Advertisement

Long-term (1970s–2016) changes in groundwater geochemistry in the High Plains aquifer in south-central Kansas, USA

  • Alexandria D. Lane
  • Matthew F. KirkEmail author
  • Donald O. Whittemore
  • Randy Stotler
  • John Hildebrand
  • Orrin Feril
Report

Abstract

Changes in groundwater chemistry in the Great Bend Prairie aquifer, a portion of the High Plains aquifer in south-central Kansas (USA), were studied in order to better understand factors influencing groundwater quality and aquifer sustainability. To assess changes, groundwater samples from 22 monitoring wells were analyzed during 2016. Results were then compared to data obtained previously from the same wells in the 1970s and 1980s. Of the wells sampled, 13 wells were screened near the water table (average depth 22 m) and 9 wells were screened near the aquifer base (average depth 41 m). Nitrate levels in 2016 were higher for 20 of 21 wells with data available for comparison. The average increase for shallow-aquifer and aquifer-base samples was 9.5 (standard deviation, SD, 12.9) and 3.4 (SD 3.1) mg/L as N, respectively. Nitrate isotope ratios (δ15N-NO3 and δ18O-NO3) of the 2016 samples are consistent with nitrification of ammonium-based fertilizers as the nitrate source with potential contributions from animal waste. Total dissolved solute levels were also higher in samples from nine of 12 shallow-aquifer wells and four of eight aquifer-base wells, with average increases of 191 (SD 238) and 194 (SD 133) mg/L, respectively. Taken together, the results demonstrate that water quality has decreased considerably over the past 40 years primarily because of fertilizer use, but that groundwater mixing, evapotranspiration, and potentially animal waste inputs also affected groundwater chemistry. These findings help identify the scale of water-quality degradation in the High Plains aquifer.

Keywords

Groundwater quality Nitrate Contamination Agriculture USA 

Changements sur le long terme (1970–2016) de la géochimie des eaux souterraines de l’aquifère des Hautes Plaines au centre-sud du Kansas, Arizona (Etats-Unis d’Amérique)

Résumé

Des changements de chimie des eaux souterraines de l’aquifère de Great Bend Prairie, une portion de l’aquifère des Hautes Plaines au centre-sud du Kansas (Etats-Unis d’Amérique), ont été étudiés pour mieux comprendre les facteurs influençant la qualité des eaux souterraines et la pérennité de l’aquifère. Pour évaluer ces changements, des échantillons d’eau souterraine de 22 forages de suivi ont été analysés en 2016. Les résultats ont été comparés aux données obtenues précédemment pour les mêmes forages dans les années 1970 et 1980. Parmi les forages échantillonnés, 13 captent les niveaux d’eau superficiels (profondeur moyenne de 22 m) et neuf les niveaux proches du mur de l’aquifère (profondeur moyenne de 41 m). Les concentrations en nitrate de 2016 sont plus élevées pour 20 des 21 forages pour lesquels des données sont disponibles. La moyenne d’augmentation des concentrations est, respectivement, pour les aquifères de faible et de grande profondeur de 9.5 (déviation standard, DS, 12.9) et 3.4 (DS 3.1) mg/L de N. Les rapports isotopiques du nitrate (δ15N-NO3 et δ18O-NO3) des échantillons de 2016 sont en accord avec la nitrification des engrais à base d’ammonium comme source de nitrate avec des contributions potentielles provenant des fumiers/lisiers d’origine animale. Les concentrations en éléments totaux dissous sont également plus élevés pour les échantillons de 9 des 12 aquifères peu profonds et 4 des 8 aquifères profonds, avec une moyenne d’augmentation de 191 (DS 238) et 194 (DS 133) mg/L respectivement. En tout, les résultats montrent que la qualité de l’eau s’est considérablement dégradée sur les 40 dernières années du fait principalement de l’utilisation d’engrais. De même le mélange d’eau souterraine, l’évapotranspiration et l’apport potentiel par les déjections animales (fumiers/lisiers) ont également affecté la chimie des eaux souterraines. Ces résultats aident à identifier l’ampleur de la dégradation de la qualité des eaux de l’aquifère des Hautes Plaines.

