Abstract
The geological basins in Australia across which the hydrogeological Great Artesian Basin (GAB) exists, hold significant coal and coal seam gas (CSG) resources. Resource development from deep sedimentary basins often involves the risk of impacting groundwater resources. Predictive analysis of potential impacts on water resources are important for the risk analysis of resource development projects. A regional-scale numerical groundwater model was developed to probabilistically assess potential groundwater impacts due to additional coal resource development from a deep sedimentary basin underlying the GAB. The probabilistic simulation considered the plausible variability of the model parameters and accounted for uncertainties. Predictive uncertainty analysis was undertaken using a rejection sampling method after screening the model runs using predefined objective functions to evaluate the performance of the model runs with respect to historical observations. The predictive simulations were undertaken using 2,618 model runs to obtain maximum head drawdown caused by CSG and coal mining developments. The results showed that the water-table drawdown from an individual coal mining development becomes insignificant (maximum difference in drawdown <0.2 m) beyond 5 km. In general, less water-table drawdown was produced near the CSG development site but small amounts of drawdown spread further from it. Separation of surficial aquifers from deeper coal formations, as generally found in the GAB, limits the propagation of CSG-induced drawdown into the aquifers closer to the surface. While this study was specifically done for the Namoi region, similar outcomes could be expected in the broader GAB and other basins where equivalent hydrogeological conditions exist.
Résumé
Les bassins géologiques en Australie, parmi lesquels le Grand Bassin hydrogéologique Artésien (GBA), contiennent d’importantes ressources en charbon et gaz de houille (Coal Seam Gas - CSG). Le développement des ressources des bassins sédimentaires profonds implique souvent le risque d’impacter les ressources d’eaux souterraines. L’analyse prédictive des impacts potentiels sur les ressources en eau est importante pour l’analyse de risque des projets de développement de ressources minières. Un modèle numérique des eaux souterraines à l’échelle régionale a été développé pour évaluer de manière probabiliste les impacts potentiels sur les eaux souterraines dus au développement d’une ressource additionnelle de charbon dans un bassin sédimentaire profond sous-jacent au GBA. La simulation probabiliste a considéré une variabilité plausible des paramètres du modèle et a pris en compte les incertitudes. L’analyse prédictive d’incertitude a été entreprise en utilisant une méthode d’échantillonnage de type rejet après examen des résultats du modèle, en utilisant des fonction-objectif prédéfinies pour évaluer la pertinence des résultats du modèle par rapport aux observations historiques. Les simulations prédictives ont été entreprises en utilisant 2618 exécutions du modèle pour obtenir l’abaissement maximal du niveau principal provoqué par l’exploitation de CSG et de charbon. Les résultats montrent que l’abaissement du niveau piézométrique sous l’effet de l’exploitation d’une extraction individuelle de charbon devient insignifiant (rabattement maximal <0.2 m) au-delà de 5 kilomètres. En général, le rabattement du niveau piézométrique est moindre à proximité du site d’exploitation des CSG mais de faibles rabattements se propagent plus loin. L’individualisation des aquifères superficiels par rapport aux formations houillères plus profondes, ce qui est généralement le cas dans le GBA, limite la propagation des rabattements induits par l’exploitation des CSG dans les couches aquifères plus proches de la surface. Même si cette étude a été spécifiquement réalisée pour la région de Namoi, des résultats semblables pourraient être attendus plus largement dans le GBA et dans d’autres bassins où des conditions hydrogéologiques équivalentes existent.
