Seasonal manganese transport in the hyporheic zone of a snowmelt-dominated river (East River, Colorado, USA)

Transport saisonnier du manganèse dans la zone hyporhéique d’une rivière au régime dominé par la fonte de la neige (East River, Colorado, Etats-Unis d’Amérique)

Transporte estacional de manganeso en la zona hiporreica de un río dominado por el derretimiento de la nieve (East River, Colorado, EEUU)

融雪型河流 (美国科罗拉多州东河)潜流带季节性的锰迁移

Transporte sazonal de manganês na zona hiporreica de um rio dominado por derretimento de neve (East River, Colorado, EUA)

Abstract

Manganese (Mn) plays a critical role in river-water quality because Mn-oxides serve as sorption sites for contaminant metals. The aim of this study is to understand the seasonal cycling of Mn in an alpine streambed that experiences large spring snowmelt events and the potential responses to changes in snowmelt timing and magnitude. To address this goal, annual variations in river-water/groundwater interaction and Mn(aq) transport were measured and modeled in the bed of East River, Colorado, USA. In observations and numerical models, oxygenated river water containing dissolved organic carbon (DOC) mixes with groundwater rich in Mn(aq) in the streambed. The mixing depth increases during spring snowmelt when river discharge increases, leading to a greater DOC supply to the hyporheic zone and net respiration of Mn-oxides, despite an enhanced supply of oxygen. As groundwater upwelling resumes during the subsequent baseflow period, Mn(aq)-rich groundwater mixes with oxygenated river water, resulting in net accumulation of Mn-oxides until the bed freezes in winter. To explore potential responses of Mn transport to different climate-induced hydrological regimes, three hydrograph scenarios were numerically modeled (historic, low-snow, and storm) for the Rocky Mountain region. In a warming climate, Mn(aq) export to the river decreases, and Mn(aq) oxidation is favored in the upper streambed sediments over more of the year. One important implication is that the streambed may have an increased sorption capacity for metals over more of the year, leading to potential changes in river-water quality.

Résumé

Le manganèse (Mn) joue un rôle critique dans la qualité d’eau de rivière car les oxydes de Mn servent de site de sorption pour les métaux contaminants. L’objectif de cette étude est de comprendre le cycle saisonnier du Mn dans le lien d’un cours d’eau alpin qui connaît d’importants événements de fonte de neige au printemps, ainsi que les réponses potentielles aux changements des périodes de fonte de neige et de leur amplitude. Pour atteindre cet objectif, les variations annuelles des interactions entre les eaux de rivières et les eaux souterraines et du transport du Mn(aq) ont été mesurées et modélisées dans le lit de l’East River, Colorado, Etats-Unis d’Amérique. Dans les observations et les modèles numériques, l’eau oxygénée de la rivière contenant du carbone organique dissous (COD) se mélange à des eaux souterraines riches en Mn(aq) dans le lit du cours d’eau. La profondeur de mélange augmente au cours de la fonte de neige du printemps lorsque le débit de la rivière augmente, ce qui a pour conséquence un plus grand apport de COD à la zone hyporhéique et une respiration nette des oxydes de Mn, en dépit d’un apport accru en oxygène. A mesure que l’apport en eaux souterraines reprend au cours de la période suivante de débit de base, les eaux souterraines riches en Mn(aq) se mélangent à l’eau oxygénée de la rivière, ce qui entraîne une accumulation nette d’oxydes de Mn jusqu’à ce que le lit de la rivière gèle en hiver. Afin d’étudier les réponses potentielles du transport de Mn pour différents régimes hydrologiques induits par le climat, trois scénarios hydrographiques ont été modélisés numériquement (historique, faible quantité de neige, et tempêtes) pour la région des Rocheuses. Dans un contexte de réchauffement climatique, l’export de Mn(aq) vers la rivière diminue, et l’oxydation du Mn(aq) est favorisée dans la partie supérieure des sédiments du lit du cours d’eau au cours de la plus grande partie de l’année. Une conséquence importante.

Resumen

El manganeso (Mn) desempeña un papel fundamental en la calidad del agua de los ríos porque los óxidos de Mn sirven como sitios de absorción de los metales contaminantes. El objetivo de este estudio es comprender el ciclo estacional del Mn en un lecho alpino que experimenta grandes eventos de deshielo en primavera y las posibles respuestas a los cambios en el tiempo y la magnitud del deshielo. Para alcanzar este objetivo, se midieron y modelaron las variaciones anuales de la interacción agua superficial / agua subterránea y el transporte de Mn(aq) en el lecho de East River, Colorado, EEUU. En observaciones y modelos numéricos, el agua fluvial oxigenada que contiene carbono orgánico disuelto (DOC) se mezcla con aguas subterráneas ricas en Mn(aq) en el lecho del río. La profundidad de la mezcla aumenta durante el deshielo de primavera cuando aumenta la descarga del río, lo que provoca un mayor suministro de DOC a la zona hiporreica y una respiración neta de óxidos de Mn, a pesar de un mayor suministro de oxígeno. A medida que se reanuda el afloramiento de las aguas subterráneas durante el siguiente período de flujo de base, las aguas subterráneas ricas en Mn(aq) se mezclan con las aguas oxigenadas del río, lo que da lugar a una acumulación neta de óxidos de Mn hasta que el lecho se congela en invierno. Para explorar las posibles respuestas del transporte de Mn a diferentes regímenes hidrológicos inducidos por el clima, se modelaron numéricamente tres escenarios hidrográficos (histórico, nieve baja y tormenta) para la región de las Montañas Rocosas. En un clima cálido, la exportación de Mn(aq) al río disminuye, y la oxidación del Mn(aq) se ve favorecida en los sedimentos del lecho superior del río durante un período mayor al año. Una implicancia importante es que el lecho del río puede tener una mayor capacidad de absorción de metales durante un período más largo que el año, lo que conduce a posibles cambios en la calidad del agua del río.

