Skip to main content

Advertisement

Log in

The influence of snow cover, air temperature, and groundwater flow on the active-layer thermal regime of Arctic hillslopes drained by water tracks

Influence de la couverture neigeuse, de la température de l’air et de l’écoulement des eaux souterraines sur le régime thermique de la couche active des versants de l’Arctique drainés par des chenaux

La influencia de la cubierta de nieve, la temperatura del aire y el flujo de aguas subterráneas en el régimen térmico de la capa activa de las laderas del Ártico drenadas mediante vertientes de agua

冰雪覆盖、气温和地下水流动对水迹排水的北极山坡融冻层热状态的影响

A influência da cobertura de neve, temperatura do ar, e fluxo das águas subterrâneas no regime termal da camada ativa de encostas no Árticas drenadas por trilhas de água

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Permafrost in Arctic watersheds limits soil biological activity to a thin, seasonally thawed active layer that contributes water to streams. In many hillslopes, relatively wet drainage features called water tracks have distinct freeze-thaw patterns that affect groundwater flow and storage, and thus the export of heat and solutes to Arctic streams. This study uses groundwater flow and energy transport models to examine potential controls on the timing and duration of freeze–thaw conditions and the magnitude of temperature fluctuations within water tracks and their adjacent hillslopes. The simulated length of the active-layer thaw season varies by 1 month over the range of snow-cover and mean annual air-temperature scenarios simulated. The timing and duration of freezing is particularly sensitive to depth and duration of snow cover. Thus, the deeper snowpack covers that can accumulate in water tracks contribute to their more persistent thaw conditions and their ability to conduct groundwater downslope. A three-dimensional simulation shows that during the summer thaw season, the water track captures groundwater laterally from half way across the hillslope. The models presented here elucidate key mechanisms driving small-scale variation in the active-layer thermal regime of tundra hillslopes, which may be responsible for changes in drainage-network geometry and Arctic biogeochemical fluxes under a warming climate.

Résumé

Dans les bassins de l’Arctique, le pergélisol limite l’activité biologique du sol à une couche active mince et à dégel saisonnier, qui alimente en eau les ruisseaux. Sur beaucoup de versants, les éléments de drainage relativement humides appelés chenaux ont des modalités de gel-dégel particulières qui affectent l’écoulement et le stockage des eaux souterraines et par conséquent l’exportation de la chaleur et des solutés vers les cours d’eau de l’Arctique. La présente étude utilise des modèles d’écoulement de l’eau souterraine et de transport de l’énergie pour examiner les contrôles possibles sur le moment et la durée des conditions de gel-dégel et l’amplitude des fluctuations de température dans les chenaux et leurs versants adjacents. La durée simulée de la saison de dégel de la couche active varie d’un mois sur l’ensemble des scénarios modélisés de couverture neigeuse et de température annuelle moyenne de l’air. Le moment et la durée du gel sont particulièrement sensibles à la profondeur et à la durée du couvert neigeux. Ainsi, les couverts neigeux plus épais, qui peuvent s’accumuler dans les chenaux, contribuent à des conditions de dégel qui persistent plus longtemps et à une capacité à conduire l’eau souterraine à l’aval. Une simulation tri-dimensionnelle montre que pendant la saison de dégel estival, le chenal capture latéralement l’eau souterraine de part et d’autre à mi pente du versant. Les modèles présentés ici élucident les mécanismes principaux qui commandent la variation à petite échelle du régime thermique de la couche active des versants de toundra, qui peuvent être à l’origine de changements de la géométrie du réseau de drainage et des flux biogéochimiques de l’Arctique, sous un climat en voie de réchauffement.

Resumen

El permafrost en las cuencas hidrográficas del Ártico limita la actividad biológica del suelo a una capa activa delgada, descongelada estacionalmente, que aporta agua a los ríos. En muchas laderas, los rasgos de drenaje relativamente húmedos llamados vertientes de agua tienen patrones distintivos de congelación-descongelación que afectan al flujo y almacenamiento de aguas subterráneas y, por lo tanto, a la exportación de calor y solutos a los ríos del Ártico. En el presente estudio se utilizan modelos de flujo de aguas subterráneas y de transporte de energía para examinar los posibles controles del tiempo y la duración de las condiciones de congelación-descongelación y la magnitud de las fluctuaciones de temperatura dentro de las vertientes de agua y sus laderas adyacentes. La duración simulada de la temporada de deshielo de la capa activa varía en un mes a lo largo de la variedad de escenarios de cobertura de nieve y temperatura media anual del aire simulados. El tiempo y la duración del deshielo son particularmente sensibles a la profundidad y duración de la cubierta de nieve. Así, las cubiertas de nieve más profundas que pueden acumularse en las vertientes de agua contribuyen a que las condiciones de deshielo sean más persistentes y a que las aguas subterráneas puedan descender. Una simulación tridimensional muestra que durante la temporada de deshielo de verano, la vertiente de agua captura el agua subterránea lateralmente desde la mitad de la ladera. Los modelos presentados aquí dilucidan los mecanismos claves que impulsan la variación a pequeña escala del régimen térmico de la capa activa de las laderas de la tundra, que pueden ser responsables de los cambios en la geometría de la red de drenaje y los flujos biogeoquímicos del Ártico en un clima de calentamiento.

