Skip to main content

A multidisciplinary approach to the hydrological conceptualisation of springs in the Surat Basin of the Great Artesian Basin (Australia)

Une approche multidisciplinaire pour établir un modèle conceptuel hydrologique d’émergences dans le Bassin de Surat du Grand Bassin Artésien (Australie)

Un enfoque multidisciplinario de la conceptualización hidrológica de los manantiales de la Cuenca del Surat de la Great Artesian Basin (Australia)

大自流盆地(澳大利亚)Surat盆地泉群水文概念化的多学科方法

Uma abordagem multidisciplinar Para conceptualização hidrológica de nascentes da Bacia Surat na Grande Bacia Artesiana (Austrália)

Abstract

The impact of groundwater extraction on a spring and its dependent ecosystems is intrinsically linked to local-scale hydrology, the spring’s source aquifer and the discharge environment. This information is critical in the assessment of impacts from groundwater extraction and resource development activities. Using a case study of the Lucky Last and Abyss spring complexes in the Surat Basin of the Great Artesian Basin (Australia), an approach was taken to identify the source aquifers and to build a local-scale conceptualisation. Field investigations, including surface geological mapping, investigation bores, water quality sampling and geophysics, were applied to reduce plausible hypotheses and to increase confidence in the long-term prediction of impacts on these springs. The report highlights advances in the hydrogeological conceptualisation of the Lucky Last and Abyss springs, as well as the benefits of applying an approach that involves hypothesis testing and multiple lines of investigation. The assessment provides increased confidence in the determination of source aquifers for springs in the Surat Basin, with the approach being applicable more broadly to the conceptualisation of springs across the Great Artesian Basin and other regional groundwater flow systems.

Résumé

L’impact de l’exploitation des eaux souterraines sur une source et ses écosystèmes dépendants est intrinsèquement lié à l’hydrologie locale, à l’aquifère de la source et à l’environnement de décharge. Cette information est essentielle pour l’évaluation des impacts des activités d’exploitation des eaux souterraines et de valorisation des ressources. A partir d’une étude de cas concernant l’ensemble des sources de Lucky Last et Abyss dans le Bassin du Surat du Grand Bassin Artésien (Australie), une approche a été adoptée pour identifier les aquifères associés aux exutoires et pour établir un modèle conceptuel à l’échelle locale. Des études de terrain, comprenant de la cartographie géologique de surface, des forages de reconnaissance, des échantillonnages de la qualité de l’eau et de la géophysique, ont été réalisées afin diminuer le nombre d’hypothèses réalistes et d’augmenter la confiance dans la prévision à long terme des impacts sur ces sources. L’article met en évidence les avancées obtenues dans l’établissement d’un modèle conceptuel hydrogéologique des sources de Lucky Last et d’Abyss, ainsi que les avantages d’une approche de tests d’hypothèses en utilisant plusieurs axes d’études. L’évaluation fournit une confiance accrue dans la détermination des aquifères associés aux sources dans le bassin du Surat, en ayant recours à cette approche qui peut être largement utilisée dans l’établissement d’un modèle conceptuel des sources présentes dans le Grand Basin Artésien et d’autres systèmes régionaux d’écoulements d’eaux souterraines.

Resumen

El impacto de la extracción de agua subterránea en un manantial y sus ecosistemas dependientes está intrínsecamente ligado a la hidrología a escala local, al acuífero fuente del manantial y al ambiente de descarga. Esta información es crítica en la evaluación de los impactos de las actividades de extracción de aguas subterráneas y desarrollo de recursos. Utilizando un estudio de caso de los complejos de manantiales de Lucky Last y Abyss en la cuenca de Surat de la Great Artesian Basin (Australia), se adoptó un enfoque para identificar los acuíferos fuente y construir una conceptualización a escala local. Las investigaciones de campo, incluyendo el mapeo geológico de la superficie, las perforaciones de investigación, el muestreo de la calidad del agua y la geofísica, se aplicaron para reducir las hipótesis plausibles y para aumentar la confianza en la predicción a largo plazo de los impactos sobre estos manantiales. El trabajo destaca los avances en la conceptualización hidrogeológica de los manantiales de Lucky Last y Abyss, así como los beneficios de aplicar un enfoque de prueba de hipótesis utilizando múltiples líneas de investigación. La evaluación proporciona una mayor confianza en la determinación de los acuíferos fuente de los manantiales de la cuenca del Surat, con un enfoque más ampliamente aplicable a la conceptualización de los manantiales a través de la Great Artesian Basin y otros sistemas regionales de flujo de aguas subterráneas.