摘要

因为Mn氧化物可作为金属污染物的吸附剂,锰 (Mn)在河水水质中起着关键作用。本研究的目的是弄清大型春季融雪对山区河床中锰的季节性循环以及对融雪时间和幅度变化的潜在响应。为了实现这一目标,在美国科罗拉多州东河的河床中测量和模拟了河水/地下水相互作用和Mn(aq)迁移的年际变化。在观测和数值模型中,含溶解有机碳 (DOC)的含氧河水与河床中富含Mn(aq)的地下水混合。尽管增加了氧气的供应量,但在春季融雪期间,当河流排泄量增加时,混合深度也会增加,从而向潜流带提供了更多的DOC,并增加了Mn氧化物的净呼吸。随着地下水在随后的基流期恢复上升,富含Mn(aq)的地下水与含氧的河水混合,导致Mn氧化物的净积聚,直到冬季河床冻结为止。为了探索锰运移对不同气候产生的水文系统的潜在响应,对Rock山地区的三种水文情景进行了数值模拟(历史,低雪和暴雨)。在气候变暖的情况下,一年中的大部分时间,向河中的Mn(aq)排泄量减少,并且上游河床沉积物中的Mn(aq)氧化作用更为有利。一个重要意义在于,在一年的大部分时间里,河床对金属的吸附能力可能会增加,从而导致河水水质的潜在变化。

Resumo

O manganês (Mn) desempenha um papel crítico na qualidade da água do rio, pois os óxidos de Mn servem como sítios de sorção para metais contaminantes. O objetivo deste estudo é entender o ciclo sazonal de Mn em um leito alpino que sofre grandes eventos de derretimento de neve na primavera e as possíveis respostas a mudanças no tempo e magnitude do derretimento de neve. Para atingir esse objetivo, variações anuais na interação água fluvial/água subterrânea e transporte de Mn(aq) foram medidas e modeladas no leito de East River, Colorado, EUA. Em medições e modelos numéricos, a água do rio oxigenada contendo carbono orgânico dissolvido (COD) se mistura com a água subterrânea rica em Mn(aq) no leito do rio. A profundidade da mistura aumenta com o derretimento da neve na primavera, quando a descarga do rio aumenta, levando a um maior suprimento de COD para a zona hiporreica e ao consumo líquido dos óxidos de Mn, apesar de um suprimento aprimorado de oxigênio. À medida que a ressurgência das águas subterrâneas é retomada durante o período do fluxo de base subsequente, águas subterrâneas ricas em Mn(aq) se misturam com água do rio oxigenada, resultando no acúmulo líquido de óxidos de Mn até o leito congelar no inverno. Para explorar possíveis respostas do transporte de Mn a diferentes regimes hidrológicos induzidos pelo clima, três cenários de hidrografia foram modelados numericamente (Histórico, Baixa neve e Tempestade) para a região das Montanhas Rochosas. Em um clima quente, a transferência de Mn(aq) para o rio diminui, e a oxidação de Mn(aq) é favorecida nos sedimentos do leito superior durante a maior parte do ano. Uma implicação importante é que o leito do rio pode ter uma maior capacidade de sorção de metais ao longo do ano, levando a possíveis mudanças na qualidade da água do rio.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abrams RH, Loague K (2000) A compartmentalized solute transport model for redox zones in contaminated aquifers: 1. theory and development. Water Resour Res 36(8):2001–2013. https://doi.org/10.1029/2000WR900110

    Article  Google Scholar 

  2. August EE, Mcknight DM, Hrncir DC, Garhart KS (2002) Seasonal variability of metals transport through a wetland impacted by mine drainage in the Rocky Mountains. Environ Sci Technol 36(17):3779–3786. https://doi.org/10.1021/es015629w

    Article  Google Scholar 

  3. Baalousha M, Stoll S, Motelica-Heino M, Guigues N, Braibant G, Huneau F, Le Coustumer P (2018) Suspended particulate matter determines physical speciation of Fe, Mn, and trace metals in surface waters of Loire watershed. Environ Sci Pollut Res 26:5251–5266. https://doi.org/10.1007/s11356-018-1416-5

    Article  Google Scholar 

  4. Baker MA, Dahm CN, Valett HM (1999) Acetate retention and metabolism in the hyporheic zone of a mountain stream. Limnol Oceanogr 44(6):1530–1539. https://doi.org/10.4319/lo.1999.44.6.1530

    Article  Google Scholar 

  5. Battin TJ (1999) Hydrologic flow paths control dissolved organic carbon fluxes and metabolism in an alpine stream hyporheic zone. Water Resour Res 35(10):3159–3169. https://doi.org/10.1029/1999WR900144

