Skip to main content

Advertisement

Log in

Neonicotinoids in groundwater: presence and fate in two distinct hydrogeologic settings in Ontario, Canada

Néonicotinoïdes dans les eaux souterraines: présence et devenir dans deux contextes hydrogéologiques différents en Ontario, Canada

Los neonicotinoides en las aguas subterráneas: presencia y destino en dos escenarios hidrogeológicos distintos en Ontario (Canadá)

地下水中的新烟碱:加拿大Ontario省两个不同水文地质条件中的存在和归趋

Neonicotinóides em águas subterrâneas: presença e destino em dois contextos hidrogeológicos distintos em Ontário, Canadá

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Neonicotinoids are a group of insecticides that are commonly used in agriculture throughout the world. Despite their widespread use, there are significant knowledge gaps related to the presence and fate of neonicotinoids in groundwater. This research explores the environmental parameters governing the transport of the most commonly found neonicotinoids from surface application to deeper groundwater in two distinct hydrogeologic settings. Both of these research sites are located in Ontario, Canada: one has an unconfined, sandy Quaternary aquifer while the other has a fractured, crystalline bedrock aquifer (Canadian Shield) under a thin layer of soil and till. Groundwater sampling was conducted using 18–26 monitoring intervals at each research site during each sampling round (April 2016, July 2016, August 2016, November 2016, and April 2017). Analysis of six neonicotinoids, two fungicides, two herbicides, and one ryanoid insecticide were conducted using liquid chromatography–mass spectrometry (positive electrospray ionization)–tandem mass spectrometry. During the groundwater sampling period, soil sampling was conducted, and a crop survey completed. Results from groundwater sampling found the neonicotinoids clothianidin, imidacloprid, and thiamethoxam with maximum concentrations and detection frequencies above the level of quantitation of 2.09, 0.7, 0.46 μg/L, and 2.2, 0.9, 1.3%, respectively. Numerical analysis revealed that under similar environmental conditions, clothianidin and thiamethoxam are released in a similar pattern that resembles a pulse. Future research into this subject should include a finer sampling timeframe to confirm theories about the pulsing nature of neonicotinoids in groundwater.

Résumé

Les néonicotinoïdes sont un groupe d’insecticides qui sont classiquement utilisés en agriculture dans le monde. Malgré leur large utilisation, il reste de forts manques de connaissances sur leur présence et leur devenir dans les eaux souterraines. Cette recherche explore les paramètres environnementaux gouvernant le transport des néonicotinoïdes les plus couramment rencontrés depuis l’application en surface jusqu’aux aquifères profonds dans deux contextes hydrogéologiques distincts. Les deux sites de recherche sont localisés dans l’Ontario, Canada: l’un est un aquifère libre sableux du Quaternaire et l’autre un aquifère de socle cristallin fracturé (bouclier Canadien) sous une fine couche de sol et de till. L’échantillonnage des eaux souterraines a été conduit en utilisant un intervalle de suivi de 18 à 26 sur chaque site de recherche pour chaque campagne (avril 2016, juillet 2016, aout 2016, novembre 2016, et avril 2017). L’analyse de 6 néonicotinoïdes, 2 fongicides, 2 herbicides et 1 insecticide ryanoïde a été menée en utilisant une chromatographie liquide couplée à une spectrométrie de masse (ionisation électrospray positif) – spectrométrie de masse en tandem. Durant la période d’échantillonnage des eaux souterraines, un échantillonnage de sol a été mené et un inventaire des cultures réalisé. Les résultats de l’échantillonnage des eaux souterraines indiquent les néonicotinoïdes clothianidine, imidaclopride et thiaméthoxame avec des concentrations maximales et des fréquences de détection au-dessus de la limite de quantification respectivement de 2,09, 0.7, 0.46 μg/L et 2.2, 0.9 et 1.3%. L’analyse des données révèle que, sous des conditions environnementales similaires, la clothianidine et le thiaméthoxame sont libérés sous une forme similaire, qui ressemble à une impulsion. Les recherches futures sur ce sujet doivent inclure une fréquence d’échantillonnage plus fine pour confirmer les théories sur la nature pulsionnelle des néonicotinoïdes dans les eaux souterraines.

