Skip to main content
Log in

Assessing groundwater recharge and transpiration in a humid northern region dominated by snowmelt using vadose-zone depth profiles

Evaluation de la recharge des eaux souterraines et de la transpiration, sur la base de profils verticaux de la zone vadose, dans une région nordique humide dominée par la fonte des neiges

Evaluación de la recarga de las aguas subterráneas y la transpiración en una región boreal húmeda dominada por el deshielo de la nieve utilizando perfiles de profundidad de zona vadosa

使用包气带深度剖面评估融雪为主的潮湿北部地区地下水的补给和蒸腾作用

Avaliação da recarga de águas subterrâneas e transpiração em uma região úmida boreal regulada pelo derretimento de neve usando perfis de zona vadosa em profundidade

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Profiles of the stable isotope ratios of pore water within the vadose zone provide fingerprints of the history of water percolation into a soil. These profiles, combined with profiles of the volumetric water content, can determine the timing and amount of water that has percolated during specific periods. This study aims to: (1) understand water percolation at two sites in Quebec (Canada) that experience thick snow coverage during the winter season; (2) calculate groundwater recharge rates using the peak-shift method; and (3) estimate the transpiration rate based on the water balance budget. A 7-m-deep borehole was drilled at two sites: one site is sparsely covered by vegetation (S1), while the second underlies a pine forest (S2). For all subsamples, δ18O and δ2H from the soil pore water were analyzed, volumetric water content of the cores was measured, and grain-size analyses to estimate the hydraulic properties were performed. For both boreholes, the winter–spring and summer–autumn periods were determined. Given the limited evapotranspiration occurring during the winter–spring period, recharge rates were high at both sites (71 and 75%), while the summer–autumn period had lower recharge rates of 63% (S1) and 41% (S2). A transpiration rate of 0.7 mm/day was estimated for the pine trees covering site S2. This study provides new field observations for estimating recharge based on water stable isotope profiles in a humid northern region dominated by snowmelt. Moreover, it confirms the accuracy of the peak-shift method for assessing groundwater recharge and estimating transpiration.

Résumé

Les profils du taux d’isotopes stables de l’eau des pores de la zone vadose fournissent des empreintes de l’histoire de la percolation de l’eau dans le sol. Ces profils, combinés à des profils de teneurs volumétriques en eau, peuvent déterminer le moment et la quantité d’eau qui a percolé pendant des périodes particulières. Cette étude a pour objectifs: (1) de comprendre la percolation de l’eau sur deux sites du Québec (Canada) qui connaissent un épais manteau neigeux pendant l’hiver; (2) de calculer les taux de recharge en appliquant la méthode du « décalage du pic »; (3) d’estimer le taux de transpiration sur la base du bilan hydrologique. Un forage de 7 m de profondeur a été réalisé sur les deux sites: le premier site est couvert d’une végétation clairsemée (S1), tandis que le deuxième se situe sous une forêt de pins (S2). Pour tous les échantillons, le δ18O et le δ2H de l’eau des pores du sol ont été analysés, la teneur volumétrique en eau des carottes mesurée et des analyses de la granulométrie conduites afin d’estimer les propriétés hydrauliques. Pour les deux forages, les périodes hiver–printemps et été–automne ont été définies. Etant donnée la faible évapotranspiration durant la période hiver–printemps, les taux de recharge sont élevés sur les deux sites (71 et 75%), tandis que la période été–automne montre des taux de recharge plus faibles, de 63% (S1) et 41% (S2). Un taux de transpiration de 0,7 mm/jour a été estimé pour la forêt de pins couvrant le site S2. Cette étude fournit des observations de terrain inédites pour estimer, sur la base de profils d’isotopes stables de l’eau, la recharge d’une région nordique humide dominée par la fonte des neiges. De plus, elle confirme la précision de la méthode du « décalage du pic » pour évaluer la recharge et estimer la transpiration.