    Article  Google Scholar 

  6. Battin TJ (2000) Hydrodynamics is a major determinant of streambed biofilm activity: from the sediment to the reach scale. Limnol Oceanogr 45(6):1308–1319. https://doi.org/10.4319/lo.2000.45.6.1308

    Article  Google Scholar 

  7. Battin TJ, Kaplan LA, Newbold JD, Hendricks SP (2003) A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function. Freshw Biol 48(6):995–1014. https://doi.org/10.1046/j.1365-2427.2003.01062.x

    Article  Google Scholar 

  8. Battin TJ, Besemer K, Bengtsson MM, Romani AM, Packmann AI (2016) The ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol 14(4):251–263. https://doi.org/10.1038/nrmicro.2016.15

    Article  Google Scholar 

  9. Baxter CV, Hauer FR (2000) Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Can J Fish Aquat Sci 57(7):1470–1481. https://doi.org/10.1139/f00-056

    Article  Google Scholar 

  10. Berkeley Lab (2019) LBNL Watershed Function SFA East River Data Management Site. https://eastriver.pafbeta.subsurfaceinsights.com/signin. Accessed December 2019

  11. Boano F, Demaria A, Revelli R, Ridolfi L (2010) Biogeochemical zonation due to intrameander hyporheic flow. Water Resour Res 46(2):1–13. https://doi.org/10.1029/2008WR007583

    Article  Google Scholar 

  12. Boano F, Harvey JW, Marion A, Packman AI, Revelli R, Ridolfi L, Wörman A (2014) Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications. Rev Geophys 52(4):603–679. https://doi.org/10.1029/2011WR011784

    Article  Google Scholar 

  13. Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Annu Rev Ecol Evol Syst 29(1):59–81. https://doi.org/10.1146/annurev.ecolsys.29.1.59

    Article  Google Scholar 

  14. Bryant SR (2019) Seasonal manganese transport in the hyporheic zone of a snowmelt-dominated river (East River, Colorado). The Ohio State University, Columbus, OH

  15. Butler BA, Ranville JF, Ross PE (2008) Observed and modeled seasonal trends in dissolved and particulate cu, Fe, Mn, and Zn in a mining-impacted stream. Water Res 42(12):3135–3145. https://doi.org/10.1016/j.watres.2008.03.004

    Article  Google Scholar 

  16. Cameron EM (1996) Hydrogeochemistry of the Fraser River, British Columbia: seasonal variation in major and minor components. J Hydrol 182(1–4):209–225. https://doi.org/10.1016/0022-1694(95)02924-9

    Article  Google Scholar 

  17. Cardenas MB, Wilson JL (2007) Exchange across a sediment–water interface with ambient groundwater discharge. J Hydrol 346(3–4):69–80. https://doi.org/10.1016/j.jhydrol.2007.08.019

    Article  Google Scholar 

  18. Carroll R, Williams K (2019) Discharge data collected within the East River for the Lawrence Berkeley National Laboratory Watershed Function Science Focus Area (water years 2015–2018), Watershed Function SFA. https://doi.org/10.21952/WTR/1495380

  19. Chafiq M, Gibert J, Claret C (1999) Interactions among sediments, organic matter, and microbial activity in the hyporheic zone of an intermittent stream. Can J Fish Aquat Sci 56:487–495. https://doi.org/10.1139/f98-208

    Article  Google Scholar 

  20. Cherkauer KA, Lettenmaier DP (1999) Hydrologic effects of frozen soils in the upper Mississippi River basin. J Geophys Res Atmos 104(D16):19599–19610. https://doi.org/10.1029/1999jd900337

    Article  Google Scholar 

  21. Clements WH, Brooks ML, Kashian DR, Zuellig RE (2008) Changes in dissolved organic material determine exposure of stream benthic communities to UV-B radiation and heavy metals: implications for climate change. Glob Chang Biol 14(9):2201–2214. https://doi.org/10.1111/j.1365-2486.2008.01632.x

    Article  Google Scholar 

  22. Cuthbert MO, Mackay R (2013) Impacts of nonuniform flow on estimates of vertical streambed flux. Water Resour Res 49. https://doi.org/10.1029/2011WR01158

  23. Danczak RE, Yabusaki SB, Williams KH, Fang Y, Hobson C, Wilkins MJ (2016) Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer. Front Earth Sci 4(57):1–13. https://doi.org/10.3389/feart.2016.00057

    Article  Google Scholar 

  24. Diem D, Stumm W (1984) Is dissolved Mn2 being oxidized by O2 in absence of Mn-bacteria or surface catalysts? Geochim Cosmochim Acta 48(7):1571–1573. https://doi.org/10.1016/0016-7037(84)90413-7

    Article  Google Scholar 

  25. Dwivedi D, Steefel CI, Arora B, Newcomer M, Moulton JD, Dafflon B, Faybishenko B, Fox P, Nico P, Spycher N, Carroll R, Williams KH (2018) Geochemical exports to river from the intrameander hyporheic zone under transient hydrologic conditions: East River mountainous watershed, Colorado. Water Resour Res 54:8456–8477. https://doi.org/10.1029/2018WR023377

