Skip to main content
Log in

Connectivity between Australia’s Great Artesian Basin, underlying basins, and the Cenozoic cover

Connectivité entre le Grand basin Artésien d’Australie, les bassins sous-jacents, et la couverture du Cénozoique

Conectividad entre la Great Artesian Basin de Australia, las cuencas subyacentes y la cubierta del Cenozoico

澳大利亚大自流盆地,下伏盆地与新生代盖层之间的连通性

Conectividade entre a Grande Bacia Artesiana da Austrália, bacias subjacentes, e a cobertura cenozoica

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A defined hydrogeological basin is convenient for understanding and classifying groundwater systems. However, groundwater flow results generally from pressure and density gradients and may pass through boundaries defined by hydrostratigraphy. Earlier conceptual models of Australia’s Great Artesian Basin (GAB) ascribed all artesian water in the region to the GAB. Although this may have facilitated regulation and control of groundwater usage, it created an unwieldy and unpredictable boundary definition for the GAB. As the understanding of hydrodynamics in the GAB steadily grows, so does the appreciation of interconnectedness of this Jurassic-Cretaceous system with underlying sedimentary basins and overlying cover. In 2012, the definition of the GAB as a hydrogeological basin was modified to align with the Eromanga, Surat and Carpentaria geological basins to simplify this issue for the GAB Water Resource Assessment (GABWRA). This revised definition has since been broadly adopted and remains in use; however, this definition has necessitated a more consistent regional understanding of connectivity with deeper basins that have been of increasing interest and importance for the exploitation of petroleum and gas reserves. Extraction commonly produces groundwater as a by-product, modifying pressure in the host reservoir and potentially in adjoining aquifers, as well as causing possible contamination through fluid transfer. Twenty-seven sedimentary basins are currently known to underlie the GAB and this number is steadily growing through regional seismic studies and exploration.

Résumé

Il est pratique de disposer d’un bassin hydrogéologique défini pour comprendre et classifier les systèmes aquifères. Cependant, les écoulements souterrains résultent généralement de gradients de pression et de densité et sont susceptibles de traverser les limites définies par l’hydrostratigraphie. Les précédents modèles conceptuels du Grand Bassin Artésien (GBA) d’Australie attribuent toutes les eaux artésiennes de la région au GBA. Même si cela a probablement facilité la réglementation et le contrôle des prélèvements en eaux souterraines, cela a engendré une délimitation incommode et imprévisible du GBA. A mesure que la compréhension de l’hydrodynamique dans le GBA se développe, il en est de même pour l’appréciation des interconnexions de ce systèmes jurassique-crétacé avec les bassins sédimentaires sous-jacents et les terrains de couverture. En 2012, la définition du GBA en tant que bassin hydrogéologique a été modifiée pour s’aligner sur les bassins géologiques d’Eromanga, Surat et Carpentaria, afin de faciliter l’évaluation des ressources en eau du GBA Depuis, cette révision a été largement adoptée et reste utilisée. Il s’est. toutefois avéré nécessaire de renforcer la compréhension régionale de la connectivité avec des bassins plus profonds, qui font l’objet d’un intérêt et d’une importance croissants pour l’exploitation des ressources en gaz et pétrole. L’extraction produit généralement des eaux souterraines, modifiant les pressions dans le réservoir hôte et potentiellement dans les aquifères adjacents, et pouvant générer de possibles contaminations par transfert de fluides. Actuellement, vingt-sept bassins sédimentaires ont été identifiés sous le GBA, et ce nombre continue à croître à la faveur des prospections sismiques et explorations régionales.

Resumen

Una cuenca hidrogeológica definida es conveniente para comprender y clasificar los sistemas de aguas subterráneas. Sin embargo, el flujo de agua subterránea resulta generalmente de gradientes de presión y densidad y puede pasar a través de los límites definidos por la hidroestratigrafía. Los modelos conceptuales anteriores de la Great Artesian Basin (GAB) atribuían toda el agua artesiana de la región al GAB. Aunque esto pudo haber facilitado la regulación y el control del uso del agua subterránea, creó una definición de límites poco manejable e impredecible para el GAB. A medida que la comprensión de la hidrodinámica en el GAB crece constantemente, también lo hace la apreciación de la interconexión de este sistema Jurásico-Cretáceo con las cuencas sedimentarias subyacentes y la cubierta sobrepuesta. En 2012, se modificó la definición del GAB como cuenca hidrogeológica para alinearla con las cuencas geológicas de Eromanga, Surat y Carpentaria a fin de simplificar esta cuestión para la Evaluación de Recursos Hídricos del GAB (GABWRA). Desde entonces, esta definición revisada ha sido ampliamente adoptada y sigue utilizándose. Sin embargo, esta definición ha hecho necesario un entendimiento regional más consistente de la conectividad con cuencas más profundas que han sido de creciente interés e importancia para la explotación de las reservas de petróleo y gas. La extracción comúnmente produce agua subterránea como subproducto, modificando la presión en el reservorio huésped y potencialmente en los acuíferos adyacentes, así como también causando posible contaminación a través de la transferencia de fluidos. Actualmente se sabe que hay veintisiete cuencas sedimentarias subyacentes al GAB y este número está creciendo constantemente a través de estudios y exploraciones sísmicas regionales.