Resumen

Los perfiles de las relaciones de isótopos estables del agua contenida en los poros dentro de la zona de vadosa proporcionan huellas de la evolución de la filtración del agua en el suelo. Estos perfiles, combinados con los perfiles del contenido volumétrico de agua, pueden determinar el momento y la cantidad de agua que se ha filtrado durante períodos específicos. Este estudio tiene por objeto: (1) comprender la filtración de agua en dos sitios de Quebec (Canadá) que experimentan una cobertura de nieve espesa durante la estación invernal; (2) calcular las tasas de recarga de las aguas subterráneas utilizando el método del corrimiento de los picos; y (3) estimar la tasa de transpiración sobre la base del balance hídrico. Se perforó un pozo de 7 m de profundidad en dos sitios: uno de ellos está escasamente cubierto de vegetación (S1), mientras que el segundo está debajo de un bosque de pinos (S2). En todas las submuestras se analizaron δ18O y δ2H del agua del poro del suelo, se midió el contenido volumétrico de agua en los testigos y se realizaron análisis del tamaño de los granos para estimar las propiedades hidráulicas. Para ambos sondeos se determinaron los períodos de invierno–primavera y verano–otoño. Dada la limitada evapotranspiración que se produce durante el período invierno–primavera, las tasas de recarga fueron altas en ambos sitios (71 y 75%), mientras que el período verano–otoño tuvo tasas de recarga más bajas del 63% (S1) y el 41% (S2). Se estimó una tasa de transpiración de 0.7 mm/día para los pinos que cubren el sitio S2. Este estudio proporciona nuevas observaciones de campo para estimar la recarga sobre la base de perfiles de isótopos estables en el agua en una región boreal húmeda dominada por el deshielo. Además, confirma la precisión del método de corrimiento de los picos para evaluar la recarga de las aguas subterráneas y estimar la transpiración.

摘要

包气带内孔隙水的稳定同位素比率剖面提供了水渗入土壤历史的图谱。这些剖面与体积水含量的曲线相结合,可以确定在特定时期内水下渗的时间和数量。这项研究的目的是:(1)了解魁北克(加拿大)冬季经历大雪覆盖的两个地点的入渗现象; (2)使用调峰法计算地下水的补给率; (3)根据水平衡计算估算蒸腾速率。在两个位置钻了7 m深的钻孔:一处为零星植被覆盖(S1),而另一处位于松林下面(S2)。对于所有子样本,分析了土壤孔隙水中的δ18O和δ2H,测量了岩心的体积含水量,并进行了粒度分析以估算水力特性。对于两个钻孔,确定了冬春季和夏秋季。鉴于冬春季期间的蒸发蒸腾量有限,两个地点的补给率均较高(分别为71和75%),而夏秋季期的补给率较低,分别为63%(S1)和41%(S2)。松树覆盖地点S2的蒸腾速率估计为0.7 mm/day。这项研究为基于融雪为主的潮湿北部地区的水稳定同位素剖面提供了估算补给量的新的野外观测资料。此外,它也证实了峰值偏移法用于评估地下水补给和估算蒸腾作用的准确性。