Resumen

Los neonicotinoides son un grupo de insecticidas que se utilizan comúnmente en la agricultura en todo el mundo. A pesar de su uso generalizado, hay importantes lagunas de conocimiento relacionadas con la presencia y el destino de los neonicotinoides en las aguas subterráneas. En la presente investigación se examinan los parámetros ambientales que rigen el transporte de los neonicotinoides más comúnmente encontrados desde la aplicación en la superficie hasta las aguas subterráneas más profundas en dos escenarios hidrogeológicos distintos. Ambos lugares de investigación están situados en Ontario (Canadá): uno posee un acuífero cuaternario no confinado y arenoso, mientras que el otro está constituido por un acuífero en roca madre cristalina fracturada (Escudo Canadiense) bajo una capa delgada de suelo y till. El muestreo de las aguas subterráneas se llevó a cabo utilizando entre 18 y 26 intervalos de monitoreo en cada sitio de investigación durante cada serie de muestreo (abril de 2016, julio de 2016, agosto de 2016, noviembre de 2016 y abril de 2017). Se analizaron 6 neonicotinoides, 2 fungicidas, 2 herbicidas y 1 insecticida rianoide mediante cromatografía líquida -espectrometría de masas (ionización electrospray positiva)- y espectrometría de masas en tándem. Durante el período de muestreo de las aguas subterráneas, se realizó un muestreo del suelo y se completó un estudio de los cultivos. Los resultados del muestreo de las aguas subterráneas revelaron que los neonicotinoides clotianidina, imidacloprid y tiametoxam tenían concentraciones máximas y frecuencias de detección superiores al nivel de cuantificación de 2.09, 0.7, 0.46 μg/L y 2.2, 0.9 y 1.3%, respectivamente. El análisis numérico reveló que bajo condiciones ambientales similares, la clotianidina y el tiametoxam se liberan en un patrón similar que se asemeja a un pulso. Las investigaciones futuras sobre este tema deberían incluir un marco temporal de muestreo más detallado para confirmar las teorías sobre la naturaleza pulsátil de los neonicotinoides en las aguas subterráneas.

摘要

新烟碱是全世界农业中常用的一组杀虫剂。尽管广泛使用,但对于地下水中新烟碱的存在和归趋有关的认识严重不足。本研究探索了在两种不同水文地质条件中,控制最常见的新烟碱类物质从地表向深层地下水迁移的环境参数。这两个研究地点均位于加拿大Ontario省:一个是潜水砂质第四纪含水层,而另一个是在薄土壤和耕作层之下的破碎的结晶基岩含水层(加拿大Shield)。在每个采样周期(2016年4月,2016年7月,2016年8月,2016年11月和2017年4月),每个研究地点使用18至26个监测间隔进行地下水采样。使用液相色谱-质谱法(正电喷雾电离)-串联质谱法分析了6种新烟碱类化合物,2种杀菌剂,2种除草剂和1种黑素类杀虫剂。在地下水采样期间,进行了土壤采样,并完成了作物调查。地下水采样的结果发现,新烟碱类可比丁,吡虫啉和噻虫嗪的最大浓度和检测频率高于定量水平,分别为2.09,0.7,0.46 μg/L和2.2,0.9,1.3%。数值分析表明,在相似的环境条件下,可尼丁和噻虫嗪的释放方式类似于脉冲。对该问题的未来研究应包括更精细的采样时间设计,以证实有关地下水中新烟碱类药物的脉动性质的理论。