摘要

范围明确的水文地质盆地便于理解和分类地下水系统。但是,地下水流通常是由压力和密度梯度产生,并且可能会穿过水文地层学划定的边界。澳大利亚大自流盆地(GAB)早期的概念模型将该地区的所有自流井归因于GAB。尽管这可能有助于制定规范和控制地下水利用量,但它为GAB制定了难以理解且难以预测的边界划分。随着对GAB中水动力学理解的逐步深入,对这种侏罗纪-白垩纪系统与下伏沉积盆地和上覆覆盖层之间的相互联系的认识也在不断提高。 2012年,修改了GAB作为水文地质盆地的定义,以与Eromanga,Surat和Carpentaria地质盆地保持一致,从而简化了GAB水资源评估(GABWRA)的工作。此修订的定义已被广泛采用并保持使用。但是,该定义需要对与较深盆地的连通性有更一致的区域性认识,而较深盆地是开采石油和天然气储量所日益关注的,也越来越重要。开采通常会产生副产品地下水,从而改变开采储层和潜在含水层中的压力,并可能通过流体运动造成污染。目前已有27个沉积盆地是位于GAB之下,通过区域地震研究和勘探,这个数量还在持续增大。

Resumo

Uma bacia hidrogeológica definida é conveniente para o entendimento e classificação de sistemas de águas subterrâneas. Entretanto, o fluxo de águas subterrâneas geralmente resulta dos gradientes de pressão e densidade e podem passar pelas fronteiras definidas pela hidroestratigrafia. Modelos conceituais mais antigos da Grande Bacia Artesiana da Austrália (GBA) atribuíram toda água artesiana da região para a GBA. Embora isso possa ter facilitado a regulamentação e o controle do uso das águas subterrâneas, isso criou uma definição de fronteira imprevisível e difícil para a GBA. Com o crescimento dos entendimentos sobre a hidrodinâmicas da GBA, assim como a apreciação da interconectividade desse sistema Jurássico-Cretáceo com bacias sedimentares subjacentes e cobertura sobrejacente. Em 2012, a definição da GBA como bacia hidrogeológica foi modificada para alinhar com as bacias geológicas Eromanga, Surat e Carpenteria para simplificar essa questão para a Avaliação de Recursos Hídricos da GBA (ARHGBA). Essa definição revisada tem sido, desde então, amplamente adotada e continua em uso. Entretanto, essa definição necessitou um entendimento regional mais consistente da condutividade com bacias mais profundas que tem sido e interesse e importância crescente para a exploração de reservas de petróleo e gás. Extração normalmente produz águas subterrâneas como um subproduto, modificando a pressão no reservatório principal e potencialmente em aquíferos confinados, assim como causa contaminação através de transferência de fluidos. Vinte e sete bacias sedimentares são conhecidas atualmente como base para a GBA e esse número está crescendo através de exploração e estudos sísmicos regionais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Audibert M (1976) Progress report on the Great Artesian Basin hydrogeological study 1972–1974. Bureau of Mineral Resources, Australia Record 1976/5. https://ecatgagovau/geonetwork/srv/eng/catalogsearch#/metadata/13425. Accessed 19 October 2019

    Google Scholar 

  • Bain JHC, Draper JJ (1997) North Queensland geology. Australian Geological Survey Organisation Bull 240, AGO, Canberra, and Queensland Geology 9, Brisbane

  • Belperio AP (2005) Water in Permian palaeochannels draining the Mount Woods Block. Minotaur Exploration, Adelaide, Australia

    Google Scholar 

  • Blake T, Cook M (2006) Great Artesian Basin: historical overview. Dept. of Natural Resources, Mines and Water, Queensland, Brisbane, Australia