Resumo

Os perfis das relações isotópicas estáveis da água dos poros na zona vadosa fornecem impressões digitais da história da percolação da água no solo. Esses perfis, combinados com perfis de conteúdo volumétrico de água, podem determinar o tempo e a quantidade de água que percolou durante períodos específicos. Este estudo tem como objetivo: (1) entender a percolação da água em dois locais em Quebec (Canadá) onde ocorre uma forte cobertura de neve durante o inverno; (2) calcular as taxas de recarga de águas subterrâneas usando o método do deslocamento de pico; e (3) estimar a taxa de transpiração com base no resíduo do balanço hídrico. Poços de 7 m de profundidade foram perfurado em duas áreas: um em área escassamente coberta por vegetação (S1), enquanto um segundo subjacente a uma floresta de pinheiros (S2). Para todas as subamostras, a presença de δ18O e δ2H nos poros da água do solo foi analisada, o conteúdo volumétrico de água dos núcleos foi medido e análises de tamanho de grão para estimar as propriedades hidráulicas foram realizadas. Para os dois poços, foram determinados os períodos inverno–primavera e verão–outono. Dada a limitada evapotranspiração que ocorreu durante o período de inverno–primavera, as taxas de recarga foram altas nas duas áreas (71 e 75%), enquanto no verão–outono houveram taxas de recarga mais baixas, de 63% (S1) e 41% (S2). Foi estimada uma taxa de transpiração de 0.7 mm/dia para os pinheiros que cobrem a área S2. Este estudo fornece novas observações de campo para estimar a recarga com base em perfis isotópicos estáveis em água em uma região boreal úmida dominada por derretimento de neve. Além disso, confirma a precisão do método do deslocamento de pico para avaliar a recarga das águas subterrâneas e estimar a transpiração.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adomako D, Maloszewski P, Stumpp C, Osae S, Akiti TT (2010) Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana. Hydrol Sci J 55:1405–1416

    Google Scholar 

  • Allison GB, Gee GW, Tyler SW (1994) Vadose-zone techniques for estimating groundwater recharge in arid and semi-arid regions. Soil Sci Soc Am J 58:6–14

    Google Scholar 

  • Anderson MP (1989) Hydrogeologic facies models to delineate large-scale spatial trends in glacial and glaciofluvial sediments. Geol Soc Am Bull 101:501–511

    Google Scholar 

  • Bakker M, Bartholomeus R, Ferre T (2013) Groundwater recharge: processes and quantification. Hydrol Earth Syst Sci 17:2653–2655

    Google Scholar 

  • Barbecot F, Guillon S, Pili E, Larocque M, Gibert-Brunet E, Hélie J-F, Noret A, Plain C, Schneider V, Mattei A, Meyzonnat G (2018) Using water stable isotopes in the unsaturated zone to quantify recharge in two contrasted infiltration regimes. Vadose Zone J 17:1–13

    Google Scholar 

  • Benoit GR, Kirkham D (1963) The effect of soil surface conditions on evaporation of soil water. Soil Sci Soc Am J 27:495–498

    Google Scholar 

  • Beyer W (1964) Zur bestimmung der wasserdurchlässigkeit von kiesen und sanden aus der kornverteilungskurve [On determining the water permeability of gravel and sand from the grain distribution curve]. Wasserwirtsch Wassertech 14:165–168

    Google Scholar 

  • Black CA, Evans DD, White JL, Ensming LE, Clark FE, Dinaueu RC (1965) Methods of soil analysis, part 1, physical and mineralogical properties including statistics of measurement and sampling. American Society Agronomy, Madison, WI

    Google Scholar 

  • Boumaiza L (2008) Caractérisation hydrogéologique des hydrofaciès dans le paléodelta de la rivière Valin au Saguenay [Hydrogeological characterization of hydrofacies in the Valin River Paleodelta in Saguenay]. MSc Thesis, Université du Québec à Chicoutimi, Québec, Canada

  • Boumaiza L, Rouleau A, Cousineau PA (2015) Estimation of hydraulic conductivity and porosity of the identified lithofacies in the granular deposits of Valin river paleodelta in Saguenay region of Quebec. In: Proceedings of the 68th Canadian Geotechnical Conference, Quebec City, QC, September 2015, p 9

  • Boumaiza L, Rouleau A, Cousineau PA (2017) Determining hydrofacies in granular deposits of the Valin River paleodelta in the Saguenay region of Quebec. In: Proceedings of the 70th Canadian Geotechnical Conference and the 12th Joint CGS/IAH-CNC Groundwater Conference, Ottawa, Canada, October, 2017, p 8

  • Boumaiza L, Rouleau A, Cousineau PA (2019) Combining shallow hydrogeological characterization with borehole data for determining hydrofacies in the Valin River paleodelta. In: Proceedings of the 72nd Canadian Geotechnical Conference. St-John’s, Newfoundland, October 2019, p 8