摘要

地下水开采对泉水及其相关生态系统的影响与局部尺度水文,泉水来源的含水层和排泄环境有着内在的联系。这些信息对于评估地下水开采和资源开发活动的影响至关重要。 通过对大自流盆地(澳大利亚)Surat盆地的Lucky Last和Abyss泉群的案例研究,研究了识别源含水层并建立局部概念化方案的方法。本研究进行了现场调查,包括地表地质测绘,调查钻孔,水质采样和地球物理方法,以减少似是而非的假设并提高对这些泉水影响的长期预测结果的可信度。本文重点介绍了Lucky Last和Abyss泉群的水文地质概念化方面的进展,以及采用多种调查方法进行假设检验的方法的好处。评估提高了确定Surat盆地泉群来源含水层的可信度,该方法可更广泛地适用于大自流盆地 和其他区域地下水流系统的泉水概念化。

Resumo

O impacto da extração de águas subterrâneas em uma nascente e seus ecossistemas dependentes está intrinsecamente relacionado à hidrologia em escala local, ao aquífero-fonte da nascente e ao ambiente de descarga. Tais informações são críticas para a avaliação dos impactos da extração de águas subterrâneas e das atividades de desenvolvimento do recurso. Utilizando um estudo de caso dos complexos de nascentes de Lucky Last e Abyss na Bacia Surat da Grande Bacia Artesiana (Austrália), foi adotada uma abordagem para identificação dos aquíferos-fonte e para a construção de um modelo conceitual em escala local. Investigações de campo, incluindo mapeamento geológico da superfície, sondagens de investigação, amostragem da qualidade da água e perfilagens geofísicas, foram aplicadas para reduzir as hipóteses plausíveis e aumentar a confiança na previsão em longo prazo dos impactos nessas nascentes. Este artigo destaca os avanços nos modelos conceituais hidrogeológicos das nascentes Lucky Last e Abyss, assim como os benefícios de aplicar uma abordagem de testes de hipóteses usando múltiplas linhas de evidência. A avaliação realizada fornece maior confiança na determinação de aquíferos-fonte para as nascentes na Bacia Surat, sendo a abordagem mais amplamente aplicável à conceitualização de nascentes na Grande Bacia Artesiana e outros sistemas regionais de fluxo de águas subterrâneas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Blue Energy (2008) Carolina #1 well completion report: ATP 813P—Queensland. Blue Energy, Brisbane, Australia

  2. Bryan K (1919) Classification of springs. J Geol 27:522–561. https://doi.org/10.1086/622677

    Article  Google Scholar 

  3. Commonwealth of Australia (2014) Ecological and hydrogeological survey of the Great Artesian Basin springs: Springsure, Eulo, Bourke and Bogan River supergroups. In: History, ecology and hydrogeology, vol 1. Knowledge report, Prepared by UniQuest for the Department of the Environment. Commonwealth of Australia, Canberra

    Google Scholar 

  4. Coote S (1984) GSQ Taroom 17: preliminary lithologic log and composite log. Geological Survey of Queensland, Brisbane

  5. Copley J, Mukherjee S, Babaahmadi A et al (2017) Faults and fractures in the Surat Basin: relationships with permeability. The University of Queensland, Brisbane, Australia

    Google Scholar 

  6. Cranfield LC (2017) Mapping of Surat Basin coal seam gas reservoir units. Department of Natural Resources and Mines, Queensland, Brisbane, Australia

    Google Scholar 

  7. Currell MJ, Werner AD, McGrath C et al (2017) Problems with the application of hydrogeological science to regulation of Australian mining projects: Carmichael Mine and Doongmabulla Springs. J Hydrol 548:674–682

    Article  Google Scholar 

  8. DNR (1996) Report on the impact of Nathan Dam on Boggomosses and regional hydrology. Department of Natural Resources, Resource Sciences Centre, Brisbane, Australia

  9. Doody T, Hancock P, Pritchard J (2018) IESC information guidelines explanatory note: assessing groundwater-dependent ecosystems. IESC, Canberra

  10. Douglas Partners (2014) Report on geophysical investigation of Lucky Last springs. Douglas Partners, Brisbane, Australia

  11. EHA (2009) Identification of Source Aquifers to Significant Springs Dependent on Groundwater Flow from the Great Artesian Basin. Report prepared for the Queensland Department of Environment and Resource Management GW-09-03-REP-004. Environmental Hydrology Assoc., Brisbane, Australia

    Google Scholar 

  12. Enemark T, Peeters LJM, Mallants D, Batelaan O (2018) Hydrogeological conceptual model building and testing: a review. J Hydrol 569:310–329. https://doi.org/10.1016/j.jhydrol.2018.12.007

