Skip to main content
Log in

Imaging the hydraulic properties of a contaminated alluvial aquifer perturbed with periodic signals

Imagerie des propriétés hydrauliques d’un aquifère alluvial contaminé perturbé par des signaux périodiques

Imágenes de propiedades hidráulicas de un acuífero aluvial contaminado que ha sido perturbado con señales periódicas

周期性信息干扰的污染冲积含水层水力特征成像

Imageando com sinais periódicos as propriedades hidráulicas de um aquífero aluvial perturbado contaminado

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Imaging characterization of a heterogeneous alluvial aquifer at a decametric scale is presented. The characterization relies on responses to oscillatory pumping tests led in two different wells and at two different periods of oscillation (5 and 10 min). These specific oscillatory responses are extracted from the hydraulic pressure values, measured in 13 boreholes during the pumping tests, through a data processing procedure. Then, a deterministic inversion process, led with a two-dimensional hydraulic properties model, aims to reproduce this set of oscillatory responses, in a frequency domain, by optimizing the distribution of the property values in the model. Two inversion processes are led separately with each set of responses corresponding to the two periods of oscillation used, and one joint inversion is led with the set of all responses together. The inversion results image the heterogeneities in the distribution of the field properties. The results suggest that longer periods of oscillation (in this case 10 min) permit characterization of larger areas around the pumping wells. In contrast, shorter periods (in this case 5 min) propagate more readily in the conductive zones near the pump and provide less information for the less conductive areas. Therefore, it appeared that performing a joint inversion, combining the information carried by the responses to both periods, provided more information on the heterogeneous distribution of the field properties and resulted in better constrained property maps than the ones obtained from separate inversions.

Résumé

L’imagerie de la caractérisation d’un aquifère alluvial hétérogène à une échelle décamétrique est présentée. La caractérisation repose sur les réponses à des essais oscillatoires de pompage réalisés dans deux puits différents et pour deux périodes d’oscillation différentes (5 et 10 min). Ces réponses oscillatoires spécifiques sont extraites des valeurs de pression hydraulique, mesurées dans 13 piézomètres lors des essais de pompage, via une procédure de traitement des données. Ensuite, un processus d’inversion déterministe conduisant à l’établissement d’un modèle bidimensionnel des propriétés hydrauliques a pour objectif de reproduire cet ensemble de réponses oscillatoires dans le domaine fréquentiel en optimisant la distribution des valeurs des propriétés du modèle. Deux processus d’inversion sont réalisés séparément avec chacun des ensembles de réponses correspondant aux deux périodes d’oscillation utilisées, et une inversion conjointe est réalisée avec l’ensemble de toutes les réponses. Les résultats de l’inversion permettent d’imager les hétérogénéités au sein de la distribution des propriétés du terrain. Les résultats suggèrent que des périodes d’oscillation plus longues (dans ce cas 10 min) permettent de caractériser des zones plus grandes autour des forages où sont effectués les pompages. En revanche, des périodes plus courtes (dans ce cas 5 min) se propagent plus facilement dans les zones conductrices à proximité immédiate de la pompe et fournissent moins d’informations pour les zones moins conductrices. Par conséquent, il semble que la réalisation d’une inversion conjointe, combinant l’information contenue dans les réponses pour les deux périodes, fournissait plus d’informations sur la distribution hétérogène des propriétés du terrain et aboutissait à de meilleures cartes de propriétés contraintes que celles obtenues à partir des inversions séparées.