摘要

北极流域的永冻土层将土壤生物活动限制在一个薄的季节性融化的活动层,该层为溪流提供水源。在许多山坡上,被称为水迹的相对湿润的排水特征具有明显的冻融模式,影响了地下水的流动和储存,以及热量和溶质向北极溪流的径流。采用地下水流动和能量传输的模型,本文研究冻融条件时间和持续性的可能控制因素,以及水迹及其邻近山坡内温度波动幅度。经过积雪覆盖及年平均气温情景模拟的范围后,模拟的活动层融化期的长度在1个月。冻结的时间和持续时间对积雪的深度和持续时间特别敏感。因此,较深的积雪覆盖层可以在水迹中积累,有助于它们更持久的解冻条件和提高地下水向下坡流动的能力。三维模拟表明在夏季融雪期水迹从半山腰处接受地下水侧向补给。本文所建立的模型阐明了驱动冻土山坡活动层热态小规模变化的关键机制,这些机制可能是变暖气候下流域-网络几何结构和北极生物地球化学通量变化的原因。

Resumo

Pergelissolos em bacias Árticas limitam a atividade biológica do solo à uma camada ativa fina, sazonalmente descongelada que direciona a água aos canais. Em muitas encostas, as características de drenagem relativamente úmidas chamadas de trilhas de água têm padrões de congelamento-descongelamento distintas que afetam o fluxo e armazenamento das águas subterrâneas, e assim a exportação de calor e solutos para os canais Árticos. Esse estudo utiliza modelos de transporte de energia e fluxo das águas subterrâneas para examinar controles potenciais no tempo e duração das condições de congelamento-descongelamento e a magnitude das flutuações de temperatura nas trilhas de água e duas encostas adjacentes. O comprimento simulado da camada ativa da temporada de descongelamento varia em um mês sobre o alcance dos cenários simulados de cobertura de neve e de média anual da temperatura do ar. O tempo e duração do congelamento é particularmente sensível à profundidade e duração da cobertura de neve. Assim, os montantes de cobertura de neve mais profundos que podem acumular nas trilhas de água contribuem para condições de descongelamento mais persistentes e suas habilidades para conduzir as águas subterrâneas em descendência pelas encostas. Uma simulação tridimensional mostra que durante a temporada de descongelamento do verão, a trilha de água captura as águas subterrâneas lateralmente a partir do meio do caminho através da encosta. Os modelos apresentados aqui elucidam mecanismos chave que conduzem variações em pequena escala no regime termal da camada-ativa das encostas de tundra, que podem ser responsáveis pelas mudanças na geometria das redes de drenagem e fluxos biogeoquímicos no Ártico sob um clima mais quente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atchley AL, Coon ET, Painter SL, Harp DR, Wilson C (2016) Influences and interactions of inundation, peat, and snow on active layer thickness. Geophys Res Lett 43(10):5116–6123. https://doi.org/10.1002/2016GL068550

    Article  Google Scholar 

  • Baughman CA, Mann DH, Verbyla DL, Kunz ML (2015) Soil surface organic layers in Arctic Alaska: spatial distribution, rates of formation, and microclimatic effects. J Geophys Res: Biogeosci 120:1150–1164. https://doi.org/10.1002/2015JG002983

    Article  Google Scholar 

  • Bitanja R, Krikken F (2016) Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing. Nature 6(38287). https://doi.org/10.1038/srep38287

  • Bowden WB, Gooseff MN, Balser A, Green A, Peterson BJ (2008) Sediment and nutrient delivery from thermokarst features in the foothills of the north slope, Alaska: potential impacts on headwater stream ecosystems. J Geophys Res 113(G02026). https://doi.org/10.1029/2007JG000470

  • Briggs MA, Walvoord MA, McKenzie JM, Voss CI, Day-Lewis FD, Lane JW (2014) New permafrost is forming around shrinking Arctic lakes, but will it last? Geophys Res Lett 41:1585–1592. https://doi.org/10.1002/2014GL059251