Cambios a largo plazo (1970–2016) en la geoquímica de las aguas subterráneas en el acuífero High Plains en el centro-sur de Kansas, EEUU

Resumen

Se estudiaron los cambios en la química del agua subterránea en el acuífero Great Bend Prairie, una porción del acuífero High Plains en el centro-sur de Kansas (EEUU), con el fin de comprender mejor los factores que influyen en la calidad del agua subterránea y la sostenibilidad del acuífero. Para evaluar los cambios, se analizaron muestras de agua subterránea de 22 pozos de monitoreo durante 2016. Luego se compararon los resultados con los datos obtenidos previamente de los mismos pozos en las décadas de 1970 y 1980. De los pozos muestreados, 13 pozos fueron examinados cerca del nivel freático (profundidad promedio 22 m) y nueve pozos fueron examinados cerca de la base del acuífero (profundidad promedio 41 m). Los niveles de nitratos en 2016 fueron mayores en 20 de 21 pozos, con datos disponibles para la comparación. El aumento promedio para las muestras de acuíferos someros y de la base del acuífero fue de 9.5 (desviación estándar, SD, 12.9) y 3.4 (SD 3.1) mg/L como N, respectivamente. Las proporciones de isótopos de nitrato (δ15N-NO3 y δ18O-NO3) de las muestras de 2016 son consistentes con la nitrificación de fertilizantes a base de amonio como fuente de nitratos con contribuciones potenciales de desechos animales. Los niveles totales de soluto disuelto también fueron más altos en muestras de nueve de 12 pozos de acuíferos someros y cuatro de ocho pozos de la base del acuífero, con incrementos promedio de 191 (SD 238) y 194 (SD 133) mg/L, respectivamente. En conjunto, los resultados demuestran que la calidad del agua ha disminuido considerablemente en los últimos 40 años, principalmente debido al uso de fertilizantes, pero que la mezcla de aguas subterráneas, la evapotranspiración y las entradas de desechos de animales también afectaron potencialmente la química del agua subterránea. Estos hallazgos ayudan a identificar la escala de degradación de la calidad del agua en el acuífero de las High Plains.

美国堪萨斯中南部高平原含水层的地下水地球化学的长期变化(1970–2016年)

摘要

为了更好地了解影响地下水质量和含水层可持续性的因素,研究了美国堪萨斯州中南部高平原含水层的Great Bend Prairie含水层中的地下水化学变化。为了评估变化,对2016年22口监测井的地下水样品进行了分析。然后将结果与先前从1970年代和1980年代从同一口井获得的数据进行了比较。在取样的所有井中,在地下水位附近筛查了13口井(平均深度22 m),在含水层底部附近筛查了9口井(平均深度41 m)。在比较的可利用数据中,在2016年 21口井中的20口硝酸盐水平较高。浅层含水层和以含水层为基础的样品的平均增加量分别为9.5(标准差(SD)12.9)和3.4(SD 3.1)mg/L(N)。 2016年样品的硝酸盐同位素比(δ15N-NO3和δ18O-NO3)与作为硝酸盐源的铵基肥料的硝化作用相一致,这可能来自动物粪便。 12个浅层含水井中的9个井和8个含水层基井中的4个井中的样品中矿化度值也较高,分别平均增加191(SD 238)和194(SD 133)mg/L。综合两者的结果表明,过去40年地下水水质已显著下降,主要原因是使用肥料,但是地下水的混合,蒸散和潜在的动物废物输入也影响了地下水的化学性质。这些发现有助于确定高平原含水层中水质退化的程度。

Alterações de longo prazo (1970–2016) na geoquímica das águas subterrâneas no aquífero das Altas Planícies, no centro-sul do Kansas, EUA