    Article  Google Scholar 

  13. Exon NF, Milligan EN, Casey DJ, Galloway M (1967) Geology of the Roma and Mitchell sheet areas. Brisbane, Australia

  14. Feitz A, Ransley TR, Hodgkinson J et al (2014) GA-GSQ Hydrochemistry dataset (2009–2011) GEOCAT no. 78549, Geoscience Australia, Canberra

    Google Scholar 

  15. Fensham RJ (1998) Mound springs in the Dawson River Valley, Queensland: vegetation-environment relations and consequences of a proposed impoundment on botanical values. Pacific Conserv Biol 4:42–54

    Article  Google Scholar 

  16. Fensham RJ, Fairfax RJ (2003) Spring wetlands of the Great Artesian Basin, Queensland, Australia. Wetl Ecol Manag 11:343–362

    Article  Google Scholar 

  17. Fensham RJ, Fairfax RJ, Sharpe PR (2004) Spring wetlands in seasonally arid Queensland: floristics, environmental relations, classification and conservation values. Aust J Bot 52:583–595. https://doi.org/10.1071/BT03171

    Article  Google Scholar 

  18. Fensham RJ, Ponder WF, Fairfax RJ (2010) Recovery plan for the community of native species dependent on natural discharge of groundwater from the Great Artesian Basin. Report to Department of the Environment, Water, Heritage and the Arts, Canberra

  19. Fensham RJ, Pennay C, Drimer J (2012) Ecological and botanical survey of springs in the Surat cumulative management area. A report prepared for the Queensland Water Commission. Queensland Herbarium, Brisbane, Australia

    Google Scholar 

  20. Fielding CR, Gray ARG, Harris GI, Salomon J (1990) The Bowen Basin and overlying Surat Basin. Geol Geophys Bull 232:105–116

    Google Scholar 

  21. Gasca D, Ross D (2009) The use of wetland water balances to link hydrogeological processes to ecological effects. Hydrogeol J 17:115–133. https://doi.org/10.1007/s10040-008-0407-x

    Article  Google Scholar 

  22. Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes J-C (eds) Handbook of environmental isotope geochemistry, vol 2: the terrestrial environment. Elsevier, Amsterdam, pp 113–168

    Google Scholar 

  23. Green PM, Carmichael DCC, Brain TJJ et al (1997) Lithostratigraphic units in the Bowen and Surat basins, Queensland. In: Green PM (ed) The Surat and Bowen basins of south-east Queensland. Queensland Department of Mines and Energy, Brisbane, Australia, pp 41–108

    Google Scholar 

  24. Habermehl MA (1982) Springs in the Great Artesian Basin: origin and nature. Bureau of Mineral Resources, Geology and Geosciences, Canberra

    Google Scholar 

  25. Habermehl MA (2019) Review: The evolving understanding of the Great Artesian Basin (Australia), from discovery to current hydrogeological interpretations. Hydrogeol J. https://doi.org/10.1007/s10040-019-02036-6

  26. Ingram GJ, Stanisic J (1997) Dawson River project impact assessment study: boggomosses (mound springs) and other spring-fed areas. Queensland Department of Natural Resources, Brisbane, Australia

    Google Scholar 

  27. Jensen AR, Gregory CM, Forbes VR (1964) The geology of the Taroom 1:250 000 sheet area and of the Western part of the Mundubbera 1:250 000 sheet area. Geoscience Australia, Canberra

  28. Jones J, Veevers J (1983) Mesozoic origins and antecedents of Australia’s eastern highlands. J Geol Soc Aust 30:305–322

    Article  Google Scholar 

  29. KCB (2012a) Desktop assessment of the source aquifer for springs in the Surat cumulative management area. A report prepared for the Queensland Water Commission. Klohn Crippen Berger, Brisbane, Australia

    Google Scholar 

  30. KCB (2012b) Hydrogeological attributes associated with springs in the Surat Cumulative Management Area. A report prepared for the Queensland Water Commission, Klohn Crippen Berger, Brisbane, Australia

    Google Scholar 

  31. Kresic N, Stevanovic Z (2010) Groundwater hydrology of springs engineering, theory, management, and sustainability. Elsevier, Amsterdam

  32. Lyons D, Fawcett J, Wilson B et al (2015) Surat Basin quarterly spring baseline monitoring program. Springs baseline summary report prepared for responsible tenure holders. Jacobs, Brisbane, Australia

