Abstract
The karst hydrogeology systems of the Watuputih Hills region of Central Java, Indonesia, have many springs with varying discharge and are composed of formations with complex geological structures. This work characterized the karst hydrogeology by studying 50 hydrogeological features (caves, springs and wells) and by analyzing the chemical-physical properties of groundwater in the field (pH, temperature, EC, HCO3−, 222Rn) and the major ions and stable isotopes of the groundwater samples in the laboratory, along with the stable isotope content of rainwater sampled over 1 year. Hierarchical cluster analysis of the water samples identified three hydrochemical groups: groundwater flowing through carbonate rocks (groups C2 and C3), through quartz sandstones and volcanic rocks (group C4), and through carbonate rocks and the siliciclastic rocks (quartz sandstones) underneath them (group C1). Springs with large discharge, typified as artesian fault-guided springs, were categorized into group C1. These springs are Sumbersemen, Brubulan Tahunan, and Brubulan Pesucen, with mean discharges of 1,516, 165, and 95 L/s, respectively. Based on the results of the stable isotope analysis, the d-excess calculation and the 222Rn concentrations, groups C2, C3, and C4 associate with shallow groundwater systems that dominantly flow through pores, whereas group C1 associates with a deep groundwater system controlled by geological structure. The geological structure also determines the groundwater flow in the cave streams. The shallow groundwater system is sourced by local rainwater, while the deep groundwater system displays a relationship with the groundwater in the northern hills at an elevation >375 m above sea level.
Résumé
Les systèmes hydrogéologiques karstiques de la région des collines de Watuputih dans la partie centrale de Java en Indonésie, comprennent plusieurs sources avec des débits variables et sont composés de formations caractérisées par des structures géologiques complexes. Ce travail a concerné la caractérisation de l’hydrogéologie karstique en étudiant quelques 50 caractéristiques hydrogéologiques (cavités, sources et puits) et en analysant les propriétés physicochimiques des eaux souterraines sur le terrain (pH, température, conductivité électrique, HCO3−, 222Rn) et les ions majeurs et isotopes stables à partir d’échantillons d’eaux souterraines analysés au laboratoire, ainsi que les teneurs en isotope stable pour les eaux des précipitations collectées sur une période d’une année. L’analyse d’ensembles hiérarchisés des échantillons d’eau a permis d’identifier trois groupes hydrochimiques: l’eau souterraine qui s’écoule au sein des roches carbonatées (groupes C2 et C3), des roches de type grès riches en quartz et des roches volcaniques (groupe C4), et des roches carbonatées et silicilastiques (grès à quartz) sous-jacentes (groupe C1). Les sources avec des débits importants, de type sources artésiennes associées à une faille, ont été classées dans le groupe C1. Ces sources sont Sumbersemen, Brubulan Tahunan, et Brubulan Pesucen, avec des débits moyens de 1,516, 165 et 95 L/s, respectivement. Sur la base des résultats des analyses en isotopes stables, le calcul de l’excès en d et les concentrations en 222Rn, les groupes C2, C3 et C4 sont associés à des systèmes d’écoulements d’eau souterrain peu profonds dominés par des écoulements en milieu poreux, alors que le groupe C1 est associé à un système d’écoulement d’eau souterraine profond contrôlé par la structure géologique. La structure géologique détermine également l’écoulement d’eau souterraine dans les cours d’eau au sein des cavités. Le système d’écoulement d’eau souterraine peu profond est alimenté par les précipitations locales, alors que le système d’écoulement d’eau souterraine profond indique une relation avec les eaux souterraines dans les monts septentrionaux d’une altitude de recharge supérieure à 375 m (au-dessus du niveau de la mer).