Resumen

Se presenta la caracterización por imágenes de un acuífero aluvial heterogéneo a escala decamétrica. La caracterización se basa en las respuestas a las pruebas de bombeo oscilatorio realizadas en dos pozos diferentes y con dos periodos de oscilación diferentes (5 y 10 min). Estas respuestas oscilatorias específicas se derivan de los valores de la presión hidráulica, medidos en 13 pozos durante las pruebas de bombeo, mediante un procedimiento de procesamiento de datos. A continuación, un proceso de inversión determinista, dirigido con un modelo bidimensional de propiedades hidráulicas, tiene por objeto reproducir este conjunto de respuestas oscilatorias, en un dominio de frecuencias, optimizando la distribución de los valores de las propiedades en el modelo. Se realizan dos procesos de inversión por separado con cada conjunto de respuestas correspondientes a los dos períodos de oscilación utilizados, y se realiza una inversión conjunta con el conjunto de todas las respuestas juntas. Los resultados de la inversión muestran las heterogeneidades en la distribución de las propiedades en el campo. Los resultados sugieren que los períodos de oscilación más largos (en este caso 10 min) permiten la caracterización de áreas más grandes alrededor de los pozos de bombeo. Por el contrario, períodos más cortos (en este caso 5 min) se propagan más fácilmente en las zonas conductoras cercanas a la bomba y proporcionan menos información para las zonas menos conductoras. Por consiguiente, resultaba que la realización de una inversión conjunta, combinando la información transportada por las respuestas a ambos períodos, proporcionaba más información sobre la distribución heterogénea de las propiedades de los campos y daba lugar a mapas de propiedades más restringidos que los que se obtenían de inversiones separadas.

摘要

提出了十公尺尺度的非均质冲积含水层的成像表征。该表征依赖于对在两个不同井中以及在两个不同的振荡周期(5和10分钟)进行振荡抽水试验的响应。这些振动响应是通过数据处理程序从在抽水试验期间13眼钻孔的压力获得的。然后,以二维水力特性模型为主导的确定性反演过程旨在通过优化模型中特征属性参数分布,在频域中重现这些振荡响应。用两个振荡周期的每组响应分别建立了两个反演模型,再用所有响应数据来建立一个联合反演模型。反演结果反映了场属性分布的异质性。结果表明,较长的振荡周期(在这种情况下为10分钟)可以表征抽水井周围较大的区域。相反,较短的周期(在这种情况下为5分钟)在井附近的导电区域中更容易传播,在导电弱的区域提供的信息较少。因此,结合了两个周期的响应信息的联合反演模型提供了更多关于场地属性非均质分布的信息,比单独根据每个周期的反演模型获得的参数分布图效果更好。

Resumo

É apresentada uma caracterização imageada de um aquífero aluvial heterogêneo em escala decamétrica. A caracterização se sustenta em respostas à testes de bombeamento oscilatórios realizados em dois poços diferentes e em dois períodos diferentes de oscilação (5 e 10 minutos). Essas respostas oscilatórias específicas foram extraídas de valores de pressões hidráulicas, medidas em 13 perfurações durante os testes de bombeamento, através de um procedimento de processamento de dados. Então, um processo de inversão determinística, realizado com um modelo de propriedades hidráulicas bidimensionais, com objetivo de reproduzir esse conjunto de respostas oscilatórias, em um domínio de frequência, pela otimização da distribuição de valores de propriedade no modelo. Dois processos de inversão foram realizados separadamente com cada conjunto de respostas correspondendo aos dois períodos de oscilação utilizados, e uma inversão conjunta foi realizada com o conjunto de todas as respostas juntas. Os resultados da inversão imageam as heterogeneidades na distribuição das propriedades de campo. Os resultados sugerem que períodos mais longos de oscilação (nesse caso 10 min) permitem a caracterização de áreas maiores em volta dos poços de bombeamento. Em contraste, períodos mais curtos (nesse caso 5 min) propagam mais prontamente em zonas condutivas próximas ao bombeamento e fornecem menor informação para áreas menos condutivas. Portanto, aparenta-se que ao realizar uma inversão conjunta, combinando a informação trazida pelas repostas em ambos os períodos, fornece-se mais informações na distribuição heterogênea das propriedades de campo, resultando em mapas de propriedade melhor colocadas do que naqueles obtidos com inversões separadas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bakhos T, Cardiff M, Barrash W, Kitanidis PK (2014) Data processing for oscillatory pumping tests. J Hydrol 511:310–319