  • Bredehoeft J (2007) It is the discharge. Ground Water 45:523–523

    Google Scholar 

  • Cartwright I, Cendón D, Currell M, Meredith K (2017) A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: possibilities, challenges, and limitations. J Hydrol 555:797–811

    Google Scholar 

  • Čermák J, Cienciala E, Kučera J, Lindroth A, Bednářová E (1995) Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site. J Hydrol 168:17–27

    Google Scholar 

  • Chapuis RP (2012) Predicting the saturated hydraulic conductivity of soils: a review. Bull Eng Geol Environ 71:401–434

    Google Scholar 

  • Chapuis RP (2004) Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can Geotech J 41:787–795

    Google Scholar 

  • Chesnaux R (2013) Regional recharge assessment in the crystalline bedrock aquifer of the Kenogami Uplands, Canada. Hydrol Sci J 58:421–436

    Google Scholar 

  • Chesnaux R, Stumpp C (2018) Advantages and challenges of using soil water isotopes to assess groundwater recharge dominated by snowmelt at a field study located in Canada. Hydrol Sci J 63:679–695

    Google Scholar 

  • Chesnaux R, Santoni S, Garel E, Huneau F (2018) An analytical method for assessing recharge using groundwater travel time in Dupuit-Forchheimer aquifers. Groundwater 56:986–992

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Google Scholar 

  • Crawford J, Hughes CE, Parkes SD (2013) Is the isotopic composition of event-based precipitation driven by moisture source or synoptic scale weather in the Sydney Basin, Australia? J Hydrol 507:213–226

    Google Scholar 

  • Crosbie RS, Binning P, Kalma JD (2005) A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour Res 41:1–9

    Google Scholar 

  • Crosbie RS, Peeters LJM, Herron N, McVicar TR, Herr A (2018) Estimating groundwater recharge and its associated uncertainty: use of regression kriging and the chloride mass balance method. J Hydrol 561:1063–1080

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Google Scholar 

  • De Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10:5–17

    Google Scholar 

  • Doble RC, Crosbie RS (2017) Review: current and emerging methods for catchment-scale modelling of recharge and evapotranspiration from shallow groundwater. Hydrogeol J 25:3–23

    Google Scholar 

  • Eaton TT (2006) On the importance of geological heterogeneity for flow simulation. Sediment Geol 184:187–201

    Google Scholar 

  • Fan J, Oestergaard KT, Guyot A, Lockington DA (2014) Estimating groundwater recharge and evapotranspiration from water table fluctuations under three vegetation covers in a coastal sandy aquifer of subtropical Australia. J Hydrol 519:1120–1129

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliff, NJ

    Google Scholar 

  • Gardner WH (1965) Water content. In: Black CA (ed) Methods of soil analysis. American Society of Agronomy, Madison, WI, pp 82–127

    Google Scholar 

  • Gee GW, Wierenga PJ, Andraski BJ, Young MH, Fayer MJ, Rockhold ML (1994) Variations in water balance and recharge potential at three western desert sites. Soil Sci Soc Am J 58:63–72

    Google Scholar 

  • Gehrels JC, Peeters JEM, De Vries JJ, Dekkers M (1998) The mechanism of soil water movement as inferred from 18O stable isotope studies. Hydrol Sci J 43:579–594

    Google Scholar 

  • Government of Canada (2019) Canada’s National Climate Archive. http://www.climate.weatheroffice.ec.gc.ca/climate_normals/. Accessed July 2019

  • Guan H, Zhang X, Skrzypek G, Sun Z, Xu X (2013) Deuterium excess variations of rainfall events in a coastal area of South Australia and its relationship with synoptic weather systems and atmospheric moisture sources. J Geophys Res Atmos 118:1123–1138

    Google Scholar 

  • Hazen A (1892) Some physical properties of sand and gravel, with their special reference to their use in filtration. 24th annual report, Massachusetts State Board of Health, Boston, pp 539–556