    Google Scholar 

  • Bradshaw BE, Scott DL (Eds) (1999) Integrated basin analysis of the Isa Superbasin using seismic, well-log and geopotential data: an evaluation of the economic potential of the Northern Lawn Hill Platform. Australian Geological Survey Organization Record 1999/19, AGO, Canberra, 312 pp

  • Callen RA, Alley NF, Greenwood DR (1995) Lake Eyre Basin. In: Drexel JF, Preiss WV (eds) The geology of South Australia, vol 2: the Phanerozoic. S Aust Geol Surv Bull 54:188–194

  • Coffey D, Grigorescu M, McKellar JL, Isles A (2017) A review of the geology and exploration history of the Lopingian (Late Permian) coals in the northern Galilee Basin. Queensland Minerals and Energy Review, Geological Survey of Queensland, Dept. of Natural Resources and Mines, Brisbane, 106 pp

  • Cotton TB, Scardino MF, Hibburt JE (Eds) (2006) The petroleum geology of South Australia, vol 2: Eromanga Basin, 2nd edn. Petroleum Geology of South Australia Series, South Australia Dept. of Primary Industries and Resources, Brisbane

  • Cox R, Barron A (1998) Great Artesian Basin resource study. Great Artesian Basin Consultative Council, Brisbane, 235 pp

  • Doutch HF (1976) The Cainozoic Karumba Basin, northeastern Australia and southern New Guinea. BMR J Aust Geol Geophys 1(2):131–140

    Google Scholar 

  • Draper JJ (Ed) (2002) Geology of the Cooper and Eromanga basins, Queensland. Queensland Minerals and Energy Review Series, Queensland Dept. of Natural Resources and Mines, Brisbane

  • Dunster JN, McConachie BA, Brown MG (1989) PRC Beamesbrook 1, well completion report, A-P 373P, Carpentaria Basin, Queensland. Company report 20566, Geological Survey of Queensland, Brisbane

  • Evans T, Kellett J, Ransley T, Harris-Pascal C, Radke B, Cassel R, Karim F, Hostetler S, Galinec V, Dehelean A, Caruana L, Kilgour P (2018) Observational analysis, statistical analysis and interpolation for the Galilee subregion. Product 2.1–2.2 for the Galilee subregion from the Lake Eyre Bioregional Assessment. Dept. of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. http://data.bioregionalassessments.gov.au/product/LEB/GAL/2.1-2.2. Accessed 19 October 2019

  • Great Artesian Basin Co-ordinating Committee (2016) Great Artesian Basin Resource Study 2014, GABCC, Brisbane, Australia, 114 pp

  • Gravestock DI, Hibburt JE, Drexel JF (Eds) (1998) The petroleum geology of South Australia, vol 4: Cooper Basin, South Australia. Report book 98/9, Dept. of Primary Industries and Resources, Brisbane, Australia

  • Gravestock DI, Moore PS, Pitt GM (Eds) (1986) Contributions to the geology and hydrocarbon potential of the Eromanga Basin. Geological Society of Australia Spec Pub 12, GSA, Horsby, NSW, Australia

  • Habermehl MA (1980) The Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5:9–38

    Google Scholar 

  • Habermehl MA, Lau JE (1997) Hydrogeology of the Great Artesian Basin, Australia. 1:2 500 000 Map. Australian Geological Survey Organisation, Canberra

    Google Scholar 

  • Hawkins PJ, Green PM (1993) Exploration results, hydrocarbon potential and future strategies for the Galilee Basin. APPEA J 33(1):280–296

    Article  Google Scholar 

  • Howe PJ, Baird DJ, Lyons DJ (2008) Hydrogeology of the southeast portion of the Arckaringa Basin and southwest portion of the Eromanga Basin, South Australia. Water Down Under 2008, Engineers Australia, Barton, Australia, pp 573–585

  • Kellett JR, Bell JG, Stewart GA, Ransley TR (2012) Regional watertable, chap 6. In: Ransley TR, Smerdon BD (eds) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. Technical report to the Australian government from the CSIRO Great Artesian Basin water resource assessment, CSIRO Water for a Healthy Country Flagship, Australia. https://publications.csiro.au/rpr/download?pid=csiro:EP132677&dsid=DS1. Accessed 19 October 2019

  • Keppel M, Love AJ, Wohling D, Fulton S (2013) Hydrostratigraphic descriptions for the western margin of the GAB, appendix 2. In: Keppel M, Karlstrom KE, Love AJ, Priestley S, Wohling D, De Ritter S (eds) (2013) Allocating water and maintaining springs in the Great Artesian Basin, vol 1: hydrogeological framework of the Western Great Artesian Basin. National Water Commission, Canberra, pp 74–86

