.org/10.1029/95GL01491
Golder Associates (2015) Summary of conceptual model for fracturing in lava flow aquifers at Pahute Mesa. Technical memorandum, Desert Research Institute, Reno, NV
Hadgu T, Karra S, Kalinina E et al (2017) A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock. J Hydrol 553:59–70. https://doi.org/10.1016/j.jhydrol.2017.07.046
Huang N, Jiang Y, Li B, Liu R (2016) A numerical method for simulating fluid flow through 3-D fracture networks. J Nat Gas Sci Eng 33:1271–1281. https://doi.org/10.1016/j.jngse.2016.06.072
Hyman JD, Jiménez-Martínez J (2018) Dispersion and mixing in three-dimensional discrete fracture networks: nonlinear interplay between structural and hydraulic heterogeneity. Water Resour Res 54:3243–3258. https://doi.org/10.1029/2018WR022585
Hyman J, Gable C, Painter S, Makedonska N (2014) Conforming Delaunay triangulation of stochastically generated three-dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy. SIAM J Sci Comput 36:A1871–A1894. https://doi.org/10.1137/130942541
Hyman JD, Karra S, Makedonska N et al (2015a) dfnWorks: a discrete fracture network framework for modeling subsurface flow and transport. Comput Geosci 84:10–19. https://doi.org/10.1016/j.cageo.2015.08.001
Hyman JD, Painter SL, Viswanathan H et al (2015b) Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks. Water Resour Res 51:7289–7308. https://doi.org/10.1002/2015WR017151
Hyman JD, Dentz M, Hagberg A, Kang PK (2019) Linking structural and transport properties in three-dimensional fracture networks. J Geophys Res Solid Earth 124:1185–1204. https://doi.org/10.1029/2018JB016553
IT Corporation (1998) Report and analysis of the BULLION forced-gradient experiment. DOE/NV/13052–042, ITLV/13052–042, UC-700, US Department of Energy, Nevada Operations Office, Las Vegas, NV
Johns RA, Steude JS, Castanier LM, Roberts PV (1993) Nondestructive measurements of fracture aperture in crystalline rock cores using X ray computed tomography. J Geophys Res 98:1889–1900. https://doi.org/10.1029/92JB02298
Johnston JD, McCaffrey KJW (1996) Fractal geometries of vein systems and the variation of scaling relationships with mechanism. J Struct Geol 18:349–358. https://doi.org/10.1016/S0191-8141(96)80055-1
Kang PK, Borgne TL, Dentz M, Bour O, Juanes R (2015) Impact of velocity correlation and distribution on transport in fractured media: Field evidence and theoretical model. Water Resour Res 51, 940–959. https://doi.org/10.1002/2014WR015799
Karra S, Makedonska N, Viswanathan HS et al (2015) Effect of advective flow in fractures and matrix diffusion on natural gas production. Water Resour Res 51:8646–8657. https://doi.org/10.1002/2014WR016829
Klimczak C, Schultz RA, Parashar R, Reeves DM (2010) Cubic law with aperture-length correlation: implications for network scale fluid flow. Hydrogeol J 18:851–862. https://doi.org/10.1007/s10040-009-0572-6
Lewicki JL, Birkholzer J, Tsang C-F (2007) Natural and industrial analogues for leakage of CO2 from storage reservoirs: identification of features, events, and processes and lessons learned. Environ Geol 52:457. https://doi.org/10.1007/s00254-006-0479-7
Lichtner PC, Hammond GE, Lu C, et al (2015) PFLOTRAN user manual: a massively parallel reactive flow and transport model for describing surface and subsurface processes. Report no. LA-UR-15-20403, Los Alamos National Laboratory. https://doi.org/10.2172/1168703
Los Alamos National Laboratory (2018) LaGriT Los Alamos Grid Toolbox. http://lagrit.lanl.gov. Accessed 29 March 2017
Maillot J, Davy P, Goc RL et al (2016) Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models. Water Resour Res 52:8526–8545. https://doi.org/10.1002/2016WR018973
Makedonska N, Painter SL, Bui QM et al (2015) Particle tracking approach for transport in three-dimensional discrete fracture networks. Comput Geosci 19:1123–1137 https://doi.org/10.1007/s10596-015-9525-4
Makedonska N, Hyman JD, Karra S et al (2016) Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks. Adv Water Resour 94:486–497. https://doi.org/10.1016/j.advwatres.2016.06.010
Makedonska, N, Kwicklis EM, Hyman, JD, Bourret SM (2020) Discrete fracture network modeling to estimate upscaled parameters for the Topopah Spring, lava flow, and Tiva Canyon Aquifers at Pahute Mesa, Nevada National Security Site. Report LA-UR-20-22665, Los Alamos National Laboratory, Los Alamos, NM
Merrien-Soukatchoff V, Korini T, Thoraval A (2012) Use of an integrated discrete fracture network code for stochastic stability analyses of fractured rock masses. Rock Mech Rock Eng 45:159–181. https://doi.org/10.1007/s00603-011-0136-7