Resumen
Las cuencas geológicas de Australia, a través de las cuales existe la Great Artesian Basin (GAB), contienen importantes recursos de carbón y gas de veta de carbón (CSG). El desarrollo de recursos de cuencas sedimentarias profundas a menudo implica el riesgo de afectar los recursos de aguas subterráneas. El análisis predictivo de los impactos potenciales sobre los recursos hídricos es importante para el análisis de riesgos de los proyectos de desarrollo de los recursos. Se desarrolló un modelo numérico de aguas subterráneas a escala regional para evaluar probabilísticamente los impactos potenciales debido al desarrollo adicional de recursos de carbón de una cuenca sedimentaria profunda subyacente al GAB. La simulación probabilística consideró la variabilidad plausible de los parámetros del modelo y tomó en cuenta las incertidumbres. El análisis predictivo de la incertidumbre se llevó a cabo utilizando un método de muestreo de rechazo después del filtrado de las corridas del modelo utilizando funciones objetivas predefinidas para evaluar el rendimiento de las corridas del modelo con respecto a las observaciones históricas. Las simulaciones predictivas se realizaron utilizando 2618 corridas del modelo para obtener la máxima reducción de carga causada por los desarrollos de CSG y de la minería de carbón. Los resultados mostraron que la profundización de la capa freática de un desarrollo minero individual de carbón se vuelve insignificante (diferencia máxima de profundización <0.2 m) más allá de 5 km. En general, se produjo una menor reducción del nivel de agua cerca del sitio de desarrollo de CSG, pero pequeñas cantidades de reducción del nivel de agua se extendieron más allá de él. La separación de los acuíferos superficiales de las formaciones de carbón más profundas, como se encuentra generalmente en el GAB, limita la propagación de la reducción inducida por el CSG hacia los acuíferos más cercanos a la superficie. Si bien este estudio se realizó específicamente para la región de Namoi, se pueden esperar resultados similares en la gran extensión del GAB y en otras cuencas donde existen condiciones hidrogeológicas equivalentes.
摘要
澳大利亚的地质盆地横穿水文地质自流大盆地(GAB), 蕴藏着丰富的煤矿和煤层气(CSG)资源。深层沉积盆地的资源开发往往会对地下水资源造成威胁。对水资源的潜在影响的预测分析对于资源开发项目的风险分析具有重要意义。建立了一个区域尺度的地下水数值模型, 以概率评估GAB盆地下伏深层沉积盆地的其他煤炭资源开采对地下水的潜在影响。概率模拟考虑了模型参数的似然可变性及不确定性。筛选模型运行后采用拒绝抽样方法, 使用预先定义的目标函数来评价模拟结果相对于历史观测值的模拟效果, 分析了预测的不确定性。预测模拟采用2,618个模型获取由CSG和煤矿开采所造成的最大水位降深值。结果表明, 5km深度以下某煤矿开采造成的地下水位下降不明显(最大降深<0.2 m)。总体上, 在CSG开采场地附近地下水位降低幅度较小, 但会围绕其进一步小幅降低。像GAB中常发现的那样, 表层含水层从较深的煤层中分离, 限制了CSG造成的地下水位下降到更接近地表的含水层中的传播。虽然该研究是针对Namoi地区进行的, 但该结果可能同样适用于较宽阔的GAB范围和其他类似水文地质条件的盆地。
Resumo
As bacias geológicas na Austrália, dentre as quais jaz a Grande Bacia Artesiana (GBA), contém importantes recursos de carvão e de gás de veio de carvão (GVC). A explotação destes recursos em bacias sedimentares profundas geralmente envolve o risco de impactar os recursos hídricos subterrâneos. A análise de predição dos possíveis impactos sobre às águas subterrâneas é importante para a análise de riscos de projetos de desenvolvimento de recursos. Um modelo numérico de águas subterrâneas em escala regional foi desenvolvido para avaliar a probabilidade de possíveis impactos sobre as águas subterrâneas devido ao desenvolvimento e explotação adicional de recursos de carvão de uma bacia sedimentar profunda subjacente à GBA. A simulação probabilística considerou a variabilidade plausível dos parâmetros do modelo e contabilizou incertezas. A análise preditiva da incerteza foi realizada utilizando um método de amostragem por rejeição após a varredura das execuções do modelo usando funções objetivas predefinidas para avaliar o desempenho das execuções do modelo em relação às observações históricas. As simulações preditivas foram realizadas utilizando 2618 execuções do modelo para obter o rebaixamento máximo do nível d’água causado pela mineração de carvão e extração de GVC. Os resultados mostraram que o rebaixamento do nível d’água de um único sítio de mineração de carvão se torna insignificante (diferença máxima no rebaixamento <0.2 m) a partir de 5 km. Em geral, foi produzido menos rebaixamento do lençol freático próximo ao local de extração do GVC, porém pequenas quantidades de rebaixamento se extenderam a maiores distâncias. A separação de aquíferos superficiais das formações de carvão mais profundas, como geralmente encontrada no GBA, limita a propagação do rebaixamento induzido por extração de GVC nos aquíferos mais próximos da superfície. Embora este estudo tenha sido realizado especificamente para a região de Namoi, resultados semelhantes poderiam ser esperados nas demais extensões da GBA e em outras bacias onde existam condições hidrogeológicas equivalentes.