    Google Scholar 

  33. Madden A, McLean W, Reece E et al (2011) Manual for the identification of source aquifers to significant springs dependent on groundwater flow from the Great Artesian Basin. Parsons Brinkerhoff, Sydney

    Google Scholar 

  34. Mazor E, Nativ R (1992) Hydraulic calculation of groundwater flow velocity and age: examination of the basic premises. J Hydrol 138:211–222. https://doi.org/10.1016/0022-1694(92)90165-R

    Article  Google Scholar 

  35. Meinzer OE (1923) Outline of ground-water hydrology, with definitions. US Geol Surv Water Suppl Pap 494

  36. Mollan RGG, Forbes VRR, Jensen ARR et al (1972) Geology of the Eddystone, Taroom and Western parts of the Mundubbera sheet areas, Queensland. Australian Government, Canberra

    Google Scholar 

  37. OGIA (2013) Hydrogeological conceptualisation of springs in the Surat CMA. Preliminary conceptualisation and progress report. Department of Natural Resources and Mines, Brisbane, Australia

    Google Scholar 

  38. OGIA (2015) Wetland conceptualisation: a summary report on the conceptualisation of springs in the Surat cumulative management area, version 2.0. Department of Natural Resources and Mines, Brisbane, Australia

    Google Scholar 

  39. OGIA (2016a) Springs in the Surat cumulative management area: a report on spring research, knowledge and management approaches in the Surat CMA. Department of Natural Resources and Mines, Brisbane, Australia

    Google Scholar 

  40. OGIA (2016b) Underground water impact report for the Surat cumulative management area. In: Underground Water Impact Report Surat Cumulative Management Area. https://www.dnrme.qld.gov.au/__data/assets/pdf_file/0007/345616/uwir-surat-basin-2016.pdf. Accessed Dec 2019

  41. OGIA (2016c) Underground water impact report for the Surat cumulative management area. Department of Natural Resources and Mines, Brisbane, Australia

    Google Scholar 

  42. OGIA (2016d) Hydrogeological conceptualisation report for the Surat Cumulative Management Area. Department of Natural Resources and Mines, Brisbane, Australia

    Google Scholar 

  43. OGIA (2019) Fault conceptualisation report. Department of Natural Resources and Mines, Brisbane, Australia

    Google Scholar 

  44. Queensland Water Commission (2012) Underground water impact report for the Surat Cumulative Management Area. Queensland Water Commission, Brisbane, Australia

    Google Scholar 

  45. Ransley T, Smerdon BD (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment, Australian Government, Canberra

  46. Richardson S, Irvine E, Froend R, et al (2011) Australian groundwater-dependent ecosystems toolbox part 1: assessment framework. National Water Commission, Canberra

  47. Robbie SM (2004) Round Mountain 1 well completion report. Tipperary Oil and Gas, Brisbane, Australia

    Google Scholar 

  48. Speck NH, Wright RL, Sweeney FC, et al (1968) Lands of the Dawson: Fitzroy area, Queensland. In: Lands of the Dawson-Fitzroy Area, Queensland Series. CSIRO, Canberra

  49. Veevers J, Conaghan P, Powell CM (1994) Eastern Australia. In: Veevers J, Powell CM (eds) Permian-Triassic Pangean Basins and foldbelts along the Panthalassan margin of Gondwanaland. Geol Soc Am Mem 184, GSA, Boulder, CO, pp 11–173

  50. Whitehouse FW (1954) Artesian water supplies in Queensland. New Series, Dept. of Geology, University of Queensland, Brisbane

Download references

Acknowledgements

The work presented in this report was led by OGIA, which is responsible for undertaking cumulative impact assessment, setting management arrangements and reporting within the Surat CMA. The authors would like to acknowledge CSG tenure holders for their ongoing investment in spring monitoring and complementary research, and GSQ and Santos for supporting surface geological mapping at the case study location. Additionally, the authors acknowledge the range of technical experts that have been involved spring surveying and research in the Surat CMA. Finally, the authors are grateful for the support of Moya Tomlinson in the preparation and editing of the final manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steven Flook.

Additional information

Published in the special issue “Advances in hydrogeologic understanding of Australia’s Great Artesian Basin”

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flook, S., Fawcett, J., Cox, R. et al. A multidisciplinary approach to the hydrological conceptualisation of springs in the Surat Basin of the Great Artesian Basin (Australia). Hydrogeol J 28, 219–236 (2020). https://doi.org/10.1007/s10040-019-02099-5

Download citation

Keywords

  • Springs
  • Hydrogeological conceptualisation
  • Source aquifer
  • Coal seam gas
  • Australia