Resumo

Os neonicotinóides são um grupo de inseticidas que são comumente usados ​​na agricultura em todo o mundo. Apesar de seu amplo uso, existem importantes lacunas no conhecimento relacionadas à presença e ao destino dos neonicotinóides nas águas subterrâneas. Esta pesquisa explora os parâmetros ambientais que governam o transporte dos neonicotinóides mais comumente encontrados, desde a aplicação da superfície até as águas subterrâneas mais profundas, em duas configurações hidrogeológicas distintas. Ambos os locais de pesquisa estão localizados em Ontário, Canadá: um possui um aquífero quaternário arenoso e não confinado, enquanto o outro possui um aquífero de rocha cristalina e fraturado (Escudo Canadense) sob uma fina camada de solo e plantio. A amostragem de águas subterrâneas foi realizada usando 18 a 26 intervalos de monitoramento em cada local de pesquisa durante cada rodada de amostragem (abril de 2016, julho de 2016, agosto de 2016, novembro de 2016 e abril de 2017). A análise de 6 neonicotinóides, 2 fungicidas, 2 herbicidas e 1 inseticida rianóide foi conduzida usando cromatografia líquida-espectrometria de massa (ionização por eletropulverização positiva)-espectrometria de massa em tandem. Durante o período de amostragem das águas subterrâneas, foi realizada a amostragem do solo e foi concluído um levantamento das culturas. Os resultados da amostragem de águas subterrâneas encontraram os neonicotinóides clothianidina, imidaclopride e tiametoxam com concentrações máximas e frequências de detecção acima do nível de quantificação de 2.09, 0.7, 0.46 μg/L e 2.2, 0.9, 1.3%, respectivamente. A análise numérica revelou que, sob condições ambientais semelhantes, a clothianidina e o tiametoxam são liberados em um padrão semelhante que se assemelha a um pulso. Pesquisas futuras sobre esse assunto devem incluir um período de amostragem mais fino para confirmar teorias sobre a natureza pulsante dos neonicotinóides nas águas subterrâneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AAFC (2017) AAFC crop type feature catalog. Agriculture and Agri-Food Canada, Ottawa

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome. https://doi.org/10.1016/j.eja.2010.12.001

  • Anderson, Dubetz C, Palace VP (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2014.09.090

  • Bacey J (2000) Environmental fate of imidacloprid. Department of Pesticide Regulation, Sacramento, CA

  • Bergin R, Nordmark C (2009) GW 09: ground water monitoring for imidacloprid and four degradates in high use areas in California. Department of Pesticide Regulation, Sacramento, CA

  • Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EA, Noome DA, Simon-Delso N, Tapparo A (2015) Environmental fate and exposure: neonicotinoids and fipronil. Environ Sci Pollut Res 22:35–67. https://doi.org/10.1007/s11356-014-3332-7

    Article  Google Scholar 

  • Bortoluzzi EC, Rheinheimer DS, Gonçalves CS, Pellegrini JBR, Maroneze AM, Kurz MHS, Bacar NM, Zanella R (2007) Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quim Nova 30:1872–1876. https://doi.org/10.1590/S0100-40422007000800014

    Article  Google Scholar 

  • Bowles JE (1992) Engineering properties of soils and their measurement, 4th edn. McGraw-Hill, Boston, MA

    Google Scholar 

  • Browne D (2017) Neonicotinoids in groundwater: presence and fate in two distinct hydrogeologic settings in Ontario. University of Guelph, Guelph, ON

    Google Scholar 

  • Canadian Council of Ministers of the Environment (2007) Canadian water quality guidelines for the protection of aquatic life: imidacloprid. Canadian Council of Ministers of the Environment, Ottawa

  • Chapman LJ, Putnam DF (1984) The physiography of southern Ontario, 3rd edn. University of Toronto Press, Toronto

  • Craig JR (2014) Ogata-Banks 1D transport solution. University of Waterloo, Waterloo, ON

  • Department of Environmental Conservation (2014) Long Island pesticide pollution prevention strategy. Department of Environmental Conservation, Albany, NY

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York

    Google Scholar 

  • Environment and Climate Change Canada (2017) Historical data. http://climate.weather.gc.ca/historical_data/search_historic_data_e.html. Accessed 1 June 2017

  • European Commission (2013) Bee health: EU-wide restrictions on pesticide use to enter into force on 1 December. Europa Press Release Database, Brussels

  • Felsot A (2001) Imidacloprid: insecticide on the move. Agrichem Environ News October 2001(186)

  • Forero LG (2017) Concentration and off-target movement of neonicotinoid residues during agricultural practices in southwestern Ontario. Environ Sci http://hdl.handle.net/10214/10320. Accessed October 2020

  • Fossen M (2006) Environmental fate of imidacloprid. Department of Pesticide Regulation, Sacramento, CA, 16 pp