This is a preview of subscription content, access via your institution.















References
Adhikary D, Wilkins A (2012) Reducing the impact of longwall extraction on groundwater systems. ACARP report C18016. http://www.acarp.com.au/abstracts.aspx?repId=C18016. Accessed 28 October 2019
Alberti L, Colombo L, Formentin G (2018) Null-space Monte Carlo particle tracking to assess groundwater PCE (Tetrachloroethene) diffuse pollution in north-eastern Milan functional urban area. Sci Total Environ 621:326–339. https://doi.org/10.1016/j.scitotenv.2017.11.253
Andersen MS, Meredith K, Timms W, Acworth RI (2008) Investigation of δ18O and δ2H in the Namoi River catchment: elucidating recharge sources and the extent of surface water/groundwater interaction. International Association of Hydrogeologists Congress XXXVI, vol 26, Toyama, Japan, October 2008
Aryal S, Northey J, Slatter E, Ivkovic K, Crosbie R, Janardhanan S, Pena-Arancibia J, Bell J (2017) Observations analysis, statistical analysis and interpolation for the Namoi subregion. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Canberra
Asher MJ, Croke BFW, Jakeman AJ, Peeters LJM (2015) A review of surrogate models and their application to groundwater modeling. Water Resour Res 51:5957–5973. https://doi.org/10.1002/2015WR016967
Beven K (2008) Environmental modelling: an uncertain future? CRC, Boca Raton, FL
Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6:279–298. https://doi.org/10.1002/hyp.3360060305
CDM Smith (2014) Santos Narrabri gas project groundwater modelling report. CDM Smith, Boston
CSIRO (2007) Water availability in the Namoi. A report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project, CSIRO, Canberra
Cui T, Moore C, Raiber M (2018a) Probabilistic assessment of the impact of coal seam gas development on groundwater: Surat Basin, Australia. Hydrogeol J 26:1–21. https://doi.org/10.1007/s10040-018-1786-2
Cui T, Peeters L, Pagendam D et al (2018b) Emulator-enabled approximate Bayesian computation (ABC) and uncertainty analysis for computationally expensive groundwater models. J Hydrol 564:191–207. https://doi.org/10.1016/j.jhydrol.2018.07.005
Doherty J (2015) Calibration and uncertainty analysis for complex environmental models, 1st edn. Watermark, Brisbane, Australia
DPI (2010) Pinneena 3.2: groundwater works—users guide. NSW Office of Water, Sydney
Esteban L, Nguyen D, Emelyanova I, Turnadge C, Pervukhina M, Mallants D (2016) Multiscale aquitard hydraulic conductivity characterisation and inclusion in groundwater flow models: application to the Gunnedah Basin, New South Wales. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra
Freeze RA, Massmann J, Smith L et al (1990) Hydrogeological decision analysis: 1. a framework. Ground Water 28:738–766. https://doi.org/10.1111/j.1745-6584.1990.tb01989.x
GHD (2012) Report for Queensland water commission (QWC), stage 2 Surat cumulative management area groundwater model report. Office of Groundwater Impact Assessment, Brisbane, Australia
Giambastiani BMS, McCallum AM, Andersen MS, Kelly BFJ, Acworth RI (2012) Understanding groundwater processes by representing aquifer heterogeneity in the Maules Creek catchment, Namoi Valley (New South Wales, Australia). Hydrogeol J 20(6):1027–1044
Guo H, Qu Q, Qin J et al (2014) Horizontal post-drainage design. ACARP report C18047, ACARP, Brisbane, Australia
Gurba L, Golab A, Douglass J (2009) CO2 geological storage opportunities in the Gunnedah Basin, and the southern Bowen Basin. NSW status report RPT09-1456, CO2CRC, Carlton, Australia
Herckenrath D, Langevin CD, Doherty JE (2011) Predictive uncertainty analysis of a saltwater intrusion model using null-space Monte Carlo. Water Resour Res 47:1–16. https://doi.org/10.1029/2010WR009342
Herckenrath, D., Doherty, J., & Panday, S. (2015). Incorporating the effect of gas in modelling the impact of CBM extraction on regional groundwater systems. Journal of Hydrology, 523, 587-601
Herr A, Northey J, Mitchell PJ, Aryal SK, Merrin LE, Slatter E (2018) Conceptual modelling for the Namoi subregion. Product 2.3 for the Namoi subregion from the northern inland catchments bioregional assessment. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. http://data.bioregionalassessments.gov.au/product/NIC/NAM/2.3. Accessed December 2019
Hill MC, Tiedeman CR (2007) Effective groundwater model calibration. Wiley, Hoboken, NJ