    Article  Google Scholar 

  26. Elliott AH, Brooks NH (1997) Transfer of nonsorbing solutes to a streambed with bed forms: laboratory experiments. Water Resour Res 33(1):137–151. https://doi.org/10.1029/96wr02783

    Article  Google Scholar 

  27. Emerson D (2000) Microbial oxidation of Fe(II) and Mn(II) at circumneutral pH. Environ Microbe-Metal Interact. https://doi.org/10.1128/9781555818098.ch2

  28. Emerson D, Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63(12):4784–4792. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168801/. Accessed March 2020

    Article  Google Scholar 

  29. Fellman JB, Hood E, D’Amore DV, Edwards RT, White D (2009) Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry 95(2–3):277–293. https://doi.org/10.1007/s10533-009-9336-6

    Article  Google Scholar 

  30. Feris K, Ramsey P, Frazar C, Moore JN, Gannon JE, Holben WE (2003) Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Appl Environ Microbiol 69(9):5563–5573. https://doi.org/10.1128/aem.69.9.5563-5573.2003

    Article  Google Scholar 

  31. Fischer H, Kloep F, Wilzcek S, Pusch MT (2005) A rivers liver: microbial processes within the hyporheic zone of a large lowland river. Biogeochemistry 76(2):349–371. https://doi.org/10.1007/s10533-005-6896-y

    Article  Google Scholar 

  32. Fuller CC, Harvey JW (2000) Reactive uptake of trace metals in the hyporheic zone of a mining-contaminated stream, Pinal Creek, Arizona. Environ Sci Technol 34(7):1150–1155. https://doi.org/10.1021/es990714d

    Article  Google Scholar 

  33. Fuller CC, Bargar JR (2014) Processes of zinc attenuation by biogenic manganese oxides forming in the hyporheic zone of Pinal Creek, Arizona. Environ Sci Technol 48(4):2165–2172. https://doi.org/10.1021/es402576f

    Article  Google Scholar 

  34. Gaskill DL, Mutschler FE, Kramer JH, Thomas JA, Zahony SG (1991) Geologic map of the Gothic quadrangle, Gunnison County, Colorado. US Geologic Survey. https://doi.org/10.3133/gq1689

  35. Gordon RP, Lautz LK, Briggs MA, McKenzie JM (2012) Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program. J Hydrol 420:142–158. https://doi.org/10.1016/j.jhydrol.2011.11.053

    Article  Google Scholar 

  36. Grant SB, Stewardson MJ, Marusic I (2012) Effective diffusivity and mass flux across the sediment–water interface in streams. Water Resour Res 48(5):1–16. https://doi.org/10.1029/2011WR011148

    Article  Google Scholar 

  37. Grøn C, Tørsløv J, Albrechtsen H, Jensen HM (1992) Biodegradability of dissolved organic carbon in groundwater from an unconfined aquifer. Sci Total Environ 117–118:241–251. https://doi.org/10.1016/0048-9697(92)90091-6

    Article  Google Scholar 

  38. Gu C, Hornberger GM, Mills AL, Herman JS (2007) Nitrate reduction in streambed sediments: effects of flow and biogeochemical kinetics. Water Resour Res 43(12):1–10. https://doi.org/10.1029/2007WR006027

    Article  Google Scholar 

  39. Guillemette F, Giorgio PA (2011) Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnol Oceanogr 56(2):1–15. https://doi.org/10.4319/lo.2011.56.2.0734

    Article  Google Scholar 

  40. Harte J, Saleska SR, Levy C (2015) Convergent ecosystem responses to 23-year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and long-term climate-soil carbon feedback. Glob Chang Biol 21(6):2349–2356. https://doi.org/10.1111/gcb.12831

    Article  Google Scholar 

  41. Harvey JW, Bencala KE (1993) The effect of streambed topography on surface–subsurface water exchange in mountain catchments. Water Resour Res 29(1):89–98. https://doi.org/10.1029/92wr01960

    Article  Google Scholar 

  42. Harvey JW, Fuller CC (1998) Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance. Water Resour Res 34(4):623–636. https://doi.org/10.1029/97WR03606

    Article  Google Scholar 

  43. Harvey JW, Conklin MH, Koelsch RS (2003) Predicting changes in hydrologic retention in an evolving semi-arid alluvial stream. Adv Water Resour 26(9):939–950. https://doi.org/10.1016/S0309-1708(03)00085-X

    Article  Google Scholar 

  44. Hem JD (1981) Rates of manganese oxidation in aqueous systems. Geochim Cosmochim Acta 45(8):1369–1374. https://doi.org/10.1016/0016-7037(81)90229-5

    Article  Google Scholar 

  45. Hendricks SP (1996) Bacterial biomass, activity, and production within the hyporheic zone of a north-temperate stream. Arch Hydrobiol 136(4):467–487

    Google Scholar 

  46. Hester ET, Cardenas MB, Haggerty R, Apte SV (2017) The importance and challenge of hyporheic mixing. Water Resour Res 53:3565–3575. https://doi.org/10.1002/2016WR020005

    Article  Google Scholar 

  47. Holmes DE, Giloteaux L, Barlett M, Chavan MA, Smith JA, Williams KH, Wilkins M, Long P, Lovley DR (2012a) Molecular analysis of the in situ growth rates of subsurface Geobacter species. Appl Environ Microbiol 79(5):1646–1653. https://doi.org/10.1128/AEM.03263-12