Resumen
Los sistemas hidrogeológicos kársticos de la región de Watuputih Hills en Java Central, Indonesia, tienen muchos manantiales con descargas variables y están compuestos de formaciones con estructuras geológicas complejas. Este trabajo caracterizó la hidrogeología kárstica mediante el estudio de 50 rasgos hidrogeológicos (cuevas, manantiales y pozos) y el análisis de las propiedades químico-físicas de las aguas subterráneas en el campo (pH, temperatura, EC, HCO3−, 222Rn) y los principales iones e isótopos estables de las muestras en el laboratorio, junto con el contenido de isótopos estables del agua de lluvia muestreada durante un año. El análisis jerárquico de las muestras de agua identificó tres grupos hidroquímicos: agua subterránea que fluye a través de rocas carbonatadas (grupos C2 y C3), a través de areniscas de cuarzo y rocas volcánicas (grupo C4), y a través de rocas carbonatadas y rocas siliciclásticas (areniscas de cuarzo) debajo de ellas (grupo C1). Los manantiales con gran descarga, tipificados como manantiales artesianos guiados por fallas, fueron categorizados en el grupo C1. Estos manantiales son Sumbersemen, Brubulan Tahunan, y Brubulan Pesucen, con descargas medias de 1,516, 165, y 95 L/seg, respectivamente. En base a los resultados del análisis de isótopos estables, el cálculo del exceso de deuterio y las concentraciones de 222Rn, los grupos C2, C3 y C4 se asocian con sistemas de aguas subterráneas poco profundos que fluyen predominantemente a través de los poros, mientras que el grupo C1 se asocia con un sistema profundo controlado por la estructura geológica. La estructura geológica también determina el flujo de agua subterránea en las corrientes de las cuevas. El sistema poco profundo se alimenta del agua de lluvia local, mientras que el profundo muestra una relación con las aguas subterráneas de las serranías del norte a una altura >375 m sobre el nivel del mar.
摘要
印度尼西亚爪哇省中部的Watuputih山区的喀斯特水文地质系统有许多不同排泄量的泉水, 而且由具有复杂地质结构的地层构成。这项工作通过研究50个水文地质特征(洞穴,泉水和水井)并分析了场地地下水的化学物理特性(pH, 温度, EC, HCO3−, 222Rn)以及实验室中地下水样的主要离子和稳定同位素、一年内采集雨水样的稳定同位素含量,从而描述了喀斯特水文地质特征。水样的层次聚类分析确定了三个水化学组:地下水流经碳酸盐岩(C2和C3组), 流经石英砂岩和火山岩(C4组)以及流经其下方的碳酸盐岩和硅质碎屑岩(石英砂岩)(C1组)。大流量的泉水, 典型地如自流断层泉, 被分类为C1组。这些泉包括Sumbersemen,Brubulan Tahunan和Brubulan Pesucen泉, 平均流量分别为1,516、165和95 l / sec。根据稳定同位素分析的结果,d-过量计算和222Rn浓度,与浅层地下水系统相关的C2,C3和C4组主要流经孔隙水层, 而与深层地下水系统相关的C1组受地质结构控制。地质结构还决定了洞穴溪流的地下水流量。浅层地下水系统是由当地雨水补给, 而深层地下水系统则与海拔高于375 m的北部丘陵地区的地下水有一定的关系。
Resumo
Os sistemas hidrogeológicos cársticos da região de Watuputih Hills, no centro de Java, Indonésia, têm muitas nascentes com descargas variáveis que são compostas por formações com estruturas geológicas complexas. Esse trabalho caracterizou a hidrogeologia cárstica estudando 50 características hidrogeológicas (cavernas, nascentes e poços) e analisando as propriedades físico-químicas das águas subterrâneas no campo (pH, temperatura, CE, HCO3−, 222Rn), além dos íons maiores e isótopos estáveis de amostras de águas subterrâneas em laboratório, juntamente com o conteúdo de isótopos estáveis da água de chuva durante um ano. A análise hierárquica em grupos de amostras de água identificou três grupos hidroquímicos: águas subterrâneas fluindo através de rochas carbonáticas (grupos C2 e C3), através de arenitos quartzosos e rochas vulcânicas (grupo C4) e através de rochas carbonáticas e rochas siliciclásticas (arenitos quartzosos) debaixo deles (grupo C1). Nascentes com grandes vazões, tipificadas como nascentes artesianas guiadas por falhas, foram categorizadas no grupo C1. Essas nascentes são Sumbersemen, Brubulan Tahunan e Brubulan Pesucen, com descargas médias de 1,516, 165 e 95 L/s, respectivamente. Baseados nos resultados das análises de isótopos estáveis, do cálculo do excesso de d e das concentrações de 222Rn, os grupos C2, C3, e C4 associam-se a um sistema de água subterrânea rasa que flui dominantemente através de poros, enquanto o grupo C1 associa-se a um sistema de água subterrânea profunda controlado por estrutura geológica. A estrutura geológica também determina o fluxo de água subterrânea nos córregos das cavernas. O sistema de águas subterrâneas rasas é abastecido pela água da chuva local, enquanto o sistema de águas subterrâneas profundas possui uma relação com as águas subterrâneas nas colinas do norte, a uma altitude >375 m acima do nível do mar.