  • Klohn Crippen Berger (2016a) Hydrogeological assessment of the Great Artesian Basin: characterisation of aquifer groups: Eromanga Basin. D09997A01, Dept. of Natural Resources and Mines, Queensland, 119 pp

  • Klohn Crippen Berger (2016b) Hydrogeological assessment of the Great Artesian Basin: characterisation of aquifer groups: Surat Basin. D09997A01, Dept of Natural Resources and Mines, Queensland, Brisbane, 125 pp

  • Klohn Crippen Berger (2016c) Hydrogeological assessment of the Great Artesian Basin: characterisation of aquifer groups—Carpentaria Basin. D09997A01, Dept. of Natural Resources and Mines, Queensland, 122 pp

  • Korsch RJ, Totterdell JM (2009a) Evolution of the Bowen, Gunnedah and Surat basins, eastern Australia. Aust J Earth Sci 56:271–272

    Article  Google Scholar 

  • Korsch RJ, Totterdell JM (2009b) Subsidence history and basin phases of the Bowen, Gunnedah and Surat basins, eastern Australia. Aust J Earth Sci 56:335–353

    Article  Google Scholar 

  • Korsch RJ, Boreham CJ, Totterdell JM, Shaw RD, Nicoll MG (1998) Development and petroleum resource evaluation of the Bowen, Gunnedah and Surat basins, eastern Australia. APPEA J 38(1):199–237

    Article  Google Scholar 

  • Langford RP, Wilford GE, Truswell EM, Isern AR (1995) Palaeogeographic atlas of Australia, vol 10: Cainozoic. Australian Geological Survey Organisation, Canberra, 38 pp

    Google Scholar 

  • Lewis S, Cassel R, Galinec V (2014) Coal and coal seam gas resource assessment for the Galilee subregion. Product 1.2 for the Galilee subregion from the Lake Eyre Basin bioregional assessment. Dept. of the Environment, Bureau of Meteorology, Canberra, 51 pp

  • McConachie BA, Stainton PW, Barlow MG, Dunster JN (1994) The offshore Carpentaria Basin: Gulf of Carpentaria, North Queensland. APEA J 34(1):614–625

    Google Scholar 

  • Monroe MH (2011) Australia: the land where time began. https://austhrutime.com/lake-carpentaria.htm. Accessed 25 March 2019

  • Moya C, Raiber M, Cox M (2014) Three-dimensional geological modelling of the Galilee and central Eromanga basins, Australia: new insights into aquifer/aquitard geometry and potential influence of faults on inter-connectivity. J Hydrol: Reg Stud 2:119–139

    Google Scholar 

  • Moya C Raiber M, Taulis M, Cox M (2016) Using environmental isotopes and dissolved methane concentrations to constrain hydrochemical processes and inter-aquifer mixing in the Galilee and Eromanga basins, Great Artesian Basin, Australia. J Hydrol 539:304–318

  • O’Neil BJ (Ed) (1989) The Cooper and Eromanga basins Australia. Proceedings of Petroleum Exploration Society of Australia. Australian Society of Exploration Geophysicists, Adelaide, 656 pp

  • O’Neil BJ, Alexander EM (2006) History of petroleum exploration and development, chap 3. In: Cotton TB, Scardino MF and Hibburt JE (eds) The petroleum geology of South Australia, vol 2: Eromanga Basin, 2nd edn. Petroleum Geology of South Australia Series, South Australia Dept. of Primary Industries and Resources, Brisbane

  • O’Sullivan T, McGarry DJ, Kamenar A, Brown RS (1991) The discovery and development of Moonie-Australia’s first commercial oilfield. APPEA J 31(1):1–12

    Article  Google Scholar 

  • Perryman JC (1964) Mid-Eastern Oil N.L. Completion report, Burketown no. 1 Well, A-P 91P, Queensland. Company report 1480, Geological Survey of Queensland, Brisbane. http://mines.industry.qld.gov.au/geoscience/company-exploration-reports.htm. Accessed 19 October 2019

  • Priestley SC, Wohling DL, Keppel MN, Post VEA, Love AJ, Shand P, Tyroller L, Kipfer R (2017) Detecting inter-aquifer leakage in areas with limited data using hydraulics and multiple environmental tracers, including 4He, 36Cl/cl, 14C and 87Sr/86Sr. Hydrogeol J 25:2013–2047