    Article  Google Scholar 

  48. Holmes RM, McClelland JW, Peterson BJ, Tank SE, Bulygina E, Eglinton TI, Gordeev VV, Gurtovaya TY, Raymond PA, Repeta DJ, Staples R (2012b) Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries Coast 35(2):369–382. https://doi.org/10.1007/s12237-011-9386-6

    Article  Google Scholar 

  49. Hopkinson CS, Buffam I, Hobbie J, Vallino J, Perdue M, Eversmeyer B, Prahl F, Covert J, Hodson R, Moran MA, Smith E (1998) Terrestrial inputs of organic matter to coastal ecosystems: an intercomparison of chemical characteristics and bioavailability. Biogeochemistry 43(3):211–234. https://doi.org/10.1023/A:1006016030299

    Article  Google Scholar 

  50. Hou Z, Nelson WC, Stegen JC, Murray CJ, Arntzen E, Crump AR, Kennedy DW, Perkins MC, Scheibe TD, Fredrickson JK, Zachara JM (2017) Geochemical and microbial community attributes in relation to hyporheic zone geological facies. Sci Rep 7(12006). https://doi.org/10.1038/s41598-017-12275-w

  51. Ingebritsen SE, Ward ES (1998) Groundwater in geologic processes. Cambridge Univ. Press, New York

  52. Irvine DJ, Lautz LK, Briggs MA, Gordon RP, McKenzie JM (2015) Experimental evaluation of the applicability of phase, amplitude, and combined methods to determine water flux and thermal diffusivity from temperature time series using VFLUX 2. J Hydrol 531:728–737. https://doi.org/10.1016/j.jhydrol.2015.10.054

    Article  Google Scholar 

  53. Jin Q, Bethke CM (2003) A new rate law describing microbial respiration. Appl Environ Microbiol 69(4):2340–2348. https://doi.org/10.1128/AEM.69.4.2340-2348.2003

    Article  Google Scholar 

  54. Kalousová K, Souček O, Tobie G, Choblet G, Čadek O (2014) Ice melting and downward transport of meltwater by two-phase flow in Europas ice shell. J Geophys Res: Planet 119(3):532–549. https://doi.org/10.1002/2013je004563

    Article  Google Scholar 

  55. Kaplan LA, Bott TL (1989) Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: effects of temperature, water chemistry, and habitat. Limnol Oceanogr 34(4):718–733. https://doi.org/10.4319/lo.1989.34.4.0718

    Article  Google Scholar 

  56. Kay JT, Conklin MH, Fuller CC, O’Day PA (2001) Processes of nickel and cobalt uptake by a manganese oxide forming sediment in Pinal Creek, Globe Mining District, Arizona. Environ Sci Technol 35(24):4719–4725. https://doi.org/10.1021/es010514d

    Article  Google Scholar 

  57. Knights D, Sawyer AH, Barnes RT, Musial CT, Bray S (2017) Tidal controls on riverbed denitrification along a tidal freshwater zone. Water Resour Res 53(1):799–816. https://doi.org/10.1002/2016wr019405

    Article  Google Scholar 

  58. Koch FW, Voytek EB, Day-Lewis FD, Healy R, Briggs MA, Lane JW Jr, Werkema D (2015) 1DTempPro V2: new features for inferring groundwater/surface-water exchange. Groundw. 54(3):434–439. https://doi.org/10.1111/gwat.12369

    Article  Google Scholar 

  59. Lapham WW (1989) Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. US Geol Surv Water Suppl Pap 2337

  60. LaRowe DE, Van Cappellen P (2011) Degradation of natural organic matter: a thermodynamic analysis. Geochim Cosmochim Acta 75(8):2030–2042. https://doi.org/10.1016/j.gca.2011.01.020

    Article  Google Scholar 

  61. Lensing HJ, Vogt M, Herrling B (1994) Modeling of biologically mediated redox processes in the subsurface. J Hydrol 159(1–4):125–143. https://doi.org/10.1016/0022-1694(94)90252-6

    Article  Google Scholar 

  62. Li L, Steefel CI, Kowalsky MB, Englert A, Hubbard SS (2010) Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at rifle, Colorado. J Contam Hydrol 112(1–4):45–63. https://doi.org/10.1016/j.jconhyd.2009.10.006

    Article  Google Scholar 

  63. Liang C, Das K, Mcclendon R (2003) The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour Technol 86(2):131–137. https://doi.org/10.1016/s0960-8524(02)00153-0

    Article  Google Scholar 

  64. Liu RZ, Zhang K, Zhang ZJ, Borthwick AG (2016) Watershed-scale environmental risk assessment of accidental water pollution: the case of Laoguan River, China. J Environ Inf 31(2):87–96. https://doi.org/10.3808/jei.201600346

    Article  Google Scholar 

  65. Lock MA, Wallace RR, Costerton JW, Ventullo RM, Charlton SE (1984) River Epilithon: toward a structural-functional model. Oikos 42(1):10–22. https://doi.org/10.2307/3544604