  • Gardner SG, Levison J, Parker B, Martin RC (2020) Groundwater nitrate in three distinct hydrogeologic and land use settings in southwestern Ontario, Canada. Hydrogeol J 28(5):1891–1908

  • Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28:1955–1974

  • Girolami V, Mazzon L, Squartini A, Mori N, Marzaro M, Di Bernardo A, Greatti M, Giorio C, Tapparo A (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J Econ Entomol 102:1808–1815. https://doi.org/10.1603/029.102.0511

    Article  Google Scholar 

  • Giroux I (2003) Contamination de l’eau souterraine par les pesticides et les nitrates dans les régions en culture de pommes de terre: campagnes d’echantillonage 1999-2000-2001 [Contamination of groundwater by pesticides and nitrates in potato-growing areas: 1999-2000-2001 sampling campaign]. Ministère de l’Environnement, Quebéc

  • Giroux I (2014) Présence de pesticides dans l’eau au Québec: zones de vergers et de pommes de terre, 2010 à 2012 [Presence of pesticides in water in Quebec: orchards and potato zones, 2010 to 2012]. Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, Direction du suivi de l’état de l’environnement, Québec

  • Giroux I, Sarrasin B (2011) Pesticides et nitrates dans l’eau souterraine près de cultures de pommes de terre: échantillonnage dans quelques régions du Québec en 2008 et 2009 [Pesticides and nitrates in groundwater near potato crops: sampling in some regions of Quebec in 2008 and 2009].

  • Gleeson T, Novakowski K, Cook PG, Kyser TK (2009a) Constraining groundwater discharge in a large watershed: integrated isotopic, hydraulic, and thermal data from the Canadian Shield. Water Resour Res 45. https://doi.org/10.1029/2008WR007622

  • Gleeson T, Novakowski K, Kurt Kyser T (2009b) Extremely rapid and localized recharge to a fractured rock aquifer. J Hydrol 376:496–509. https://doi.org/10.1016/j.jhydrol.2009.07.056

    Article  Google Scholar 

  • Godfray, Blacquière T, Field LM, Hails RS, Petrokofsky G, Potts SG, Raine NE, Vanbergen AJ, McLean AR (2014) A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc R Soc B Biol Sci 281(20):140–558. https://doi.org/10.1098/rspb.2014.0558

    Article  Google Scholar 

  • Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50:977–987. https://doi.org/10.1111/1365-2664.12111

    Article  Google Scholar 

  • Goulson D (2014) Pesticides linked to bird declines. Nature 511:295–296. https://doi.org/10.1038/nature13642

    Article  Google Scholar 

  • Government of Ontario (2009) Ontario Pesticide Act 63/08 Section 8. Canada. https://www.ontario.ca/laws/regulation/090063#BK16. Accessed June 25 2017

  • Gupta S, Gajbhiye VT, Agnihotri NPK (2002) Leaching behaviour of imidacloprid formulations in soil. Bull Environ Contam Toxicol 68:502–508. https://doi.org/10.1007/s00128-001-0283-8

    Article  Google Scholar 

  • Hladik M, Kolpin DW, Kuivila KM (2014) Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environ Pollut 193:189–196. https://doi.org/10.1016/j.envpol.2014.06.033

    Article  Google Scholar 

  • Hollingham M (2011) Sources of elevated nitrate concentrations in municipal groundwater supplies in Norfolk and Oxford counties. University of Waterloo, Waterloo, ON

  • Huseth AS, Groves RL (2014) Environmental fate of soil applied neonicotinoid insecticides in an irrigated potato agroecosystem. PLoS One 9. https://doi.org/10.1371/journal.pone.0097081

  • Kurwadkar S, Dewinne D, Wheat R, McGahan DG, Mitchell FL (2013) Time dependent sorption behavior of dinotefuran, imidacloprid and thiamethoxam. J Environ Sci Health B 48:237–242. https://doi.org/10.1080/03601234.2013.742412

    Article  Google Scholar 

  • Lamers M, Anyusheva M, La N, Nguyen VV, Streck T (2011) Pesticide pollution in surface- and groundwater by paddy rice cultivation: a case study from northern Vietnam. Clean Soil Air Water 39:356–361. https://doi.org/10.1002/clen.201000268