This is a preview of subscription content, access via your institution.
















Change history
01 May 2020
Fig. 3 in the original article contains an error in labelling. The correct figure is given here.
References
Al-Charideh A (2011) Geochemical and isotopic characterization of groundwater from shallow and deep limestone aquifers system of Aleppo basin (North Syria). Environ Earth Sci 65:1157–1168. https://doi.org/10.1007/s12665-011-1364-6
Al-Gamal SA (2011) An assessment of recharge possibility to North-Western Sahara aquifer system (NWSAS) using environmental isotopes. J Hydrol 398:184–190
Ashjari J, Raeisi E (2006) Lithological control on water chemistry in karst aquifers of the Zagros range, Iran. Cave Karst Sci 33:111
Belkhiri L, Mouni L, Tiri A (2011) Water-rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria. Environmental geochemistry and health 34:1–13. https://doi.org/10.1007/s10653-011-9376-4
Bemmelen RW (1949) The geology of Indonesia. Martinous Nijhoff, Leiden, The Netherlands
Blasch KW, Bryson JR (2007) Distinguishing sources of groundwater recharge by using δ2H and δ18O. Ground Water 45:294–308
Burnett WC, Kim G, Lane-Smith D (2001) A continuous monitor for assessment of 222Rn in the coastal ocean. J Radioanal Nucl Chem 249:167–172
Charfi S, Zouari K, Feki S, Mami E (2013) Study of variation in groundwater quality in a coastal aquifer in North-Eastern Tunisia using multivariate factor analysis. Quat Int 302:199–209
Chihi H, de Marsily G, Belayouni H, Yahyaoui H (2015) Relationship between tectonic structures and hydrogeochemical compartmentalization in aquifers: example of the “Jeffara de Medenine” system, south-east Tunisia. J Hydrol Reg Stud 4:410–430
Choubey VM, Ramola RC (1997) Correlation between geology and radon levels in groundwater, soil and indoor air in Bhilangana Valley, Garhwal Himalaya, India. Environ Geol 32:258–262. https://doi.org/10.1007/s002540050215
Clark I (2015) Groundwater geochemistry and isotopes. CRC, Boca Raton, FL
Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL, 185 pp
Clever HL (1985) Solubility data series, vol 2, krypton, xenon and radon. Pergamon, Oxford
Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703
Cook PG, Love AJ, Dighton JC (1999) Inferring groundwater flow in fractured rock from dissolved radon. Ground Water 37(4):606–610
Coplen T (1993) Use of environmental isotopes. In: Alley WM (ed) Regional groundwater quality. Reinhold, New York, pp 227–254
Criss R, Davisson L, Surbeck H, Winston W (2007) Isotopic methods. In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology. Taylor and Francis, London
Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468
Davis JC (1986) Statistics and data analysis in geology. Wiley, New York
Dimitriou E, Tsintza P (2015) Hydrogeologic investigations in western Crete by using isotopic analyses and GIS techniques. J Water Resour Prot 07:923–937. https://doi.org/10.4236/jwarp.2015.712076
Domenico PA (1972) Concepts and models in groundwater hydrology. McGraw-Hill, New York
Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York
Doveri M, Menichini M, Cerrina Feroni A (2013) Stable water isotopes as fundamental tool in karst aquifer studies: some results from isotopic applications in the Apuan Alps carbonatic complexes (NW Tuscany). Ital J Eng Geol Environ 1:33–50
El-Fiky A (2010) Hydrogeochemical characteristics and evolution of groundwater at the Ras Sudr-Abu Zenima area, Southwest Sinai, Egypt. J King Abdulaziz Univ Earth Sci 21:79–109. https://doi.org/10.4197/Ear.21-1.4
Falcone RA, Falgiani A, Parisse B, Petitta M, Spizzico M, Tallini M (2008) Chemical and isotopic (18O‰, 2H‰, 13C‰, 222Rn) multi-tracing for groundwater conceptual model of carbonate aquifer (Gran Sasso INFN Underground Laboratory, central Italy). J Hydrol 357:368–388. https://doi.org/10.1016/j.jhydrol.2008.05.016