    Article  Google Scholar 

  • Brown J, Hinkel KM, Nelson FE (2000) The circumpolar active layer monitoring (CALM) program: research designs and initial results. Polar Geogr 24(3):166–258

    Article  Google Scholar 

  • Burn CR, Zhang Y (2010), Sensitivity of active-layer development to winter conditions north of treeline, Mackenzie delta area, western Arctic coast. Proceedings of the 6th Canadian Permafrost Conference, Calgary, AB, September 2010, pp 12–16

  • Carey SK, Woo MK (2000) The role of soil pipe flow as a slope runoff mechanism, subarctic Yukon, Canada. J Hydrol 233:206–222

  • Chadburn S, Burke E, Essery R, Boike J, Langer M, Heikenfeld M et al (2015) An improved representation of physical permafrost dynamics in the JULES land-surface model. Geosci Model Dev 8(5):1493–1508. https://doi.org/10.5194/gmd-8-1493-2015

    Article  Google Scholar 

  • Dingman SL (1973) Effects of permafrost on stream flow characteristics in the discontinuous permafrost zone of Central Alaska. Presented at the 2nd international conference on permafrost. Yakutsk, Siberia, July 1973, National Academy of Sciences, Washington, DC

  • Ebel BA, Koch JC, Walvoord MA (2019) Soil physical, hydraulic, and thermal properties in interior Alaska, USA: implications for hydrologic response to thawing permafrost conditions. Water Resour Res 55:4427–4447. https://doi.org/10.1029/2018WR023673

    Article  Google Scholar 

  • Evans SG, Godsey SE, Rushlow CR, Voss C (2020) Water tracks enhance water flow above permafrost in upland Arctic Alaska hillslopes. J Geophys Res: Earth Surface 125:e2019JF005256. https://doi.org/10.1029/2019JF005256

    Article  Google Scholar 

  • Euskirchen ES, Bret-Harte MS, Scott GJ, Edgar C, Shaver GR (2012) Seasonal patterns of carbon dioxide and water fluxes three representative tundra ecosystems in northern Alaska. Ecosphere 3(1):4. https://doi.org/10.1890/ES11-00202.1

    Article  Google Scholar 

  • French, H.M., (2013). The Periglacial Environment, Somerset, UK. https://doi.org/10.1002/9781118684931

  • Frind EO, Molson JW, Rudolph DL (2006) Well vulnerability: a quantitative approach for source water protection. Ground Water 44(5):732–742

    Google Scholar 

  • Ge S, McKenzie J, Voss C, Wu Q (2011) Exchange of groundwater and surface water mediated by permafrost response to seasonal and long-term air temperature variation. Geophys Res Lett 38:L14402. https://doi.org/10.1029/2011GL047911

    Article  Google Scholar 

  • Hamilton TD, Walker DA (2003) Glacial geology of Toolik Lake and the Upper Kuparuk River region. Alaska Geobotany Center, Institute of Arctic Biology, University of Alaska–Fairbanks, Fairbanks, AK, 24 pp

  • Harms TK, Ludwig SM (2016) Retention and removal of nitrogen and phosphorus in saturated soils of arctic hillslopes. Biogeochemistry 127(2):291–304. https://doi.org/10.1007/s10533-016-0181-0

    Article  Google Scholar 

  • Harp DR, Atchley AL, Painter SL, Coon ET, Wilson CJ, Romanovsky VE, Rowland JC (2015) Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis. Cryosphere Discuss 9(3):3351–3404. https://doi.org/10.5194/tcd-9-3351-2015

    Article  Google Scholar 

  • Hastings SJ, Luchessa SA, Oechel WC, Tenhunen JD (1989) Standing biomass and production in water drainages of the foothills of the Philip Smith Mountains, Alaska. Holarct Ecol 12(3):304–311

    Google Scholar 

  • Hinzman LD, Kane DL, Gieck RE, Everett KR (1991) Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Reg Sci Technol 19:95–110

    Article  Google Scholar 

  • Hsieh PA, Winston RB (2002) User’s guide to model viewer: a program for three-dimensional visualization of ground-water model results. US Geol Surv Open-File Rep 02-106, 18 pp

  • Jafarov EE, Nicolsky DJ, Romanovsky VE, Walsh JE, Panda SK, Serreze MC (2014) The effect of snow: how to better model ground surface temperatures. Cold Reg Sci Technol 102:63–77

    Article  Google Scholar 

  • Jorgenson MT, Romanovsky V, Harden J, Shur Y, O’Donnell J, Schuur EAG, Kanevskiy M, Marchenko S (2010) Resilience and vulnerability of permafrost to climate change. Can J Forest Res 40:1219–1236