Resumo

Alterações na química das águas subterrâneas no aquífero Great Bend Prairie, uma parte do aquífero das Altas Planícies no centro-sul do Kansas (EUA), foram estudadas para entender melhor os fatores que influenciam a qualidade das águas subterrâneas e a sustentabilidade dos aquíferos. Para avaliar as mudanças, amostras de águas subterrâneas de 22 poços de monitoramento foram analisadas no ano de 2016. Os resultados foram comparados com dados obtidos anteriormente nos mesmos poços, nas décadas de 1970 e 1980. Dos poços amostrados, 13 poços foram examinados perto do lençol freático (profundidade média de 22 m) e 9 poços foram examinados perto da base do aquífero (profundidade média de 41 m). Os níveis de nitrato em 2016 foram maiores em 20 dos 21 poços com dados disponíveis para comparação. O aumento médio das amostras de aquífero raso e de base foi de 9.5 (desvio padrão, DP, 12.9) e 3.4 (DP 3.1) mg/L como N, respectivamente. As razões isotópicas de nitrato (δ15N-NO3 e δ18O-NO3) das amostras de 2016 são consistentes com a nitrificação de fertilizantes à base de amônio, como fonte de nitrato com potenciais contribuições de resíduos de animais. Os níveis totais de soluto dissolvido também foram maiores nas amostras de nove de 12 poços de aquíferos rasos e quatro de oito poços de base de aquíferos, com aumentos médios de 191 (DP 238) e 194 (DP 133) mg/L, respectivamente. Tomados em conjunto, os resultados demonstram que a qualidade da água diminuiu consideravelmente nos últimos 40 anos, principalmente devido ao uso de fertilizantes, mas que a mistura de águas subterrâneas, a evapotranspiração e as entradas potenciais de resíduos animais também afetaram a química das águas subterrâneas. Essas descobertas ajudam a identificar a escala de degradação da qualidade da água no aquífero das Altas Planícies.

Notes

Acknowledgements

The authors thank Adam Lane, Ben Haller, Janet Paper, and Bruce Lindsey for assistance with this project and Ganga Hettiarachchi and Pamela Kempton for helpful discussions. They are also grateful for constructive feedback from Leslie Harker and two anonymous peer reviewers. Support for this study was provided by a graduate student research grant from the Geological Society of America, the Kansas State University Department of Geology, and the US National Science Foundation (Award No. 1656006).

Supplementary material

10040_2019_2083_MOESM1_ESM.pdf (597 kb)
ESM 1 (PDF 597 kb)