Mustapha H, Mustapha K (2007) A new approach to simulating flow in discrete fracture networks with an optimized mesh. SIAM J Sci Comput 29:1439–1459. https://doi.org/10.1137/060653482
National Nuclear Security Administration (NNSA) (2009) Phase II Corrective Action Investigation Plan Action units 101 and 102: central and western Pahute Mesa, Nevada Test Site, Nye County, Nevada. DOE/NV-1312, US DOE, Washington, DC
Neuman SP (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol J 13:124–147. https://doi.org/10.1007/s10040-004-0397-2
O’Malley D, Karra S, Currier RP et al (2016) Where does water go during hydraulic fracturing? Groundwater 54:488–497. https://doi.org/10.1111/gwat.12380
Painter SL, Gable CW, Kelkar S (2012) Pathline tracing on fully unstructured control-volume grids. Comput Geosci 16:1125–1134. https://doi.org/10.1007/s10596-012-9307-1
Parashar R, Reeves DM (2012) On iterative techniques for computing flow in large two-dimensional discrete fracture networks. J Comput Appl Math 236:4712–4724. https://doi.org/10.1016/j.cam.2012.02.038
Parashar R, Reeves DM (2017) Groundwater sustainability in fractured rock aquifers. In: Sustainable water resources management. ASCE, Reston, VA, pp 439–464
Parashar R, Pham HV, Sund NL (2019) Development of upscaling techniques and construction of calibrated models for fractured rocks using discrete fracture network approaches. US DOE, Las Vegas, NV
Pham HV, Parashar R, Sund N, Pohlmann K (2020) A Method to Represent a Well in a Three-Dimensional Discrete Fracture Network Model. Groundwater. https://doi.org/10.1111/gwat.13030
Pichot G, Erhel J, de Dreuzy J (2012) A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture networks. SIAM J Sci Comput 34:B86–B105. https://doi.org/10.1137/100804383
Poeter EP, Hill MC (1999) UCODE, a computer code for universal inverse modeling. Comput Geosci 25:457–462
Ramandi HL, Armstrong RT, Mostaghimi P (2016) Micro-CT image calibration to improve fracture aperture measurement. Case Stud Nondestruct Test Eval. 6:4–13. https://doi.org/10.1016/j.csndt.2016.03.001
Reeves DM, Parashar R, Zhang Y (2012) Hydrogeologic characterization of fractured rock masses intended for disposal of radioactive waste. INTECH Open Access Publisher. https://www.intechopen.com. Accessed October 2020
Reeves DM, Parashar R, Pohll G et al (2013) The use of discrete fracture network simulations in the design of horizontal hillslope drainage networks in fractured rock. Eng Geol 163:132–143. https://doi.org/10.1016/j.enggeo.2013.05.013
Reeves DM, Parashar R, Pohlmann K, Russell C, Chapman J (2014) Development and Calibration of Dual-Permeability Flow Models with Discontinuous Fault Networks. Vadose Zone Journal 13:vzj2013.10.0183. https://doi.org/10.2136/vzj2013.10.0183
Renshaw CE (1999) Connectivity of joint networks with power law length distributions. Water Resour Res 35:2661–2670. https://doi.org/10.1029/1999WR900170
Sahimi M (2011) Flow and transport in porous media and fractured rock: from classical methods to modern approaches. Wiley, Chichester, UK
Sherman T, Hyman JD, Bolster D et al (2019) Characterizing the impact of particle behavior at fracture intersections in three-dimensional discrete fracture networks. Phys Rev E 99:013110. https://doi.org/10.1103/PhysRevE.99.013110
Tsang C-F, Birkholzer J, Rutqvist J (2008) A comparative review of hydrologic issues involved in geologic storage of CO2 and injection disposal of liquid waste. Environ Geol 54:1723–1737. https://doi.org/10.1007/s00254-007-0949-6
Vermilye JM, Scholz CH (1995) Relation between vein length and aperture. J Struct Geol 17:423–434. https://doi.org/10.1016/0191-8141(94)00058-8
Zheng C, Wang PP (2003) MGO: a modular groundwater optimizer incorporating MODFLOW/MT3DMS, documentation and user’s guide. University of Alabama Groundwater Systems Research, Tuscaloosa, AL
Funding
This study was supported in part by the US Department of Energy under contract DE-NA-0000939 and DE-NA-0003590.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pham, H.V., Parashar, R., Sund, N. et al. Determination of fracture apertures via calibration of three-dimensional discrete-fracture-network models: application to Pahute Mesa, Nevada National Security Site, USA. Hydrogeol J 29, 841–857 (2021). https://doi.org/10.1007/s10040-020-02254-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-020-02254-3