Ford D, Williams PW (1989) Karst geomorphology and hydrology. Chapman and Hall, London
Ford D, Williams PW (2007) Karst hydrogeology and geomorphology, revised edn. Wiley, Chichester, UK
Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Upper Saddle River, NJ
Gat JR (1980) The isotopes of hydrogen and oxygen in precipitation. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry. Springer, Berlin, pp 21–47
Gat JR, Bowser CJ, Kendall C (1994) The contribution of evaporation from the Great Lakes of North America to the continental atmospheric moisture: detection by means of the stable isotope signature of the evaporated waters. Geophys Res Lett 20:557–560
Gibson J, Briks S, Edwards T (2008) Global prediction of δA and δ2H–δ18O evaporation slopes for lakes and soil water for seasonality. Glob Biogeochem Cycles 22:1–12
Goldscheider N, Andreo B (2007) The geological and geomorphological framework. In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology. Taylor and Francis, London
Goldscheider N, Drew D, Worthington S (2007) Introduction. In: Goldscheider N, Drew D (ed) Methods in karst hydrogeology. Taylor and Francis, London
Guler C, Thyne DG (2004) Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California. USA J Hydrol 285:177–198
Guler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474
Hamada (1999) Estimation of groundwater flow rate using the decay of 222Rn in a well. J Environ Radioact 47:1–13
Harvey F (2001) Use of NADP archive samples to determine isotope composition of precipitation: characterizing the meteoric input function for use in ground water studies. Ground Water 39(3):380–390
Haryono E (2001) Values of the karst hills. Paper presented at The National Seminar of Eco-Hydraulics, Gadjah Mada University, Yogyakarta, Indonesia, 28–29 March 2001
Hem JD (1992) Study and interpretation of the chemical characteristics of natural waters. US Geol Surv Water Suppl Pap 1473, pp 269
Iskandar I, Dermawan FA, Sianipar JY, Suryantini NS (2018) Characteristic and mixing mechanisms of thermal fluid at the Tampomas volcano, West Java, using hydrogeochemistry, stable isotope and 222Rn analyses. Geosciences 2018(8):103. https://doi.org/10.3390/geosciences8040103
Jankowski J (2001) Groundwater environment. Short course note, School of Geology, University of New South Wales, Sydney
Katz BG, Coplen TB, Bullen TD, Davis JH (1997) Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst. Ground Water 35:1014–1028. https://doi.org/10.1111/j.1745-6584.1997.tb00174.x
Kehew AE (2001) Applied chemical hydrogeology. Prentice Hall, Upper Saddle River, NJ
Kendall C, McDonnell JJ (1998) Isotopes tracers in catchment hydrology. Elsevier, Amsterdam
Krishnaraj S, Murugesan VKV, Sabarathinam C, Paluchamy A, Ramachandran M (2012) Use of hydrochemistry and stable isotopes as tools for groundwater evolution and contamination investigations. J Geosci 1:16–25. https://doi.org/10.5923/j.geo.20110101.02
Leibundgut C, Maloszewski P, Külls C (2009) Tracers in hydrology. Wiley-Blackwell, Hoboken, NJ
Li J, Liu J, Pang Z, Wang X (2013) Characteristics of chemistry and stable isotopes in groundwater of the Chaobai River catchment, Beijing. Procedia Earth Planet Sci 7:487–490. https://doi.org/10.1016/j.proeps.2013.03.092
Luthfi M, Kudsji DK, Maryanto S, Supriyono (2017) Geological map of the Jatirogo quadrangle, scale of 1:50000. Center for Geological Survey, Geological Agency of Indonesia, Bandung, Indonesia
Machavaram MV, Krishnamurthy RV (1995) Earth surface evaporative process: a case study from the Great Lakes region of the United States based on deuterium excess in precipitation. Geochim Cosmochim Acta 59:4279–4283
Mahlknecht J, Garfias-Solis J, Aravena R, Tesch R (2006) Geochemical and isotopic investigations on groundwater residence time and flow in the Independence Basin, Mexico. J Hydrol 324:283–300