    Article  Google Scholar 

  • Levison J, Novakowski K (2009) The impact of cattle pasturing on groundwater quality in bedrock aquifers having minimal overburden. Hydrogeol J 17:559–569. https://doi.org/10.1007/s10040-008-0385-z

    Article  Google Scholar 

  • Levison JK, Novakowski KS (2012) Rapid transport from the surface to wells in fractured rock: a unique infiltration tracer experiment. J Contam Hydrol 131:29–38. https://doi.org/10.1016/j.jconhyd.2012.01.001

    Article  Google Scholar 

  • Levison J, Novakowski K, Reiner EJ, Kolic T (2012) Potential of groundwater contamination by polybrominated diphenyl ethers (PBDEs) in a sensitive bedrock aquifer (Canada). Hydrogeol J 20:401–412. https://doi.org/10.1007/s10040-011-0813-3

    Article  Google Scholar 

  • LPRCA (2008) Long Point Region watershed characterization report. LPRCA, Toronto

  • MacDonald G, Levison J, Parker B (2017) On methods for in-well nitrate monitoring using optical sensors. Groundw Monit Remediat 37:60–70. https://doi.org/10.1111/gwmr.12248

    Article  Google Scholar 

  • Maienfisch P, Angst M, Brandl F, Fischer W, Hofer D, Kayser H, Kobel W, Rindlisbacher A, Senn R, Steinemann A, Widmer H (2001) Chemistry and biology of thiamethoxam: a second generation neonicotinoid. Pest Manag Sci 57:906–913. https://doi.org/10.1002/ps.365

    Article  Google Scholar 

  • Marich AS (2010) An assessment of subsurface sediments in the central Norfolk Sand Plain: Norfolk and Oxford counties, southern Ontario. Groundwater Resources Study 14. Ontario Geological Survey, Sudbury, ON

  • Matrix Solutions Inc. (2014) Long Point Region tier three water budget and local area risk assessment. Appendix B: Model development and calibration report. Matrix, Waterloo, ON

  • Milloy CA (200) Measurement of hydraulic head for the evaluation of groundwater recharge to discrete fracture zones in a crystalline bedrock aquifer. Queen’s University, Kingston, ON

  • Miranda GRB, Raetano CG, Silva E, Daam M a, Cerejeira MJ (2011) Environmental fate of neonicotinoids and classification of their potential risks to hypogean, epygean, and surface water ecosystems in Brazil. Hum Ecol Risk Assess 17:981–995. https://doi.org/10.1080/10807039.2011.588159

    Article  Google Scholar 

  • Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC, Liber K (2015) Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ Int. https://doi.org/10.1016/j.envint.2014.10.024

  • NASA Earth Observations (2017) Leaf area index (8 day - Terra/MODIS). URL https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD15A2_E_LAI&year=2016. Accessed July 10, 2017

  • Ogata A, Banks RB (1961) A solution of the differential equation of longitudinal dispersion in porous media. US Geol Surv Prof Pap 411-A

  • OMAFRA (2016) Field crop protection guide 2016–2017. OMAFRA, Guelph, ON, 812 pp

  • Pesticide Properties Database (2017) Clothianidin. University of Hertfordshire, Hertfordshire, UK

  • PMRA (2016) Imidacloprid: proposed re-evaluation decision. PMRA, Ottawa

  • Praamsm TW (2016) Rock outcrops in the Canadian Shield: an investigation of contaminant transport from surface sources in fractured rock aquifers. Queen’s University, Kingston, ON

  • Praamsma T, Novakowski K, Kyser K, Hall K (2009) Using stable isotopes and hydraulic head data to investigate groundwater recharge and discharge in a fractured rock aquifer. J Hydrol 366:35–45. https://doi.org/10.1016/j.jhydrol.2008.12.011

    Article  Google Scholar 

  • Saleem S, Levison J, Parker B, Martin RC, Persaud E (2020) Impacts of climate change and different crop rotation scenarios on groundwater nitrate concentrations in a sandy aquifer. Sustain J 12(3):1153