    Article  Google Scholar 

  • Batu V (1998) Aquifer hydraulics. Wiley, Chichester

  • Berg SJ, W.A. Illman. 2013. Field study of subsurface heterogeneity with steady-state hydraulic tomography. Groundwater 51:29–40

  • Berg SJ, Illman WA (2015) Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site. Groundwater 53:71–89

    Article  Google Scholar 

  • Bohling GC, Butler JJ Jr, Zhan X, Knoll MD (2007) A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities. Water Resour Res 43:W05430

  • Butler JJ (2005) Hydrogeological methods for estimation of spatial variations in hydraulic conductivity. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Water Science and Technology Library, Springer, Dordrecht, The Netherlands

  • Cardiff M, Barrash W, Kitanidis PK, Malama B, Revil A, Straface S, Rizzo E (2009) A potential-based inversion of unconfined steady-state hydraulic tomography. Ground Water 47:259–270

    Article  Google Scholar 

  • Cardiff M, Barrash W (2015) Analytical and semi-analytical tools for the design of oscillatory pumping tests. Groundwater 53:896–907

    Article  Google Scholar 

  • Cardiff M, Slayer C (2016) Strategies for avoiding errors and ambiguities in the analysis of oscillatory pumping tests. J Hydrol 540:1016–1021

    Article  Google Scholar 

  • Cardiff M, Bakhos T, Kitanidis PK, Barrash W (2013) Aquifer heterogeneity characterization with oscillatory pumping: sensitivity analysis and imaging potential. Water Resour Res 49:5395–5410

    Article  Google Scholar 

  • Cardiff M, Zhou Y, Barrash W, Kitanidis PK (2019) Aquifer imaging with oscillatory hydraulic tomography: application at the field scale. Groundwater. https://doi.org/10.1111/gwat.12960

  • De Clercq T, Jardani A, Fischer P, Thanberger L, Vu TM, Pitaval D, Côme J-M, Begassat P (2020) The use of electrical resistivity tomograms as a parameterization for the hydraulic characterization of a contaminated aquifer. J Hydrol 587:124986

  • D’Oria M, Zanini A, Cupola F (2018) Oscillatory pumping test to estimate aquifer hydraulic parameters in a Bayesian geostatistical framework. Math Geosci 50:169–186

    Article  Google Scholar 

  • Fischer P, Jardani A, Soueid Ahmed A, Abbas M, Wang X, Jourde H, Lecoq N (2017) Application of large-scale inversions algorithms to hydraulic tomography in an alluvial aquifer. Groundwater 55:208–218

    Article  Google Scholar 

  • Fischer P, Jardani A, Jourde H, Cardiff M, Wang X, Chedeville S, Lecoq N (2018) Harmonic pumping tomography applied to image the hydraulic properties and interpret the connectivity of a karstic and fractured aquifer (Lez aquifer, France). Adv Water Resour 119:227–244

    Article  Google Scholar 

  • Guiltinan E, Becker MW (2015) Measuring well hydraulic connectivity in fractured bedrock using periodic slug tests. J Hydrol 521:100–107

    Article  Google Scholar 

  • Hochstetler DL, Barrash W, Leven C, Cardiff M, Chidichimo F, Kitanidis PK (2016) Hydraulic tomography: continuity and discontinuity of high-K and low-K zones. Groundwater 54:171–185

    Article  Google Scholar 

  • Illman WA, Liu X, Takeuchi S, Yeh T-CJ, Ando K, Saegusa H (2009) Hydraulic tomography in fractured granite: Mizunami underground research site, Japan. Water Resour Res 45:W01406

  • Illman WA, Zhu J, Craig AJ, Yin D (2010) Comparison of aquifer characterization approaches through steady state groundwater model validation: a controlled laboratory sandbox study. Water Resour Res 46:W04502