    Article  Google Scholar 

  • Purczel C (2015) Arckaringa Basin numerical groundwater model 2014. Technical report 2015/05, Dept. of Environment, Water and Natural Resources, South Australia, Brisbane, 146 pp

  • Radke BM, Ferguson J, Cresswell RG, Ransley TR, Habermehl MA (2000) Hydrochemistry and implied hydrodynamics of the Cadna-owie-Hooray aquifer, Great Artesian Basin, Australia. Bureau of Rural Sciences, Canberra, 212 pp

  • Ransley TR, Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. Technical report to the Australian Government from the CSIRO Great Artesian basin Water Resource Assessment, CSIRO Water for a Healthy Country Flagship, Australia. https://publicationscsiroau/rpr/download?pid=csiro:EP132677&dsid=DS1. Accessed 19 October 2019

  • Ransley TR, Radke BM, Kellett JR, Carey H, Bell JG, O’Brien PE (2012) Hydrogeology of the Great Artesian Basin, chap 5. In: Ransley TR, Smerdon BD (eds) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. Technical report to the Australian Government from the CSIRO Great Artesian basin Water Resource Assessment, CSIRO Water for a Healthy Country Flagship, Australia. https://publications.csiro.au/rpr/download?pid=csiro:EP132677&dsid=DS1. Accessed 19 October 2019

  • Ransley TR, Radke BM, Feitz AJ, Kellett JR, Owens R, Bell J, Stewart G, Carey H (2015) Hydrogeological atlas of the Great Artesian Basin. Geoscience Australia, Canberra, 134 pp. http://dxdpiorg/1011636/9781925124668. Accessed 19 October 2019

  • Rawlinson TE (1878) Subterranean drainage in the interior. In: Transactions and proceedings and report of the Philosophical Society of Adelaide, South Australia for 1877–1878. Philosophical Society of Adelaide, Adelaide, Australia, pp 124–126

  • Russell HC (1889) The source of the underground water in the western districts. J Proc R Soc NSW 23:57–63

  • Smerdon BD, Rousseau-Gueutin P, Simon S, Love AJ, Taylor AR, Davies PJ, Habermehl MA (2012) Regional hydrodynamics, chap 7. In: Ransley TR, Smerdon BD (eds) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. Technical report to the Australian Government from the CSIRO Great Artesian Basin water resource assessment. CSIRO Water for a Healthy Country Flagship, Australia. https://publications.csiro.au/rpr/download?pid=csiro:EP132677&dsid=DS1. Accessed 19 October 2019

  • Smith KG (1972) Stratigraphy of the Georgina Basin. Bull 111, Bureau of Mineral Resources, Canberra, 156 pp

  • Tate R (1882) The anniversary address: geology in its relation to mining and subterranean water supply in South Australia. Trans Proc Rep Royal Soc South Aust 4:113–134

    Google Scholar 

  • Tóth J (1995) Hydraulic continuity in large sedimentary basins. Hydrogeol J 3(4):4–16

    Article  Google Scholar 

  • Toupin D, Eadington PJ, Person M, Morin P, Wieck J, Warner D (1997) Petroleum hydrogeology of the Cooper and Eromanga basins, Australia: some insights from mathematical modelling and fluid inclusion data. AAPG Bull 81(4):577–603

    Google Scholar 

  • Welsh WD (2000) GABFLOW: a steady-state groundwater flow model of the Great Artesian Basin. Bureau of Rural Sciences, Canberra, 75 pp

    Google Scholar 

  • Wolaver BD, Love AJ, Keppel M (2013) Hydrogeology of Dalhousie Springs, chap 6. In: Love AJ, Shand P, Crossey L, Harrington GA, Rousseau-Gueutin P (eds) Allocating water and maintaining springs in the Great Artesian Basin, vol III: groundwater discharge of the western Great Artesian Basin. National Water Commission, Canberra

    Google Scholar 

Download references

Acknowledgements

We thank Carlos M Ordens, Brian Smerdon and Andrew Love for their insightful reviews and suggestions for improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Ransley.

Additional information

Published in the special issue “Advances in hydrogeologic understanding of Australia’s Great Artesian Basin”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radke, B., Ransley, T. Connectivity between Australia’s Great Artesian Basin, underlying basins, and the Cenozoic cover. Hydrogeol J 28, 43–56 (2020). https://doi.org/10.1007/s10040-019-02075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02075-z

Keywords

Navigation