    Article  Google Scholar 

  • Satlantic (2017) SUNA. http://satlantic.com/sun. Accessed 29 June 2017

  • Schaafsma A, Limay-Rios V, Baute T, Smith J, Xue Y (2015) Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn) fields in southwestern Ontario. PLoS One 10:1–21. https://doi.org/10.1371/journal.pone.0118139

    Article  Google Scholar 

  • Schaafsma A, Limay-Rios V, Xue Y, Smith J, Baute T (2016) Field-scale examination of neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial maize (corn) fields in southwestern Ontario. Environ Toxicol Chem 35:295–302. https://doi.org/10.1002/etc.3231

    Article  Google Scholar 

  • Schaap M, Brown GE (2003) Rosetta help file: predicting soil hydraulic parameter from basic soil data. Rosetta Lite Version 1:1. Agricultural Research Service, USDA, Washington, DC

    Google Scholar 

  • Hoskin Scientific (2017) HOBO Rain Gauge Data Logger. https://shoponset.hoskin.ca/products/hobo-rain-gauge-data-logger. Accessed June 29, 2017

  • Sheets LP (2010) Imidacloprid: a neonicotinoid insecticide. In: Hayes’ handbook of pesticide toxicology. pp 2055–2064. https://doi.org/10.1016/B978-0-12-374,367-1.00095-1

  • Šimůnek J, Sejna M, van Genuchten MT (2013) Code for simulating the one-dimensional movement of water, heat, and multiple solutes in variable saturated porous media. US Salinity Laboratory, ARS, USDA, Riverside, CA

  • Smith RT, Atkinson K (1975) Techniques in pedology: a handbook for environmental and resource studies. Elek Science, London

    Google Scholar 

  • Solinst Canada Ltd. (2015) Levelogger Series quick start guide. Georgetown, ON

  • Stackhouse PW, Westberg D, Hoell JM, Chandler WS, Zhang T (2015) Prediction of worldwide energy resource: agroclimatology methodology. https://power.larc.nasa.gov/documents/Agroclimatology_Methodology.pdf.. Accessed September 2020

  • Syngenta Canada Inc. (2016) Cruiser Maxx ® pesticide label. Syngenta Canada, Guelph, ON

  • Trimper SA (2010) The presence and transport of human enteric viruses in fractured bedrock aquifers. Queen’s University, Kingston, ON

  • Van Genuchten MT (1981) Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay. J Hydrol 49:213–233. https://doi.org/10.1016/0022-1694(81)90214-6

    Article  Google Scholar 

  • Weaver D, Nordmark C (2004) Summary of results for fiscal year 2003/04 ground water protection list monitoring for imidacloprid and three of it’s degradates. Memorandum to Bob Rollins, Sacramento

  • Wilson ME (1961) Geology of Perth-Lanark and Leeds counties, Ontario. Map 1089 A. Geological Survey of Canada, Ottawa, ON

  • Woodcock BA, Bullock JM, Shore RF, Heard MS, Pereira MG et al (2017) Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science. 356(6345):1393–1395. https://doi.org/10.1126/science.aaa1190

Download references

Acknowledgements

The authors acknowledge Norfolk County and Chris Miller for providing access to monitoring wells. Thank you also to farmers/landowners in Norfolk and Lanark counties who provided information about their land use practices. Thank you to Laura Perron, Heather Shilton, and Peter Bishop for help with field work and generating maps.

Funding

This research was supported by the OMAFRA-University of Guelph Partnership (UofG project No. 030132) and the Ontario Federation of Agriculture (matching funds). This research project (UofG project No. 030132) is funded in part by the Ontario Ministry of Food, Agriculture and Rural Affairs (OMAFRA), through the Ontario Agri-Food Innovation Alliance; and the Ontario Federation of Agriculture (matching funds). The Ontario Ministry of Food, Agriculture and Rural Affairs did not play a direct role in this project. The Ontario Federation of Agriculture provided advice on the format and methodology of the Farmer’s Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Browne.

Ethics declarations

Declaration of interests

No parties have a declaration of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Browne, D., Levison, J., Limay-Rios, V. et al. Neonicotinoids in groundwater: presence and fate in two distinct hydrogeologic settings in Ontario, Canada. Hydrogeol J 29, 651–666 (2021). https://doi.org/10.1007/s10040-020-02250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02250-7

Keywords

Navigation