    Article  Google Scholar 

  66. Lyons WB, Tyler SW, Gaudette HE, Long DT (1995) The use of strontium isotopes in determining groundwater mixing and brine fingering in a playa spring zone, Lake Tyrrell, Australia. J Hydrol 167(1–4):225–239. https://doi.org/10.1016/0022-1694(94)02601-7

    Article  Google Scholar 

  67. Malenda HF (2018) From grain to floodplain: evaluating heterogeneity of floodplain hydrostratigraphy using sedimentology, geophysics, and remote sensing. Colorado School of Mines, Arthur Lakes Library, Golden, CO

  68. Manamsa K, Lapworth DJ, Stuart ME (2016) Temporal variability of micro-organic contaminants in lowland chalk catchments: new insights into contaminant sources and hydrological processes. Sci Total Environ 568:566–577. https://doi.org/10.1016/j.scitotenv.2016.01.146

    Article  Google Scholar 

  69. Mann PJ, Davydova A, Zimov N, Spencer RGM, Davydov S, Bulygina E, Zimov S, Holmes RM (2012) Controls on the composition and lability of dissolved organic matter in Siberia’s Kolyma River basin. J Geophys Res Biogeosci 117(G1):1–15. https://doi.org/10.1029/2011JG001798

    Article  Google Scholar 

  70. Marmonier P, Fontvieille D, Gibert J, Vanek V (1995) Distribution of dissolved organic carbon and bacteria at the interface between the Rhône River and its alluvial aquifer. J N Am Benthol Soc 14(3):382–392. https://doi.org/10.2307/1467204

    Article  Google Scholar 

  71. Mendoza-Lera C, Frossard A, Knie M, Federlein LL, Gessner MO, Mutz M (2017) Importance of advective mass transfer and sediment surface area for streambed microbial communities. Freshw Biol 62(1):133–145. https://doi.org/10.1111/fwb.12856

    Article  Google Scholar 

  72. Morrison SJ, Goodknight CS, Tigar AD, Bush RP, Gil A (2012) Naturally occurring contamination in the Mancos shale. Environ Sci Technol 46(3):1379–1387. https://doi.org/10.1021/es203211z

    Article  Google Scholar 

  73. Mulholland PJ, DeAngelis DL (2000) Surface-subsurface exchange and nutrient spiraling, chap 6. In: Streams and ground waters. Academic. https://doi.org/10.1016/B978-012389845-6/50007-7

    Chapter  Google Scholar 

  74. Nelson AR, Sawyer AH, Gabor RS, Saup CM, Bryant SR, Harris KD, Briggs MA, Williams KH, Wilkins MJ (2019) Heterogeneity in hyporheic flow, pore water chemistry, and microbial community composition in an alpine streambed. J Geophys Res Biogeosci. https://doi.org/10.1029/2019JG005226

    Google Scholar 

  75. O’Donnell JA, Aiken GR, Kane ES, Jones JB (2010) Source water controls on the character and origin of dissolved organic matter in streams of the Yukon River basin, Alaska. J Geophys Res 115(G3):1–12. https://doi.org/10.1029/2009jg001153

    Article  Google Scholar 

  76. O’Connor BL, Harvey JW (2008) Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems. Water Resour Res 44(12):1–17. https://doi.org/10.1029/2008WR007160

    Article  Google Scholar 

  77. Pai H, Malenda HF, Briggs MA, Singha K, González-Pinzón R, Gooseff MN, Tyler SW (2017) Potential for small unmanned aircraft systems applications for identifying groundwater–surface water exchange in a meandering river reach. Geophys Res Lett 44(23). https://doi.org/10.1002/2017GL075836

    Article  Google Scholar 

  78. Pallud C, Van Cappellen P (2006) Kinetics of microbial sulfate reduction in estuarine sediments. Geochim Cosmochim Acta 70(5):1148–1162. https://doi.org/10.1016/j.gca.2005.11.002

    Article  Google Scholar 

  79. Palmer MR, Edmond JM (1989) The strontium isotope budget of the modern ocean. Earth Planet Sci Lett 92(1):11–26. https://doi.org/10.1016/0012-821X(89)90017-4

    Article  Google Scholar 

  80. Pederson GT, Gray ST, Ault T, Marsh W, Fagre DB, Bunn AG, Woodhouse CA, Graumlich LJ (2011) Climatic controls on the snowmelt hydrology of the northern Rocky Mountains. J Clim 24(6):1666–1687. https://doi.org/10.1175/2010jcli3729.1

    Article  Google Scholar 

  81. Peralta-Maraver I, Reiss J, Robertson AL (2018) Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Sci Total Environ 610:267–275. https://doi.org/10.1016/j.scitotenv.2017.08.036

    Article  Google Scholar 

  82. Raymond PA, McClelland JW, Holmes RM, Zhulidov AV, Mull K, Peterson BJ, Striegl RG, Aiken GR, Gurtovaya TY (2007) Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Glob Biogeochem Cycles 21(4):1–9. https://doi.org/10.1029/2007GB002934

    Article  Google Scholar 

  83. Raymond PA, Saiers JE, Sobczak WV (2016) Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97(1):5–16. https://doi.org/10.1890/14-1684.1

    Article  Google Scholar 

  84. Rifai HS, Bedient PB (1990) Comparison of biodegradation kinetics with an instantaneous reaction model for groundwater. Water Resour Res 26(4):637–645. https://doi.org/10.1029/WR026i004p00637