References

  1. Ascott MJ, Gooddy DC, Wang L, Stuart ME, Lewis MA, Ward RS, Binley AM (2017) Global patterns of nitrate storage in the vadose zone. Nat Comm 8.  https://doi.org/10.1038/s41467-017-01321-w
  2. Bailey RT, Gates TK, Ahmadi M (2014) Simulating reactive transport of selenium coupled with nitrogen in a regional-scale irrigated groundwater system. J Hydrol 515:29–46.  https://doi.org/10.1016/j.jhydrol.2014.04.039 CrossRefGoogle Scholar
  3. Bethke CM, Sanford RA, Kirk MF, Jin Q, Flynn TM (2011) The thermodynamic ladder in geomicrobiology. Am J Sci 311(3):183–210CrossRefGoogle Scholar
  4. Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10(1):153–179.  https://doi.org/10.1007/s10040-001-0183-3 CrossRefGoogle Scholar
  5. Buddemeier R (1994) Overview and summary of FY94 mineral intrusion studies. Open File Report 94-28a, Kansas Geological Survey, Lawrence, KS, 13 pGoogle Scholar
  6. Burow KR, Dubrovsky NM, Shelton JL (2007) Temporal trends in concentrations of DBCP and nitrate in groundwater in the eastern San Joaquin Valley, California, USA. Hydrogeol J 15(5):991–1007.  https://doi.org/10.1007/s10040-006-0148-7 CrossRefGoogle Scholar
  7. Burow KR, Shelton JL, Dubrovsky NM (2008) Regional nitrate and pesticide trends in ground water in the eastern San Joaquin Valley, California. J Env Qual 37(5):S249–S263Google Scholar
  8. Butler JJ, Stotler RL, Whittemore DO, Reboulet EC (2013) Interpretation of water level changes in the High Plains Aquifer in western Kansas. Ground Water 51(2):180–190.  https://doi.org/10.1111/j.1745-6584.2012.00988.x CrossRefGoogle Scholar
  9. Butler JJ, Whittemore DO, Reboulet EC, Knobbe S, Wilson BB, Bohling GC (2019) High Plains Aquifer Index Well Program: 2018 annual report. Open-File Report no. 2019–19, Kansas Geological Survey, Lawrence, KSGoogle Scholar
  10. Chaudhuri S, Ale S (2014) Long term (1960-2010) trends in groundwater contamination and salinization in the Ogallala aquifer in Texas. J Hydro 513:376–390.  https://doi.org/10.1016/j.jhydrol.2014.03.033 CrossRefGoogle Scholar
  11. Chen Z, Nie Z, Zhang G, Wan L, Shen J (2006) Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China. Hydrogeol J 14(8):1635–1651.  https://doi.org/10.1007/s10040-006-0075-7 CrossRefGoogle Scholar
  12. Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703.  https://doi.org/10.1126/science.133.3465.1702 CrossRefGoogle Scholar
  13. Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36(2):338–350CrossRefGoogle Scholar
  14. Dodge DA, Hoffman BR, Horsch ML (1978) Soil survey of Stafford County. US Department of Agriculture, Lawrence, KS, 59 ppGoogle Scholar
  15. Fader S, Stullken L (1978) Geohydrology of the Great Bend Prairie, south-central Kansas. Irrigation Series 4, Kansas Geological Survey, Lawrence, KS, 19 ppGoogle Scholar
  16. Gates TK, Cody BM, Donnelly JP, Herting AW, Bailey RT, Price JM (2009) Assessing selenium contamination in the irrigated stream–aquifer system of the Arkansas River, Colorado. J Environ Qual 38(6):2344–2356.  https://doi.org/10.2134/jeq2008.0499 CrossRefGoogle Scholar
  17. Guerra K, Dahm K, Dundorf S (2011) Oil and gas produced water management and beneficial use in the western United States. Science and Technology Program Report no. 157, US Department of the Interior Bureau of Reclamation, Washington, DC, 113 ppGoogle Scholar
  18. Gurdak JJ, McMahon PB, Dennehy K, Qi S (2009) Water Quality in the High Plains Aquifer, Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1999–2004. US Geol Surv Circ 1337, 63 ppGoogle Scholar
  19. Gutentag E, Heimes F, Krothe N, Luckey R, Weeks J (1984) Geohydology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. US Geol Surv Prof Pap 1400-B, 63 pGoogle Scholar
