Skip to main content

Groundwater dynamics within a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada)

Dynamique de l’écoulement des eaux souterraines dans un bassin versant situé dans la zone de pergélisol discontinu près d’Umiujaq (Nunavik, Canada)

Dinámica del agua subterránea en una cuenca en la zona discontinua de permafrost cerca de Umiujaq (Nunavik, Canadá)

Dinâmica das águas subterrâneas dentro de uma bacia hidrográfica na zona de pergelissolos descontínuos perto de Umiujaq (Nunavik, Canadá)

Abstract

Groundwater distribution and flow dynamics were studied in a small watershed located in the discontinuous permafrost zone near Umiujaq in Nunavik (Québec), Canada, to assess the seasonal variations and perform a quantitative analysis of the water cycle in a subarctic watershed. Due to the complexity of the subsurface geology within the watershed, an integrated investigation was instrumental to provide a detailed understanding of the hydrogeological context as a basis for the water balance. Based on this water balance, for the two studied hydrological years of 2015 and 2016, the average values are 828 mm for precipitation, 337 mm for evapotranspiration, 46 mm for snow sublimation, 263 mm for runoff, 183 mm for groundwater exchange (losses with other aquifers outside the watershed), and 0 mm for change in water storage. Although these values likely have significant uncertainty and spatial variability, this water balance is shown to be plausible. It was also found that permafrost influences surface water and groundwater interaction, even if located in low-permeability sediments. It is expected that permafrost degradation will likely increase stream baseflow, especially in winter.

Résumé

La distribution et la dynamique des eaux souterraines ont été étudiées dans un petit bassin versant situé dans la zone de pergélisol discontinu près d’Umiujaq au Nunavik (Québec, Canada), afin d’effectuer une analyse quantitative du cycle de l’eau dans un bassin versant subarctique. En raison de la complexité du contexte géologique dans le bassin versant, une approche intégrée a été utilisée afin de décrire le contexte hydrogéologique nécessaire à la réalisation du bilan hydrique. Sur la base de ce bilan hydrique, pour les deux années hydrologiques étudiées en 2015 et 2016, les valeurs moyennes sont de 828 mm pour les précipitations, de 337 mm pour l’évapotranspiration, de 46 mm pour la sublimation dans la neige, de 263 mm pour le ruissellement et de 183 mm pour l’échange entre les eaux souterraines avec d’autres aquifères situés en dehors du bassin versant et 0 mm pour les variations d’emmagasinement. Même s’il existe une incertitude significative et une variabilité spatiale de ces valeurs, ce bilan hydrique s’avère plausible. Il a également été constaté que le pergélisol limite les interactions entre les eaux de surface et les eaux souterraines même s’il se retrouve uniquement dans des sédiments peu perméables. On s’attend à ce que la dégradation du pergélisol ait pour conséquence l’augmentation du débit de base des cours d’eau, en particulier l’hiver.

Resumen

Se estudió la distribución y la dinámica del flujo de agua subterránea en una pequeña cuenca ubicada en la zona discontinua de permafrost cerca de Umiujaq en Nunavik (Québec), Canadá, con el objeto de evaluar las variaciones estacionales y realizar un análisis cuantitativo del ciclo del agua en una cuenca subártica. Debido a la complejidad de la geología del subsuelo dentro de la cuenca, una investigación integrada fue fundamental para proporcionar una comprensión detallada del contexto hidrogeológico como base para el balance hídrico. En este balance hídrico, para los dos años hidrológicos estudiados, 2015 y 2016, los valores promedio son 828 mm para la precipitación, 337 mm para la evapotranspiración, 46 mm para la sublimación de la nieve, 263 mm para la escorrentía, 183 mm para el intercambio de aguas subterráneas (pérdidas con otros acuíferos fuera de la cuenca), y 0 mm para el cambio en el almacenamiento de agua. Aunque es probable que estos valores tengan una incertidumbre y variabilidad espacial significativas, se ha demostrado que este balance hídrico es plausible. También se encontró que el permafrost influye en la interacción entre las aguas superficiales y subterráneas, incluso si se encuentra en sedimentos de baja permeabilidad. Se espera que la degradación del permafrost aumente el flujo de base del arroyo, especialmente en invierno.