    Article  Google Scholar 

  85. Robbins EI, Corley TL (2005) Microdynamics and seasonal changes in manganese oxide epiprecipitation in Pinal Creek, Arizona. Hydrobiol. 534(1–3):165–180. https://doi.org/10.1007/s10750-004-1503-0

    Article  Google Scholar 

  86. Rood SB, Pan J, Gill KM, Franks CG, Samuelson GM, Shepherd A (2008) Declining summer flows of Rocky Mountain rivers: changing seasonal hydrology and probable impacts on floodplain forests. J Hydrol 349(3–4):397–410. https://doi.org/10.1016/j.jhydrol.2007.11.012

    Article  Google Scholar 

  87. Saup C, Bryant S, Nelson A, Harris K, Sawyer A, Christensen J, Tfaily M, Williams K, Wilkins M (2019) Depth-resolved seasonal porewater chemistry measurements from 3 locations around Meander A of the East River, Colorado. https://doi.org/10.15485/1504779

  88. Sawyer AH (2015) Enhanced removal of groundwater-borne nitrate in heterogeneous aquatic sediments. Geophys Res Lett 42:403–410. https://doi.org/10.1002/2014GL062234

    Article  Google Scholar 

  89. Schäffner F, Merten D, Pollok K, Wagner S, Knoblauch S, Langenhorst F, Büchel G (2015) Fast formation of supergene Mn oxides/hydroxides under acidic conditions in the oxic/anoxic transition zone of a shallow aquifer. Environ Sci Pollut Res 22(24):19362–19375. https://doi.org/10.1007/s11356-015-4404-z

    Article  Google Scholar 

  90. Schallenberg M, Kalff J (1993) The ecology of sediment bacteria in lakes and comparisons with other aquatic ecosystems. Ecol. 74(3):919–934. https://doi.org/10.2307/1940816

    Article  Google Scholar 

  91. Schindler JE, Krabbenhoft DP (1998) The hyporheic zone as a source of dissolved organic carbon and carbon gases to a temperate forested stream. Biogeochemistry 43(2):157–174. https://doi.org/10.1023/A:1006005311257

    Article  Google Scholar 

  92. Shen HW, Fehlman HM, Mendoza C (1990) Bed form resistances in open channel flows. J Hydraul Eng 116(6):799–815. https://doi.org/10.1061/(asce)0733-9429(1990)116:6(799)

    Article  Google Scholar 

  93. Shiller AM, Stephens TH (2005) Microbial manganese oxidation in the lower Mississippi River: methods and evidence. Geomicrobiol J 22(3–4):117–125. https://doi.org/10.1080/01490450590945924

    Article  Google Scholar 

  94. Sobczak WV, Findlay S (2002) Variation in bioavailability of dissolved organic carbon among stream hyporheic flowpaths. Ecol. 83(11):3194–3209. https://doi.org/10.1890/0012-9658(2002)083[3194:VIBODO]2.0.CO;2

    Article  Google Scholar 

  95. Spahr NE, Boulger RW, Szmajter RJ (2000) Water quality at basic fixed sites in the upper Colorado River basin National Water-Quality Assessment study unit, October 1995–September 1998. US Geological Survey, Reston, VA

  96. Spencer RG, Aiken GR, Wickland KP, Striegl RG, Hernes PJ (2008) Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. Glob Biogeochem Cycles 22(4):1–13. https://doi.org/10.1029/2008GB003231

    Article  Google Scholar 

  97. Spencer RG, Aiken GR, Butler KD, Dornblaser MM, Striegl RG, Hernes PJ (2009) Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: a case study of the Yukon River, Alaska. Geophys Res Lett 36(6):1–6. https://doi.org/10.1029/2008GL036831

    Article  Google Scholar 

  98. Stanford JA, Ward JV (1988) The hyporheic habitat of river ecosystems. Nat. 335(6185):64–66. https://www.nature.com/articles/335064a0

    Article  Google Scholar 

  99. Stewart IT (2009) Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol Process 23(1):78–94. https://doi.org/10.1002/hyp.7128

    Article  Google Scholar 

  100. Stewart BW, Capo RC, Chadwick OA (1998) Quantitative strontium isotope models for weathering, pedogenesis and biogeochemical cycling. Geoderma 82(1–3):173–195. https://doi.org/10.1016/S0016-7061(97)00101-8

    Article  Google Scholar 

  101. Stone RS, Dutton EG, Harris JM, Longenecker D (2002) Earlier spring snowmelt in northern Alaska as an indicator of climate change. J Geophys Res Atmos 107(D10):1468–1486. https://doi.org/10.1111/j.1365-2427.2004.01284.x

    Article  Google Scholar 

  102. Storey RG, Williams DD (2004) Spatial responses of hyporheic invertebrates to seasonal changes in environmental parameters. Freshw Biol 49(11):1468–1486. https://doi.org/10.1111/j.1365-2427.2004.01284.x

    Article  Google Scholar 

  103. Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP (2005) A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys Res Lett 32(21):1–4. https://doi.org/10.1029/2005GL024413

    Article  Google Scholar 

  104. Tebo BM, Emerson S (1986) Microbial manganese(II) oxidation in the marine environment: a quantitative study. Biogeochemistry 2(2):149–161. https://doi.org/10.1007/BF02180192