HydroAlgorithmics (2014) AlgoMesh user guide 1.0.4. http://www.hydroalgorithmics.com/software/algomesh. Accessed 15 November 2015
Ivkovic KM, Letcher RA, Croke BFW (2009) Use of a simple surface–groundwater interaction model to inform water management. Aust J Earth Sci 56(1):71–80
Keir G, Reading L, Vink S (2013) Enhancement of the coal seam gas water production tool: implementation of enhancements, deliverable 4: addendum to technical report, vol 14. The University of Queensland, Sustainable Minerals Institute (SMI), Centre for Water in the Minerals Industry (CWiMI), St. Lucia, Australia
Kelly B, Merrick N, Dent B, Milne-Home W, Yates D (2007) Groundwater knowledge and gaps in the Namoi catchment management area. Report, NCGM, Sydney
Kelly BF, Timms W, Ralph TJ, Giambastiani BMS, Comunian A, McCallum AM et al (2014) A reassessment of the lower Namoi catchment aquifer architecture and hydraulic connectivity with reference to climate drivers. Aust J Earth Sci 61(3):501–511
Lu D, Ye M, Hill MC et al (2014) A computer program for uncertainty analysis integrating regression and Bayesian methods. Environ Model Softw 60:45–56. https://doi.org/10.1016/j.envsoft.2014.06.002
Lupton N, Janardhanan S, Connell LD (2019) Improving groundwater models to better represent coal seam gas extraction impacts in the Namoi region. CSIRO, Canberra
McCallum JL, Crosbie RS, Walker GR, Dawes WR (2010) Impacts of climate change on groundwater in Australia: a sensitivity analysis of recharge. Hydrogeol J 18(7):1625–1638
Middlemis H, Peeters LJM (2018) Explanatory note, uncertainty analysis in groundwater modelling. A report prepared for the Independent Expert Scientific Committee on Coal Seam Gas and Large Coal Mining Development through the Department of the Environment and Energy, Canberra
Moore CR, Doherty J, Howell S, Erriah L (2015) Some challenges posed by coal bed methane regional assessment modeling. Groundwater 53:737–747. https://doi.org/10.1111/gwat.12276
Office of Groundwater Impact Assessment (OGIA) (2016a) Groundwater modelling report for the Surat cumulative management area. https://www.business.qld.gov.au/industries/mining-energy-water/resources/environment-water/coal-seam-gas/surat-cma/technical-reports. Accessed 28 October 2019
Office of Groundwater Impact Assessment (OGIA) (2016b) Underground water impact report for the Surat cumulative management area: consultation draft, vol 259. Office of Groundwater Impact Assessment, Department of Natural Resources and Mines, Brisbane, Queensland. https://www.dnrm.qld.gov.au/__data/assets/pdf_file/0016/31327/underground-water-impact-report.pdf. Accessed 28 October 2019
Panday S, Langevin CD, Niswonger RG et al (2013) MODFLOW–USG version 1: an unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation. US Geological Survey Techniques and Methods, book 6, chap. A45, US Geological Survey, Reston, VA, 66 pp
Peeters L, Pagendam D, Gao L et al (2016) Propagating uncertainty through models. Submethodology M09 from the bioregional assessment technical Programme. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Canberra
Peeters LJM, Pagendam DE, Crosbie RS et al (2018) Determining the initial spatial extent of an environmental impact assessment with a probabilistic screening methodology. Environ Model Softw 109:353–367. https://doi.org/10.1016/j.envsoft.2018.08.020
Plischke E, Borgonovo E, Smith CL (2013) Global sensitivity measures from given data. Eur J Oper Res 226:536–550. https://doi.org/10.1016/j.ejor.2012.11.047
QWC (2012) Underground water impact report for the Surat Cumulative Management Area. Brisbane
Raiber M, Suckow A (2017) Hydrochemical assessment of the Hutton and Precipice sandstones in the northern Surat Basin. CSIRO, Canberrra
Rassam, D., Walker, G. R., & Knight, J. (2004). Applicability of the Unit Response Equation to assess salinity impacts of irrigation development in the Mallee region (p. 61). CSIRO Land and Water
Rassam DW, Peeters L, Pickett T, Jolly I, Holz L (2013) Accounting for surface–groundwater interactions and their uncertainty in river and groundwater models: a case study in the Namoi River, Australia. Environ Model Softw 50:108–119
Refsgaard JC, van der Sluijs JP, Højberg AL, Vanrolleghem PA (2007) Uncertainty in the environmental modelling process: a framework and guidance. Environ Model Softw 22:1543–1556. https://doi.org/10.1016/j.envsoft.2007.02.004