    Article  Google Scholar 

  • Kane DL, Hinzman LD, Benson CS, Liston GE (1991) Snow hydrology of a headwater arctic basin: 1. physical measurements and process studies. Water Resour Res 27(6):1099–1109

    Article  Google Scholar 

  • Kane DL, Hinkel KM, Goering DJ, Hinzman LD, Outcalt SI (2001) Non-conductive heat transfer associated with frozen soils. Glob Planet Chang 29(3–4):275–292. https://doi.org/10.1016/S0921-8181(01)00095-9

    Article  Google Scholar 

  • Kane DL, Youcha EK, Stuefer SL, Myerchin-Tape G, Lamb E et al (2014) Hydrology and meteorology of central Alaskan Arctic: data collection and analysis, final report. Report INE/WERC 14.05, University of Alaska Fairbanks, Water and Environmental Research Center, Fairbanks, AK, 168 pp

  • Karra S, Painter SL, Lichtner PC (2014) Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PLFOTRAN-ICE v1.0). Cryosphere 8:1935–1950. https://doi.org/10.5194/tc-8-1935/2014/

    Article  Google Scholar 

  • Kurylyk BL, MacQuarrie KTB, McKenzie JM (2014) Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools. Earth Sci Rev 138:313–334. https://doi.org/10.1016/j.earscirev.2014.06.006

    Article  Google Scholar 

  • Lamontagne-Hallé P, McKenzie JM, Kurylyk BL, Zipper SC (2018) Changing groundwater discharge dynamics in permafrost regions. Environ Res Lett 13(8). https://doi.org/10.1088/1748-9326/aad404

  • Lewkowicz AG (2008) Evaluation of miniature temperature-loggers to monitor snowpack evolution at mountain permafrost sites, Northwestern Canada. Permafrost Periglacial Process 19:323–331

    Article  Google Scholar 

  • Matsuoka, N., & Hirakawa, K., (2000), Solifluction resulting from one-sided and two-sided freezing: field data from Svalbard. Polar Geoscience, 13¸187–201.

  • McKenzie JM, Voss CI, Siegel DI (2007) Groundwater flow with energy transport and water–ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs. Adv Water Resour 30:966–983. https://doi.org/10.1016/j.advwatres.2006.08.008

    Article  Google Scholar 

  • McKenzie JM, Voss CI (2013) Permafrost thaw in a nested groundwater-flow system. Hydrogeol J. https://doi.org/10.1007/s10040-012-0942-3

  • McNamara JP, Kane DL, Hinzman LD (1998) An analysis of streamflow hydrology in the Kuparuk River basin, Arctic Alaska: a nested watershed approach. J Hydrol 206:39–57

    Article  Google Scholar 

  • McNamara JP, Kane DL, Hinzman LD (1999) An analysis of an arctic channel network using a digital elevation model. Geomorphology 29:339–353

    Article  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–1795

    Article  Google Scholar 

  • Painter S (2011) Three-phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications. Comput Geosci 15(1):69–85

    Article  Google Scholar 

  • Paquette M, Fortier D, Vincent WF (2016) Water tracks in the high Arctic: a hydrological network dominated by rapid subsurface flow through patterned ground. Arctic Sci 353(April):334–353. https://doi.org/10.1139/as-2016-0014

    Article  Google Scholar 

  • Quinton WL, Carey SK, Goeller NT (2004) Snowmelt runoff from northern alpine tundra hillslopes: major processes and methods of simulation. Hydrol Earth Syst Sci 8(5):877–890

    Article  Google Scholar 

  • Quinton WL, Hayashi M, Carey SK (2008) Peat hydraulic conductivity in cold regions and its relation to pore size and geometry. Hydrol Process 22:2829–2837. https://doi.org/10.1002/hyp.7027

  • Romanovsky V (2017) Data and maps. Permafrost Laboratory. http://permafrost.gi.alaska.edu/content/data-and-maps. Accessed October 7, 2017

  • Rushlow CR (2018) On the seasonal hydrological and thermal regimes of Arctic hillslopes: field and modeling investigations in the context of climate change. Idaho State University, Pocatello, ID

  • Rushlow CR, Godsey SE (2017) Rainfall-runoff responses on Arctic hillslopes underlain by continuous permafrost, north slope, Alaska, USA. Hydrol Process 31:4092–4106. https://doi.org/10.1002/hyp.11294

    Article  Google Scholar 

  • Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW, Hayes DJ et al (2015) Climate change and the permafrost carbon feedback. Nature 520(7546):171–179. https://doi.org/10.1038/nature14338