  20. Hausladen DM, Alexander-Ozinskas A, McClain C, Fendorf S (2018) Hexavalent chromium sources and distribution in California groundwater. Environ Sci Technol 52(15):8242–8251.  https://doi.org/10.1021/acs.est.7b06627 CrossRefGoogle Scholar
  21. Juntakut P, Snow DD, Haacker EMK, Ray C (2019) The long-term effect of agricultural, vadose zone and climatic factors on nitrate contamination in the Nebraska’s groundwater system. J Contam Hydro 220:33–48.  https://doi.org/10.1016/j.jconhyd.2018.11.007 CrossRefGoogle Scholar
  22. Kharaka YK, Kakouros E, Thordsen JJ, Ambats G, Abbott MM (2007) Fate and groundwater impacts of produced water releases at OSPER “B” site, Osage County, Oklahoma. Appl Geochem 22(10):2164–2176.  https://doi.org/10.1016/j.apgeochem.2007.04.005 CrossRefGoogle Scholar
  23. Kirk MF, Jin Q, Haller BR (2016) Broad-scale evidence that pH influences the balance between microbial iron and sulfate reduction. Groundwater 54(3):406–413.  https://doi.org/10.1111/gwat.12364 CrossRefGoogle Scholar
  24. Langmuir D (1978) Uranium solution-mineral equilibria at low-temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42(6):547–569.  https://doi.org/10.1016/0016-7037(78)90001-7 CrossRefGoogle Scholar
  25. Latta B (1950) Geology and Ground-Water Resources of Barton and Stafford counties, Kansas. Bulletin 88, Kansas Geological Survey, Lawrence, Kansas, 226 ppGoogle Scholar
  26. Lenahan MJ, Bristow KL, de Caritat P (2011) Detecting induced correlations in hydrochemistry. Chem Geol 284(1–2):182–192.  https://doi.org/10.1016/j.chemgeo.2011.02.018 CrossRefGoogle Scholar
  27. Lindsey B, Johnson T (2018) Data from decadal change in groundwater quality website, 1988–2014, version 2.0. US Geological Survey.  https://doi.org/10.5066/F7N878ZS
  28. Litke D (2001) Historical water-quality data for the High Plains Regional Ground-Water Study Area in Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1930–98. US Geol Surv Water Resour Invest Rep 00-4254, 69 ppGoogle Scholar
  29. Manning AH, Mills CT, Morrison JM, Ball LB (2015) Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA. Appl Geochem 62:186–199.  https://doi.org/10.1016/j.apgeochem.2015.05.010 CrossRefGoogle Scholar
  30. Mas-Pla J, Mencio A, Bach J, Zamorano M, Soler D, Brusi D (2016) Trace element groundwater pollution hazard in regional hydrogeological systems (Emporda Basin, NE Spain). Water Air Soil Pollut 227(6).  https://doi.org/10.1007/s11270-016-2891-2
  31. Maupin MA, Barber NL (2005) Estimated Withdrawals from Principal Aquifers in the United States, 2000. US Geol Surv Circ 1279, 46 ppGoogle Scholar
  32. McMahon PB, Dennehy KF, Bruce BW, Gurdak JJ, Qi S (2007) Water quality assessment of the High Plains aquifer, 1999–2004. US Geol Surv Prof Pap 1749, 136 ppGoogle Scholar
  33. Mencio A, Mas-Pla J, Otero N, Regas O, Boy-Roura M, Puig R, Bach J, Domenech C, Zamorano M, Brusi D, Folch A (2016) Nitrate pollution of groundwater: all right..., but nothing else? Sci Total Environ 539:241–251.  https://doi.org/10.1016/j.scitotenv.2015.08.151 CrossRefGoogle Scholar
  34. Mills CT, Goldhaber MB (2012) Laboratory investigations of the effects of nitrification-induced acidification on Cr cycling in vadose zone material partially derived from ultramafic rocks. Sci Tot Env 435:363–373.  https://doi.org/10.1016/j.scitotenv.2012.06.054 CrossRefGoogle Scholar
  35. Nolan J, Weber KA (2015) Natural uranium contamination in major US aquifers linked to nitrate. Environ Sci Technol Lett 2(8):215–220.  https://doi.org/10.1021/acs.estlett.5b00174 CrossRefGoogle Scholar
  36. Ostrom NE, Knoke KE, Hedin LO, Robertson GP, Smucker AJM (1998) Temporal trends in nitrogen isotope values of nitrate leaching from an agricultural soil. Chem Geol 146(3–4):219–227.  https://doi.org/10.1016/s0009-2541(98)00012-6 CrossRefGoogle Scholar