  • Hendry MJ, Wassenaar LI (2009) Inferring heterogeneity in aquitards using high-resolution δd and δ18O profiles. Ground Water 47:639–645

    Google Scholar 

  • Huet M, Chesnaux R, Boucher MA, Poirier C (2016) Comparing various approaches for assessing groundwater recharge at a regional scale in the Canadian shield. Hydrol Sci J 61:2267–2283

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (2020) IAEA’s scientific, technical and regulatory information resources. https://nucleus.iaea.org/Pages/default.aspx. Accessed June 2020

  • Joshi B, Maulé C (2000) Simple analytical models for interpretation of environmental tracer profiles in the vadose zone. Hydrol Process 14:1503–1521

    Google Scholar 

  • Koeniger P (2003) Tracer hydrological investigations on groundwater recharge. Freiburger Schriften zur Hydrologie no. 16, Institut für Hydrologie, Freiburg, Germany

  • Koeniger P, Gaj M, Beyer M, Himmelsbach T (2016) Review on soil water isotope-based groundwater recharge estimations. Hydrol Process 30:2817–2834

    Google Scholar 

  • Kurylyk BL, MacQuarrie KTB (2013) The uncertainty associated with estimating future groundwater recharge: a summary of recent research and an example from a small unconfined aquifer in a northern humid-continental climate. J Hydrol 492:244–253

    Google Scholar 

  • Lee CH, Chen WP, Lee RH (2006) Estimation of groundwater recharge using water balance coupled with base-flow-record estimation and stable-base-flow analysis. Environ Geol 51:73–82

    Google Scholar 

  • Leibundgut C, Maloszewski P, Külls C (2009) Tracers in hydrology. Wiley, Chichester, UK

  • Liu Y, Yamanaka T, Zhou X, Tian F, Ma W (2014) Combined use of tracer approach and numerical simulation to estimate groundwater recharge in an alluvial aquifer system: a case study of Nasunogahara area, central Japan. J Hydrol 519:833–847

    Google Scholar 

  • McConville C, Kalin RM, Johnston H, McNeill GW (2001) Evaluation of recharge in a small temperate catchment using natural and applied delta 18O profiles in the unsaturated zone. Ground Water 39:616–623

    Google Scholar 

  • Memon BA (1995) Quantitative analysis of springs. Environ Geol 26:111–120

    Google Scholar 

  • Mueller MH, Alaoui A, Kuells C, Leistert H, Meusburger K, Stumpp C, Weiler M, Alewell C (2014) Tracking water pathways in steep hillslopes by δ18O depth profiles of soil water. J Hydrol 519:340–352

    Google Scholar 

  • Petheram C, Walker G, Grayson R, Thierfelder T, Zhang L (2002) Towards a framework for predicting impacts of land-use on recharge: 1. a review of recharge studies in Australia. Austral J Soil Res 40:397–417

    Google Scholar 

  • Potter J (1965) Water content of freshly fallen snow. Rep. CIR-4232, TEC-569, Meteorological branch, Department of Transport, Toronto

  • Rutledge AT (2007) Update on the use of the RORA program for recharge estimation. Ground Water 45:374–382

    Google Scholar 

  • Sauerbrey II (1932) On the problem and determination of the permeability coefficient. VNIIG Proceedings, nos. 3–5,Saint Petersburg, Russia

  • Saxena RK (1987) Oxygen-18 fractionation in nature and estimation of groundwater recharge. PhD Thesis, Uppsala University, Sweden

  • Saxena RK, Dressie Z (1984) Estimation of groundwater recharge and moisture movement in sandy formations by tracing natural oxygen-18 and injected tritium profiles in the unsaturated zone. In: International Atomic Energy Agency (IAEA) proceedings series 270/46, 12–16 September 1983, International Atomic Energy Agency, Vienna, Austria, pp 139–150