Marfia AM, Krishnamurthy RV, Atekwana EA, Panton WF (2004) Isotopic and geochemical evolution of groundwater and surface waters in a karst-dominated geological setting: a case study from Belize, Central America. Appl Geochem 19:937–946. https://doi.org/10.1016/j.apgeochem.2003.10.013
Mayo AL, Loucks MD (1995) Solute and isotopic geochemistry and ground water flow in the Central Wasatch Range, Utah. J Hydrol 172:31–59. https://doi.org/10.1016/0022-1694(95)02748-e
Merlivat L, Jouzel J (1979) Global climatic interpretation of deuterium-oxygen relationship for precipitation. J Geophys Res 84:5029–5033
Michel J (1990) Relationship of radium and radon with geological formations. In: Cothern CR, Rebers PA (eds) Radon, radium, and uranium in drinking water. Lewis, Chelsea, MI, 286 pp
Milanovic PT (1981) Karst hydrogeology. Water Resources Publ., Littleton, CO
Mukherjee A, Fryar AE, Rowe HD (2007) Regional-scale stable isotopic signatures of recharge and deep groundwater in the arsenic affected areas of West Bengal, India. J Hydrol 334:151–161
Murillo RS, Brooks E, Elliot JW, Bolla J (2015) Isotope hydrology and baseflow geochemistry in natural and human-altered watersheds in the inland Pacific Northwest, USA. Isot Environ Health Stud 51:231–254. https://doi.org/10.1080/10256016.2015.1008468
Narany ST, Ramli MF, Aris AZ, Sulaiman WNA, Juahir H, Fakharian K (2014) Identification of the hydrogeochemical processes in groundwater using classic integrated geochemical methods and geostatistical techniques in Amol-Babol plain, Iran. Sci World J 2014:1–15. https://doi.org/10.1155/2014/419058
Novita D, Margono U, Sanjaya I, Rijani S (2017) Geological map of the Blora quadrangle, scale of 1:50000. Center for Geological Survey, Geological Agency of Indonesia, Bandung, Indonesia
Parkhust DL, Appelo CAJ (1999) User’s guide to Phreeqc (version 2) – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey, Reston, VA
Petitta M, Primavera P, Tuccimei P, Aravena R (2011) Interaction between deep and shallow groundwater systems in areas affected by Quaternary tectonics (central Italy): a geochemical and isotope approach. Environ Earth Sci 63:11–30. https://doi.org/10.1007/s12665-010-0663-7
Pu T, He Y, Zhang T, Wu J, Zhu G, Chang L (2013) Isotopic and geochemical evolution of ground and river waters in a karst dominated geological setting: a case study from Lijiang basin, South-Asia monsoon region. Appl Geochem 33:199–212
Przylibski TA (2005) Radon, specific component of medicinal waters in the Sudety Mountains. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, Poland
Rademacher LK, Clark JF, Boles JR (2003) Groundwater residence times and flow paths in fractured rock determined using environmental tracers in the Mission tunnel: Santa Barbara County, California, USA. Environ Geol 43:557–567
Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River basins, South India. Environ Geol 46(1):47–61
Rodgers P, Soulsby C, Waldron S, Tetzlaff D (2005) Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale catchment. Hydrol Earth Syst Sci 9:139–155
Ryu JS, Lee KS, Chang HW (2007) Hydrogeochemical and isotopic investigations of the Han River basin, South Korea. J Hydrol 345:50–60
Sahli H, Tagorti MA, Tlig S (2013) Groundwater hydrochemistry and mass transfer in a stratified aquifer system (Jefara–Gabes Basin, Tunisia). Larhyss J 12:95–108
Savoy L (2007) Storage, transport and biodegradation of solute contaminants in the unsaturated zone of karst systems. PhD Thesis, University of Neuchâtel, Switzerland
Schoeller H (1977) Geochemistry of groundwaters. In: Ground-water studies: an international guide for research and practice. UNESCO, Paris, pp 1–18
Singh M, Kumar S, Kumar B, Singh S, Singh IB (2013) Investigation on the hydrodynamics of ganga alluvial plain using environmental isotopes: a case study of the Gomati River basin, northern India. Hydrogeol J 21:687–700