  37. Pope L, Bruce BW, Hansen CV (2001) Ground-water quality in Quaternary deposits of the central High Plains aquifer, south-central Kansas, 1999. US Geol Surv Water Resour Invest Rep 00-4259, 44 pGoogle Scholar
  38. Postma D, Boesen C, Kristiansen H, Larsen F (1991) Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling. Water Resour Res 27(8):2027–2045.  https://doi.org/10.1029/91wr00989 CrossRefGoogle Scholar
  39. Rice KC, Herman JS (2012) Acidification of Earth: an assessment across mechanisms and scales. Appl Geochem 27(1):1–14.  https://doi.org/10.1016/j.apgeochem.2011.09.001 CrossRefGoogle Scholar
  40. Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43(3).  https://doi.org/10.1029/2006wr005486
  41. Scanlon BR, Reedy RC, Gates JB, Gowda PH (2010) Impact of agroecosystems on groundwater resources in the Central High Plains, USA. Agric Ecosyst Environ 139(4):700–713.  https://doi.org/10.1016/j.agee.2010.10.017 CrossRefGoogle Scholar
  42. Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci USA 109(24):9320–9325.  https://doi.org/10.1073/pnas.1200311109 CrossRefGoogle Scholar
  43. Shores A, Laituri M, Butters G (2017) Produced water surface spills and the risk for BTEX and naphthalene groundwater contamination. Wat Air Soil Pollut 228(11).  https://doi.org/10.1007/s11270-017-3618-8
  44. Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62(4):1458–1460Google Scholar
  45. Townsend MA, Young DP (1992) Factors affecting nitrate concentrations in ground water in east-central Stafford county, Kansas. Open-File Report 92–34, Kansas Geological Survey, Lawrence, KS, 35 ppGoogle Scholar
  46. van Berk W, Fu Y (2017) Redox roll-front mobilization of geogenic uranium by nitrate input into aquifers: risks for groundwater resources. Environ Sci Technol 51(1):337–345.  https://doi.org/10.1021/acs.est.6b01569 CrossRefGoogle Scholar
  47. Wakida FT, Lerner DN (2005) Non-agricultural sources of groundwater nitrate: a review and case study. Water Res 39(1):3–16.  https://doi.org/10.1016/j.watres.2004.07.026 CrossRefGoogle Scholar
  48. Whittemore DO (1993) Ground-water geochemistry in the mineral intrusion area of Groundwater Management District no. 5, south-central Kansas. Open-File Report 93-2, Kansas Geological Survey, Lawrence, KS, 107 ppGoogle Scholar
  49. Whittemore DO (1995) Geochemical differentiation of oil and gas brine from other saltwater sources contaminating water resources: case studies from Kansas and Oklahoma. Environ Geosci 2(1):15–31Google Scholar
  50. Whittemore DO (2007) Fate and identification of oil-brine contamination in different hydrogeologic settings. Appl Geochem 22(10):2099–2114.  https://doi.org/10.1016/j.apgeochem.2007.04.002 CrossRefGoogle Scholar
  51. Whittemore DO, Butler JJ, Wilson BB (2018) Status of the High Plains Aquifer in Kansas. Technical Series 22, Kansas Geological Survey, Lawrence, KS, 14 pGoogle Scholar
  52. Xue D, Botte J, De Baets B, Accoe F, Nestler A, Taylor P, Van Cleemput O, Berglund M, Boeckx P (2009) Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res 43(5):1159–1170.  https://doi.org/10.1016/j.watres.2008.12.048 CrossRefGoogle Scholar
  53. Young DP (1992) Mineral intrusion: geohydrology of Permian bedrock underlying the Great Bend Prairie Aquifer in south-central Kansas. Open-File Report 92-44, Kansas Geological Survey, Lawrence, KS, 47 ppGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeologyKansas State UniversityManhattanUSA
  2. 2.Kansas Department of Health and EnvironmentTopekaUSA
  3. 3.Kansas State UniversityManhattanUSA
  4. 4.Kansas Geological SurveyUniversity of KansasLawrenceUSA
  5. 5.Department of GeologyUniversity of KansasLawrenceUSA
  6. 6.Big Bend Groundwater Management District No. 5StaffordUSA

Personalised recommendations