    Article  Google Scholar 

  105. Theobald DM, Gosnell H, Riebsame WE (1996) Land use and landscape change in the Colorado Mountains II: a case study of the East River Valley. Mountain Res Dev 16(4):407–418. https://doi.org/10.2307/3673990

    Article  Google Scholar 

  106. Triska FJ, Kennedy VC, Avanzino RJ, Zellweger GW, Bencala KE (1989) Retention and transport of nutrients in a third-order stream in northwestern California: hyporheic processes. Ecol. 70(6):1893–1905. https://doi.org/10.2307/1938120

    Article  Google Scholar 

  107. Triska FJ, Duff JH, Avanzino RJ (1993) The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial–aquatic interface. Hydrobiologia 251(1–3):167–184. https://doi.org/10.1007/BF00007177

    Article  Google Scholar 

  108. Van Gestel M, Ladd JN, Amato M (1992) Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil profiles. Soil Biol Biochem 24(2):103–111. https://doi.org/10.1016/0038-0717(92)90265-Y

    Article  Google Scholar 

  109. Vano JA, Das T, Lettenmaier DP (2012) Hydrologic sensitivities of Colorado River runoff to changes in precipitation and temperature. J Hydrometeorol 13(3):932–949. https://doi.org/10.1175/jhm-d-11-069.1

    Article  Google Scholar 

  110. Voermans JJ, Ghisalberti M, Ivey GN (2018) A model for mass transport across the sediment–water interface. Water Resour Res 54(4):2799–2812. https://doi.org/10.1002/2017WR022418

    Article  Google Scholar 

  111. Wallace C (2019) Surface water–groundwater exchange and its effect on nitrogen transformation in the tidal freshwater zone. PhD Thesis, Ohio State University, Columbus, OH, USA

  112. Weatherill JJ, Atashgahi S, Schneidewind U, Krause S, Ullah S, Cassidy N, Rivett MO (2018) Natural attenuation of chlorinated ethenes in hyporheic zones: a review of key biogeochemical processes and in-situ transformation potential. Water Res 128:362–382. https://doi.org/10.1016/j.watres.2017.10.059

    Article  Google Scholar 

  113. Winnick MJ, Carroll RW, Williams KH, Maxwell RM, Dong W, Maher K (2017) Snowmelt controls on concentration–discharge relationships and the balance of oxidative and acid-base weathering fluxes in an alpine catchment, East River, Colorado. Water Resour Res 53(3):2507–2523. https://doi.org/10.1002/2016WR019724

    Article  Google Scholar 

  114. Wondzell SM (2011) The role of the hyporheic zone across stream networks. Hydrol Process 25(22):3525–3532. https://doi.org/10.1002/hyp.8119

    Article  Google Scholar 

  115. Wong JC, Williams DD (2009) Sources and seasonal patterns of dissolved organic matter (DOM) in the hyporheic zone. Hydrobiologia 647(1):99–111. https://doi.org/10.1007/s10750-009-9950-2

    Article  Google Scholar 

  116. Xu F, Liu Y, Zachara J, Bowden M, Kennedy D, Plymale AE, Liu C (2017) Redox transformation and reductive immobilization of Cr (VI) in the Columbia River hyporheic zone sediments. J Hydrol 555:278–287. https://doi.org/10.1016/j.jhydrol.2017.10.016

    Article  Google Scholar 

  117. Zarnetske JP, Haggerty R, Wondzell SM, Bokil VA, González-Pinzón R (2012) Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones. Water Resour Res 48(11):1–15. https://doi.org/10.1029/2012WR011894

    Article  Google Scholar 

  118. Zelles L, Adrian P, Bai Q, Stepper K, Adrian M, Fischer K, Ziegler A (1991) Microbial activity measured in soils stored under different temperature and humidity conditions. Soil Biol Biochem 23(10):955–962. https://doi.org/10.1016/0038-0717(91)90176-k

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Rachel Gabor and Michael Durand for fruitful conversations about organic carbon and snowmelt scenarios, Anthony Lutton and Dr. John Olesik for their assistance with ICP-MS instrumentation, and Dr. Rosemary Carroll for providing the East River discharge data. The authors also thank two anonymous reviewers and the associate editor for their helpful comments that improved the manuscript. Fluid fluxes from heat tracing are available at: https://www.osti.gov/biblio/1498798-estimated-darcy-velocities-using-temperature-time-series-meander-east-river-colorado. Geochemical data are available at: https://www.osti.gov/dataexplorer/biblio/1504779. The interested reader is referred to Bryant (2019) for an example model input file. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Funding

This work was supported as part of the US Department of Energy Watershed Scientific Focus Area under award numbers DE-SC0016488 and DE-SC0016412.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Savannah R. Bryant.

Electronic supplementary material

ESM 1

(PDF 1.34 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bryant, S.R., Sawyer, A.H., Briggs, M.A. et al. Seasonal manganese transport in the hyporheic zone of a snowmelt-dominated river (East River, Colorado, USA). Hydrogeol J 28, 1323–1341 (2020). https://doi.org/10.1007/s10040-020-02146-6

Download citation

Keywords

  • Manganese
  • Solute transport
  • Hyporheic
  • Numerical modeling
  • Heat tracing