  • Jardani A, Dupont JP, Revil A, Massei N, Fournier M, Laignel B (2012) Geostatistical inverse modeling of the transmissivity field of a heterogeneous alluvial aquifer under tidal influence. J Hydrol 472–473:287–300

    Article  Google Scholar 

  • Lavenue M, de Marsily G (2001) Three-dimensional interference test interpretation in a fractured aquifer using the pilot point inverse method. Water Resour Res 37:2659–2675

    Google Scholar 

  • Le Borgne T, Bour O, de Dreuzy JR, Davy P, Touchard F (2004) Equivalent mean flow models for fractured aquifers: insights from a pumping tests scaling interpretation. Water Resour Res 40:W03512

    Article  Google Scholar 

  • Li W, Englert A, Cirpka OA, Vereecken H (2008) Three-dimensional Geostatistical inversion of flowmeter and pumping test data. Ground Water 46:193–201

    Article  Google Scholar 

  • Neuman SP, Witherspoon PA (1972) Field determination of the hydraulic properties of leaky multiple aquifer system. Water Resour Res 8:1284–1298

    Article  Google Scholar 

  • Rabinovich A, Barrash W, Cardiff M, Hochstetler DL, Bakhos T, Dagan G, Kitanidis PK (2015) Frequency dependent hydraulic properties estimated from oscillatory pumping tests in an unconfined aquifer. J Hydrol 531:2–16

    Article  Google Scholar 

  • Rasmussen TC, Haborak KG, Young MH (2003) Estimating aquifer hydraulic properties using sinusoidal pumping tests in an unconfined aquifer. J Hydrol 531:2–16

    Google Scholar 

  • Sanchez-Vila X, Meier PM, Carrera J (1999) Pumping tests in heterogeneous aquifers: an analytical study of what can be obtained from their interpretation using Jacob’s method. Water Resour Res 35:943–952

    Article  Google Scholar 

  • Sun AY, Lu J, Hovorka S (2015) A harmonic pulse testing method for leakage detection in deep subsurface storage formations. Water Resour Res 51:4263–4281

    Article  Google Scholar 

  • Wagner BJ (1992) Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling. J Hydrol 135:275–303

    Article  Google Scholar 

  • Wen J-C, Wu C-M, Yeh T-CJ, Tseng C-M (2010) Estimation of effective aquifer hydraulic properties from an aquifer test with multi-well observations (Taiwan). Hydrogeol J 18:1143–1155

    Article  Google Scholar 

  • Yeh T-CJ, Lee C-H (2007) Time to change the way we collect and analyze data for aquifer characterization. Ground Water 45:116–118

    Article  Google Scholar 

  • Yeh T-CJ, Liu S (2000) Hydraulic tomography: development of a new aquifer test method. Water Resour Res 36:2095–2105

    Article  Google Scholar 

  • Zhou Y, Cardiff M (2017) Oscillatory hydraulic testing as a strategy for NAPL source zone monitoring: laboratory experiments. J Contam Hydrol 200:24–34

    Article  Google Scholar 

  • Zhou Y, Lim D, Cupola F, Cardiff M (2016) Aquifer imaging with pressure waves: evaluation of low-impact characterization through sandbox experiments. Water Resour Res 52:2141–2156

    Article  Google Scholar 

  • Zhu J, Yeh T-CJ (2005) Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resour Res 41W07028

Download references

Acknowledgements

We thank Jeremy Patterson and an anonymous reviewer for their valuable suggestions during the reviewing process.

Funding

We would like to thank the Region Normandie and the Agence De l’Environnement et de la Maîtrise de l’Energie (ADEME) for having financially supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fischer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, P., De Clercq, T., Jardani, A. et al. Imaging the hydraulic properties of a contaminated alluvial aquifer perturbed with periodic signals. Hydrogeol J 28, 2713–2726 (2020). https://doi.org/10.1007/s10040-020-02233-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02233-8

Keywords

Navigation