Resumo

A distribuição e fluxo das águas subterrâneas foram estudadas em uma pequena bacia hidrográfica localizada na zona de pergilissolo descontínuo perto de Umiujaq em Nunavik (Québec), Canadá, para compreender a variação sazonal e realizar uma análise quantitativa do ciclo hidrológico em uma bacia hidrográfica subártica. Devido à complexidade da geologia subsuperficial dentro da bacia, uma investigação integrada foi fundamental para fornecer uma compreensão detalhada do contexto hidrogeológico como base para o balanço hídrico. Baseado neste balanço hídrico, para os dois anos hidrológico estudados de 2015 e 2016, os valores médios são 828 mm para a precipitação, 337 mm para evapotranspiração, 46 mm para sublimação da neve, 263 mm para o escoamento superficial, 183 mm para trocas das águas subterrâneas (perdas para outros aquíferos fora da bacia hidrográfica) e 0 mm para mudança no armazenamento de água. Embora esses valores provavelmente tenham incerteza e variabilidade espacial significativas, esse balanço hídrico é plausível. Verificou-se também que o pergelissolo influencia a interação entre águas superficiais e águas subterrâneas, mesmo se localizados em sedimentos de baixa permeabilidade. Espera-se que a degradação do pergelissolo provavelmente aumente o fluxo de base, especialmente no inverno.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Allard M, Lemay M (2012) Nunavik and Nunatsiavut: from science to policy—an integrated regional impact study (IRIS) of climate change and modernization. ArcticNet, Quebec City, QC, 303 pp

    Google Scholar 

  • AMAP (2017) Snow, water, ice and permafrost in the Arctic (SWIPA) 2017. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 269 pp

  • Beck I, Ludwig R, Bernier M, Lévesque E, Boike J (2015) Assessing permafrost degradation and land cover changes (1986–2009) using remote sensing data over Umiujaq, sub-Arctic Québec. Permafr Periglac Process 26:129–141

    Article  Google Scholar 

  • Bense VF, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett 36(22)

  • Bisson JL, Roberge F (1983) Prévision des apports naturels: expérience d’Hydro-Québec [Predicting natural intakes: Hydro-Québec’s experience]. Proceedings of the workshop on river-flow forecast, Toronto, November 1983

  • Budyko M (1974) Climate and life. Academic, New York

  • Cochand M, Molson J, Barth JA-C, van Geldern R, Lemieux J-M, Fortier R, Therrien R (2020) Rapid groundwater recharge dynamics determined from hydrogeochemical and isotope data in a small permafrost watershed near Umiujaq (Nunavik, Canada). Hydrogeol J. https://doi.org/10.1007/s10040-020-02109-x

  • Crosbie RS, Binning P, Kalma JD (2005) A time series approach to inferring groundwater recharge using the water-table fluctuation method. Water Resour Res 41(1)

  • Dagenais S, Molson J, Lemieux J-M, Fortier R, Therrien R (2020) Coupled cryo-hydrogeological modelling of permafrost dynamics near Umiujaq (Nunavik, Canada). Hydrogeol J. https://doi.org/10.1007/s10040-020-02111-3

  • Delottier H, Pryet A, Lemieux J-M, Dupuy A (2018) Estimating groundwater recharge uncertainty from a joint application of an aquifer test with the water-table fluctuation method. Hydrogeol J. https://doi.org/10.1007/s10040-018-1790-6

  • Dionne F-L, Ciobanas AI, Rousseau AN (2008) Validation d’un modèle de rayonnement net et comparaison de l’équation d’évaporation d’Hydro-Québec avec le bilan d’énergie thermique de surface [Validation of a net radiation model and comparison of the Hydro-Quebec evaportation equation with the surface thermal energy budget]. Québec. Report no. R-1036, INRS-Eau, Terre et Environnement, Quebec City, QC

  • Duan L, Man X, Kurylyk B, Cai T (2017) Increasing winter baseflow in response to permafrost thaw and precipitation regime shifts in northeastern China. Water 9(1):25

    Article  Google Scholar 

  • Eckhardt K (2005) How to construct recursive digital filters for baseflow separation. Hydrol Process 19(2):507–515

    Article  Google Scholar 

  • Forland EJ, Allerup P, Dahlstrijm B, Elomaa E, Jonsson T, Madsen H, Perall J, Rissanen P, Vedin H, Vejen F (1996) Manual for operational correction of Nordic precipitation data. Norwegian Meteorological Institute, Oslo, 66 pp