Reilly, T. E., Franke, O. L., & Bennett, G. D. (1987). The principle of superposition and its application in groundwater hydraulics: Techniques of Water-Resources Investigations of the US Geological Survey, book 3, chap
Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer experiments. Springer, Heidelberg, Germany
Sepúlveda N, Doherty J (2015) Uncertainty analysis of a groundwater flow model in east-central Florida. Groundwater 53:464–474. https://doi.org/10.1111/gwat.12232
Siade A, Prommer H, Suckow A, Raiber M (2018) Using numerical groundwater modelling to constrain flow rates and flow paths in the Surat Basin through environmental tracer data. CSIRO, Canberra
Sreekanth, J., & Moore, C. (2015). CSG Water Reinjection Impacts: Modelling, Uncertainty and Risk Analysis; Groundwater flow and transport modelling and uncertainty analysis to quantify the water quantity and quality impacts of a coal seam gas produced water reinjection scheme in the Surat Basin, Queensland
Sreekanth, J., Cui, T., Pickett, T., Rassam, D., Gilfedder, M., & Barrett, D. (2018). Probabilistic modelling and uncertainty analysis of flux and water balance changes in a regional aquifer system due to coal seam gas development. Science of The Total Environment, 634, 1246-1258
Sreekanth J, Holland K, Gallagher M, Aramini D, Davies P, Merrin L, Turnadge C (2016) Groundwater numerical modelling for the Maranoa-Balonne-Condamine subregion: product 2.6.2 for the Maranoa-Balonne-Condamine subregion from the northern inland catchments bioregional assessment. CSIRO, Canberra
Sreekanth J, Lau H, Pagendam DE (2017) Design of optimal groundwater monitoring well network using stochastic modeling and reduced-rank spatial prediction. Water Resour Res 53:6821–6840. https://doi.org/10.1002/2017WR020385
Suckow A, Taylor A, Davies P, Leaney F (2016) Geochemical baseline monitoring. Final report, CSIRO, Australia
SWS (2012) Namoi catchment water study. Phase 3 report Schlumberger Water Services. http://archive.lls.nsw.gov.au/__data/assets/pdf_file/0020/526430/archive_NCWS_Phase-3-report.pdf. Accessed 25 November 2016
Tavakoli R, Yoon H, Delshad M et al (2013) Comparison of ensemble filtering algorithms and null-space Monte Carlo for parameter estimation and uncertainty quantification using CO2 sequestration data. Water Resour Res 49:8108–8127. https://doi.org/10.1002/2013WR013959
Tonkin M, Doherty J (2009) Calibration-constrained Monte Carlo analysis of highly parameterized models using subspace techniques. Water Resour Res 45:1–17. https://doi.org/10.1029/2007WR006678
Underschultz JR, Vink S, Garnett A (2018) Coal seam gas associated water production in Queensland: actual vs predicted. J Nat Gas Sci Eng 52:410–422
Underschultz J, Vink S, Garnett A, Duncan I (2016) Update on current CSG water production. Presented at the Toowoomba Water Researchers Forum, Toowoomba, Australia, 23 May, 2016
Vink S, Kunz N, Barrett D, Moran C (2008) Scoping study: groundwater impacts of coal seam gas development: assessment and monitoring, vol 65. The University of Queensland Centre for Water in the Minerals Industry (CWiMI), St. Lucia, Queensland, Australia
Vrugt JA (2016) Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation. Environ Model Softw 75:273–316. https://doi.org/10.1016/j.envsoft.2015.08.013
Welsh WD (2006) Great Artesian Basin transient groundwater model. Bureau of Rural Sciences, Canberra. http://www.southwestnrm.org.au/sites/default/files/uploads/ihub/welsh-wd-2006-great-artesian-basin-transient-groundwater-model.pdf. Accessed 21 November 2017
Yeh, H. D., & Wang, C. T. (2009). Analysis of well residual drawdown after a constant-head test. Journal of hydrology, 373(3-4), 436-441
Acknowledgements
This research is part of the Bioregional Assessment Programme. The Bioregional Assessment Programme is a transparent and accessible program of baseline assessments that increase the available science for decision making associated with the impacts of CSG and coal mining development on water resources and water-dependent assets. Bioregional assessments are being undertaken in a collaboration between the Department of the Environment and Energy, the, Bureau of Meteorology CSIRO and Geoscience Australia. For more information go to www.bioregionalassessments.gov.au.