Skeppstrom K (2005) Radon in groundwater- influencing factors and prediction methodology for a Swedish environment. Licentiate Thesis, Universitetsservice US AB, Stockholm
Sun Z, Ma R, Wang Y, Ma T, Liu Y (2016) Using isotopic, hydrogeochemical-tracer and temperature data to characterize recharge and flow paths in a complex karst groundwater flow system in northern China. Hydrogeol J 24:1393–1412. https://doi.org/10.1007/s10040-016-1390-2
Swanson SK, Bahr JM, Schwar MT, Potter KW (2001) Two-way cluster analysis of geochemical data to constrain spring source waters. Chem Geol 179:73–91
Thilakerathne A, Schüth C, Chandrajith R (2015) The impact of hydrogeological settings on geochemical evolution of groundwater in karstified limestone aquifer basin in Northwest Sri Lanka. Environ Earth Sci 73:8061–8073. https://doi.org/10.1007/s12665-014-3962-6
Tillman FD, Oki DS, Johnson AG, Barber LB, Beisner KR (2014) Investigation of geochemical indicators to evaluate the connection between inland and coastal groundwater systems near Kaloko-Honoko-hau National Historical Park, Hawai‘i. Appl Geochem 51:278–292. https://doi.org/10.1016/j.apgeochem.2014.10.003
Valdes D, Dupont JP, Laignel B, Ogier S, Leboulanger T, Mahler BJ (2007) A spatial analysis of structural controls on karst groundwater geochemistry at a regional scale. J Hydrol 340:244–255. https://doi.org/10.1016/j.jhydrol.2007.04.014
Villalobos MR, Muños AC, Álvarez AP, Collado GM (2017) Hydrochemistry and 222Rn concentrations in spring waters in the arid zone El Granero, Chihuahua, Mexico. Geosciences 7:12
White WB (2015) Chemistry and karst. Acta Carsol 44:349
Wu J, Li P, Qian H, Duan Z, Zhang X (2013) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci. https://doi.org/10.1007/s12517-013-1057-4
Yidana SM, Banoeng-Yakubo B, Akabzaa TM (2010) Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. J Afr Earth Sci 58:220–234. https://doi.org/10.1016/j.jafrearsci.2010.03.003
Yidana SM, Banoeng-Yakubo B, Akabzaa TM, Asiedu D (2011) Characterization of the groundwater flow regime and hydrochemistry of groundwater from the Buem formation, eastern Ghana. Hydrol Process 25:2288–2301. https://doi.org/10.1002/hyp.7992
Yuan J, Xu F, Deng G, Tang Y, Li P (2017) Hydrogeochemistry of shallow groundwater in a karst aquifer system of Bijie City, Guizhou Province. Water 9:625. https://doi.org/10.3390/w9080625
Zuppi GM (1981) Statistical treatment of environmental isotope data in precipitation. Technical Reports Series, vol 206, IAEA, Vienna
Acknowledgements
Authors would like to express their deepest gratitude to the Head of the Center for Groundwater and Environmental Geology and the Head of the Geological Agency the Ministry of Energy and Mineral Resources of Indonesia for their data and laboratory facilities assistance during the research activity. Authors would also like to thank the Head of the Office of Energy and Mineral Resources Assessment and Monitoring in Kendeng Selatan for facilitating the field activities, the academic community of the Faculty of Geological Engineering UNPAD for their invaluable critiques during the writing of this report, and Ahmad Taufiq, Ph.D. for the additional discussion.
Author information
Authors and Affiliations
Corresponding author
Additional information
The original version of this article was revised: Figure 3 in the original article contains an error in labelling.
Rights and permissions
About this article
Cite this article
Setiawan, T., Syah Alam, B.Y.C.S.S., Haryono, E. et al. Hydrochemical and environmental isotopes analysis for characterizing a complex karst hydrogeological system of Watuputih area, Rembang, Central Java, Indonesia. Hydrogeol J 28, 1635–1659 (2020). https://doi.org/10.1007/s10040-020-02128-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-020-02128-8