  • Seelheim F (1880) Methoden zur bestimmnng der durchlässigkeit des bodens [Methods for determining the permeability of the soil]. Z Anal Chem 19:387–402

    Google Scholar 

  • Shah N, Nachabe M, Ross M (2007) Extinction depth and evapotranspiration from ground water under selected land covers. Ground Water 45:329–338

    Google Scholar 

  • Sophocleous MA (1991) Combining the soilwater balance and water-level fluctuation methods to estimate natural groundwater recharge: practical aspects. J Hydrol 124:229–241

    Google Scholar 

  • Stewart MK, McDonnell JJ (1991) Modeling base flow soil water residence times from deuterium concentrations. Water Resour Res 27:2681–2693

    Google Scholar 

  • Stumpp C, Hendry MJ (2012) Spatial and temporal dynamics of water flow and solute transport in a heterogeneous glacial till: the application of high-resolution profiles of δ18O and δ2H in pore waters. J Hydrol 438–439:203–214

    Google Scholar 

  • Stumpp C, Maloszewski P, Stichler W, Fank J (2009) Environmental isotope (δ18O) and hydrological data to assess water flow in unsaturated soils planted with different crops: case study lysimeter station “Wagna” (Austria). J Hydrol 369:198–208

    Google Scholar 

  • Stumpp C, Stichler W, Kandolf M, Šimůnek J (2012) Effects of land cover and fertilization method on water flow and solute transport in five lysimeters: a long-term study using stable water isotopes. Vadose Zone J 11 (1), vzj2011.007

  • Thoma G, Esser N, Sonntag C, Weiss W, Rudolph J, Levene P (1979) New technique of insitu soil moisture sampling for environmental isotope analysis applied at “Pilat-dune” near Bordeaux. International symposium on isotope hydrology, IAEA/UNESCO, Vienna, Austria, pp 753–766

  • Tremblay P (2005) Étude hydrogéologique de l’aquifère de Saint-Honoré avec emphase sur son bilan hydrique [Hydrogeologic analysis of Saint-Honoré aquifer with emphasis on its water budge]. MSc Thesis, Université du Québec à Chicoutimi, Québec

  • Vukovic M, Soro A (1992) Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources Publ., Littleton, CO

    Google Scholar 

  • Wassenaar LI, Hendry MJ, Chostner VL, Lis GP (2008) High resolution pore water δ2H and δ18O measurements by H2O(liquid)-H2O (vapor) equilibration laser spectroscopy. Environ Sci Technol 42:9262–9267

    Google Scholar 

  • Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:507–521

    Google Scholar 

  • Yeh HF, Lee CH, Chen JF, Chen WP (2007) Estimation of groundwater recharge using water balance model. Water Resour 34:153–162

    Google Scholar 

  • Zappa G, Bersezio R, Felletti F, Giudici M (2006) Modeling heterogeneity of gravel-sand, braided stream, alluvial aquifers at the facies scale. J Hydrol 325:134–153

    Google Scholar 

  • Zimmermann R, Schulze ED, Wirth C, Schulze EE, Mcdonald KC, Vygodskaya NN, Ziegler W (2000) Canopy transpiration in a chronosequence of central Siberian pine forests. Glob Chang Biol 6:25–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamine Boumaiza.

Appendix

Appendix

Abbreviations and symbols

bgs:

Below ground surface

K s :

Saturated hydraulic conductivity (cm/s)

K s.eq :

Equivalent saturated hydraulic conductivity (cm/s)

K :

Unsaturated hydraulic conductivity (cm/s)

θ V :

Volumetric water content (cm3/cm3)

θ r :

Residual volumetric water content (cm3/cm3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boumaiza, L., Chesnaux, R., Walter, J. et al. Assessing groundwater recharge and transpiration in a humid northern region dominated by snowmelt using vadose-zone depth profiles. Hydrogeol J 28, 2315–2329 (2020). https://doi.org/10.1007/s10040-020-02204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02204-z

Keywords

Navigation