Funding
The Bioregional Assessment Programme is funded by the Australian Government Department of the Environment and Energy.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in the special issue “Advances in hydrogeologic understanding of Australia’s Great Artesian Basin”
Appendices
Appendix 1
Two sets of models were run to compare the difference in dmax predictions when confined and unconfined conditions (convertible layer) were assumed for the parts of the aquifer where water-table conditions exist. The predicted dmax in the model layer 6 corresponding to the Pilliga Sandstone aquifer were compared across these two sets (Fig. 16). The Pilliga Sandstone outcrops close to the areas of CRDP and the aquifer is unconfined close to the outcrop areas and has numerous receptors at which estimation of dmax is of prediction interest. The analysis indicates that the maximum drawdown simulated by both approaches are similar except that the confined model run slightly overestimates the dmax value. In the range of dmax simulated across all model runs, this slight overestimation is within practical observation errors and is not significant. The analysis also indicated that the confined assumption is conservative in purview of the objective of the modelling analysis, i.e. it does not underestimate drawdowns at vast majority of the points of interest and is suitable for the stated objective of the modelling study, which is to demarcate potentially impacted areas from gas development and mining.
It is also noteworthy that, while a confined assumption was applied, the effect of this simplification on the model predictions is minimised by using storage values based on specific yield in areas where layers are outcropping. The specific yield parameters used for this are also included in the uncertainty analysis to explore prediction uncertainty caused by uncertainty of the specific yield parameters.
Appendix 2
As the modelling is only progressing until 2102 there will be situations where dmax, maximum difference in drawdown for one realisation within an ensemble of groundwater modelling runs, obtained by choosing the maximum of the time series of differences between two futures, has not been reached within this time. After the pumping associated with coal resource development has ceased, dmax at the well will have been reached but the cone of depression can still expand while the pressure is recovering at the well location. This can lead to dmax at a point away from the pumping, occurring well after the pumping has ceased. The analytical solution of Yeh and Wang (2009) allows us to investigate the impact of not running the model until dmax is reached:
where s(r,t) is the drawdown at a radial distance from the well r at time t, S is the storativity, T is the transmissivity, rw is the radius of the well and W is the Theis well function. Figure 17 shows a solution of dmax and time to dmax as a function of distance from the extraction well for a case with a T/S of 254 m2/d (this is an example, not related to a specific bioregion). This shows that, close to the well, dmax is much greater than further from the well, whereas time to dmax occurs close to when the pumps are switched off for locations close to the well; however, time to dmax increases with increasing distance from the pumping well. There is a very clear negative correlation between dmax and time to dmax. For any model node where dmax has not occurred within the temporal domain of the model, dmax must be smaller than every point closer to the pumping well.
Calculation of dmax and time to dmax as a function of distance from the pumping well for T/S = 254 m2/d using the analytical solution of Yeh and Wang (2009)
Rights and permissions
About this article
Cite this article
Sreekanth, J., Crosbie, R., Pickett, T. et al. Regional-scale modelling and predictive uncertainty analysis of cumulative groundwater impacts from coal seam gas and coal mining developments. Hydrogeol J 28, 193–218 (2020). https://doi.org/10.1007/s10040-019-02087-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-019-02087-9