  • Fortier R (2017) Groundwater monitoring network from the Umiujaq region in Nunavik, Quebec, Canada, vol 1.3 (2012–2017). Nordicana D19. https://doi.org/10.5885/45309SL-15611D6EC6D34E23

  • Fortier R, Lemieux J-M, Molson J, Therrien R (2013) Projet de déploiement du réseau Immatsiak: campagne de forages pour l’installation de puits d’observation des eaux souterraines dans un petit bassin versant pergélisolé à Umiujaq [Deployment of the Immatsiak network: drilling campaign and well installation for the monitoring of groundwater in a small watershed containing permafrost near Umiujaq]. Synthesis report of phase III, MDDEFP, Quebec City, QC, 89 pp

  • Fortier R, Banville D-R, Lévesque R, Lemieux J-M, Molson J, Therrien R, Ouellet M (2020) Development of a three-dimensional geological model, based on Quaternary chronology, geological mapping, and geophysical investigation, of a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada). Hydrogeol J. https://doi.org/10.1007/s10040-020-02113-1

  • Hazen A (1892) Some physical properties of sands and gravels. Annual report, Massachusetts State Board of Health, Boston, pp 539–556

    Google Scholar 

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10(1):91–109

    Article  Google Scholar 

  • Huet M, Chesnaux R, Boucher MA, Poirier C (2016) Comparing various approaches for assessing groundwater recharge at a regional scale in the Canadian shield. Hydrol Sci J 61(12):2267–2283

    Article  Google Scholar 

  • Ireson AM, Van Der Kamp G, Ferguson G, Nachshon U, Wheater HS (2013) Hydrogeological processes in seasonally frozen northern latitudes: understanding, gaps and challenges. Hydrogeol J 21(1):53–66

    Article  Google Scholar 

  • Jamin P, Cochand M, Dagenais S, Lemieux J-M, Fortier R, Molson J, Brouyère S, (2020) Direct measurement of groundwater flux in aquifers within the discontinuous permafrost zone: an application of the finite volume point dilution method near Umiujaq (Nunavik, Canada). Hydrogeol J. https://doi.org/10.1007/s10040-020-02108-y

  • Kane DL, Stein J (1983) Water movement into seasonally frozen soils. Water Resour Res 19(6):1547–1557

    Article  Google Scholar 

  • Kane DL, Yang D (2004) Overview of water balance determinations for high latitude watersheds. IAHS Publications-Series of Proceedings and Reports 290, IAHS, Wallingford, UK, pp 1–12

  • Klock R, Simard G, Mullock J (2000) The weather of Ontario and Quebec. NAV Canada, 223 pp

  • KRG (2007) Lacs-Guillaume-Delisle-et-à-l’Eau-Claire Park Project. Status report, Kativik Regional Government, Renewable Resources, Environmental and Land Use Planning Department, Parks Section, Kuujjuaq, Québec

  • Lamontagne-Hallé P, McKenzie JM, Kurylyk B, Zipper SC (2018) Changing groundwater discharge dynamics in permafrost regions. Environmental Res Lett 13(8)

  • Lemieux J-M, Fortier R, Talbot-Poulin MC, Molson J, Therrien R, Ouellet M, Banville D, Cochand M, Murray R (2016) Groundwater occurrence in cold environments: examples from Nunavik. Hydrogeol J 24(6):1497–1513

    Article  Google Scholar 

  • Lim KJ, Engel BA, Tang Z, Choi J, Kim KS, Muthukrishnan S, Tripathy D (2005) Automated web GIS based hydrograph analysis tool, WHAT 1. J Am Water Resour Assoc 41(6):1407–1416

    Article  Google Scholar 

  • Liston GE, Sturm M (2004) The role of winter sublimation in the artic moisture budget. Hydrol Res 35(4–5):325–334

    Article  Google Scholar 

  • Lyne V, Hollick M (1979) Stochastic time-variable rainfall-runoff modelling. In: Institute of Engineers Australia National Conference, vol 1979. Institute of Engineers Australia, Barton, Australia, pp 89–93

  • Meyboom P (1961) Estimating ground-water recharge from stream hydrographs. J Geophys Res 66:1203–1214

    Article  Google Scholar 

  • McKenzie JM, Voss CI (2013) Permafrost thaw in a nested groundwater-flow system. Hydrogeol J 21(1):299–316