    Article  Google Scholar 

  • Sjoberg Y, Coon E, Sannel BK, Pannetier R, Harp D, Frampton A, Painter SL, Lyon SW (2016) Thermal effects of groundwater flow through subarctic fens: a case study based on field observations and numerical modeling. Water Resour Res 52:1591–1606. https://doi.org/10.1002/2015WR017571

    Article  Google Scholar 

  • Sturm M, Holmgren J, Konig M, Morris K (1997) The thermal conductivity of seasonal snow. J Glaciol 43(143):26–41. https://doi.org/10.3189/s0022143000002781

    Article  Google Scholar 

  • Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE (2005) Winter biological processes could help convert arctic tundra to shrubland. BioScience 55(1):17–26

    Article  Google Scholar 

  • Trochim, E. D., M. T. Jorgenson, A. Prakash, and D. L. Kane (2016), Geomorphic and biophysical factors affecting water tracks in northern Alaska, Earth and Space Science, 3, 123–141, https://doi.org/10.1002/2015EA000111.

  • Voss CI, Provost AM (2010) SUTRA: a model for saturated-unsaturated variable-density ground-water flow with solute or energy transport, water investigations report 02–4231. US Geol Surv Water Invest Rep

  • Voytek EB, Rushlow CR, Godsey SE, Singha K (2016) Identifying hydrologic flowpaths on Arctic hillslopes using electrical resistivity and self potential. Geophysics 81(1):WA225–WA232

    Article  Google Scholar 

  • Walker DA, Binnian E, Evans BM, Lederer ND, Nordstrand E, Webber PJ (1989) Terrain, vegetation and landscape evolution of the R4D research site, Brooks Range foothills, Alaska. Ecography 12:238–261. https://doi.org/10.1111/j.1600-0587.1989.tb00844.x

    Article  Google Scholar 

  • Walvoord MA, Kurylyk BL (2016) Hydrologic impacts of thawing permafrost: a review. Vadose Zone J 15(6). https://doi.org/10.2136/vzj2016.01.0010

  • Walvoord MA, Voss CI, Ebel BA, Minsley BJ (2019) Development of perennial thaw zones in boreal hillslopes enhances potential mobilization of permafrost carbon, Environ Res Lett 14(1), https://doi.org/10.1088/1748-9326/aaf0cc

  • Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43:RG4002. https://doi.org/10.1029/2004RG000157

    Article  Google Scholar 

  • Zhang T, Osterkamp TE, Stamnes K (1997) Effects of climate on the active layer and permafrost on the north slope of Alaska, USA. Permafr Periglac Process 8(1):45–67

    Article  Google Scholar 

  • Zipper SC, Lamontagne-Hallé P, McKenzie JM, Rocha AV (2018) Groundwater controls on postfire permafrost thaw: water and energy balance effects. J Geophys Res: Earth Surf 123:2677–2694. https://doi.org/10.1029/2018JF004611

    Article  Google Scholar 

  • Zona D, Gioli B, Commane R, Lindaas J, Wofsy SC, Miller CE, Dinardo SJ, Dengel S, Sweeney C, Karion A, Chang RY-W, Henderson JM, Murphy PC, Goodrich JP, Moreaux V, Liljedahl A, Watts JD, Kimball JS, Lipson DA, Oechel WC (2016) Cold season emissions dominate the Arctic tundra methane budget. Proceed Nat Acad Sci USA 113:40–45. https://doi.org/10.1073/pnas.1516017113

    Article  Google Scholar 

Download references

Acknowledgements

Data from this study are available online in the International Arctic Research Center Data Archive (P.I. Sarah Godsey) and in the UNAVCO TLS Archive (Project U-035). We thank Associate Editor Andrew Frampton, Sean Carey, Adam Atchley, and Corey Wallace for their constructive reviews that improved this manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Funding

This work was supported by a Pathfinder Fellowship from the Consortium of Universities for the Advancement of Hydrologic Science, Incorporated (CUAHSI) and funding from the National Science Foundation’s Division of Polar Programs and Division of Environmental Biology award numbers 1259930 and 1,026,843, the US Geological Survey Northwest Climate Science Center, the University of Idaho College of Natural Resources McCall Outdoor Science School, and the Idaho State University Geosciences Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey H. Sawyer.

Electronic supplementary material

ESM 1

(DOC 707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rushlow, C.R., Sawyer, A.H., Voss, C.I. et al. The influence of snow cover, air temperature, and groundwater flow on the active-layer thermal regime of Arctic hillslopes drained by water tracks. Hydrogeol J 28, 2057–2069 (2020). https://doi.org/10.1007/s10040-020-02166-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02166-2

Keywords

Navigation