    Article  Google Scholar 

  • Morin S, Lejeune Y, Lesaffre B, Panel J-M, Poncet D, David P, Sudul M (2012) An 18-yr long (1993–2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models. Earth System Sci Data 4:13–21

    Article  Google Scholar 

  • Nimmo JR, Horowitz C, Mitchell L (2015) Discrete-storm water table fluctuation method to estimate episodic recharge. Groundwater 53(2):282–292

    Article  Google Scholar 

  • Pan X, Yang D, Li Y, Barr A, Helgason W, Hayashi M, Marsh P, Pomeroy J, Janowicz RJ (2016) Bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada. Cryosphere 10:2347–2360. https://doi.org/10.5194/tc-10-2347-2016

  • Pelletier M, Allard M, Levesque E (2018) Ecosystem changes across a gradient of permafrost degradation in subarctic Québec (Tasiapik Valley, Nunavik, Canada). Arctic Sci 5(1):1–26

    Article  Google Scholar 

  • Provencher-Nolet L, Bernier M, Lévesque E (2014) Quantification des changements récents à l’écotone forêt-toundra à partir de l’analyse numérique de photographies aériennes [Quantifying recent changes to the forest-tundra ecotone from the numerical analysis of aerial photographs]. Écoscience 21(3–4):419–433

    Article  Google Scholar 

  • Rowland JC, Travis BJ, Wilson CJ (2011) The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost. Geophys Res Lett 38(17):L17504

    Article  Google Scholar 

  • Smith CD (2007) Correcting the wind bias in snowfall measurements made with a Geonor T-200B precipitation gauge and alter wind shield. In: 87th American Meteorological Society annual meeting, San Antonio, TX, American Meteorological Society, Washington, DC

  • Sophocleous MA (1991) Combining the soil water balance and water-level fluctuation methods to estimate natural groundwater recharge: practical aspects. J Hydrol 124(3–4):229–241

    Article  Google Scholar 

  • Statistics Canada (2008) Human activity and the environment: annual statistics, 2007 and 2008. Report 16–201-X, Statistics Canada, Ottawa, 159 pp

  • Statistics Canada (2018) Wed site. https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/abpopprof/details/page.cfm?Lang=E&Geo1=CSD&Code1=2499080&Data=Count&SearchText=Umiujaq&SearchType=Begins&B1=All&GeoLevel=PR&GeoCode=2499080&SEX_ID=1&AGE_ID=1&RESGEO_ID=1. Accessed October 2018

  • Truchon-Savard A, Payette S (2012) Black spruce colonization of forest-tundra snow patches of eastern Canada. In: 42nd International Arctic workshop, Winter Park, CO, March 2012

  • Walvoord MA, Striegl RG (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett 34(12)

  • Walvoord MA, Kurylyk BL (2016) Hydrologic impacts of thawing permafrost: a review. Vadose Zone J 15(6)

  • Woo MK (2012) Permafrost hydrology. Springer, Heidelberg, Germany

  • Yang D, Kane D, Zhang Z, Legates D, Goodison B (2005) Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys Res Lett 32(19)

Download references

Acknowledgements

The authors thank the Centre d’études nordiques (CEN - Centre for Northern Studies) at Université Laval for their logistical support at the field site, Marie-Catherine Talbot-Poulin as a research assistant for her help in the field and at Université Laval, Georg Lackner and Daniel Nadeau for their advice with the precipitation data, and Barret Kuryluk who reviewed the manuscript.

Funding

This work was funded by the Ministère du développement durable, de l’environnement et de la lutte contre les changements climatiques du Québec (MDDELCC - Department of Sustainable Development, Environment and Fight against Climate Change), the Fonds de recherche Nature et technologies du Québec (Quebec Research Fund – Nature and Technology - Establishment of New Researchers Grant), the Northern Scientific Training Program (NSTP) administered by Polar Knowledge Canada, and the Natural Sciences and Engineering Research Council of Canada (Strategic Project Grant and Discovery Grants).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Lemieux.

Additional information

This article is part of the topical collection “Hydrogeology of a cold-region watershed near Umiujaq (Nunavik, Canada)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lemieux, JM., Fortier, R., Murray, R. et al. Groundwater dynamics within a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada). Hydrogeol J 28, 833–851 (2020). https://doi.org/10.1007/s10040-020-02110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02110-4

Keywords

  • Cold regions
  • Water supply
  • Water balance
  • Permafrost
  • Canada