Skip to main content

Advertisement

Log in

Elucidating sources to aridland Dalhousie Springs in the Great Artesian Basin (Australia) to inform conservation

Explication des origines des sources de Dalhousie d’Aridland dans le Grand Bassin Artésien (Australie) pour garantir leur préservation

Esclarecimiento acerca de las fuentes de las zonas áridas de Dalhousie Springs en la Gran Cuenca Artesiana (Australia) para fundamentar la conservación

解释澳大利亚大自流盆地干旱区Dalhousie 泉水的补给源, 以为保护泉水

Elucidando as fontes das Nascentes Dalhousie de terras áridas na Grande Bacia Artesiana (Austrália) para comunicar a conservação

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Dalhousie Springs is the largest spring complex in the western Great Artesian Basin (GAB), Australia. Aridland springs like Dalhousie provide the only aquatic habitats in regions lacking surface water and are globally threatened by unsustainable groundwater development. Groundwater use in the more densely populated eastern GAB historically was higher than that in the western GAB, where groundwater is primarily used for ranching; however, economically important mineral and energy industries have increased groundwater use. Throughout the western GAB, groundwater development has reduced spring discharge and artesian head. Of concern are potential impacts on spring discharge from future pumping; thus, an understanding of groundwater sources to springs is needed to develop effective groundwater management strategies that maintain spring flow. The generally accepted hydrogeologic model suggests Dalhousie Springs discharge is entirely composed of Jurassic-Cretaceous aquifer contributions; however, this study improves understanding of Dalhousie Springs by integrating new hydrogeologic and hydrochemical data with historic, previously unpublished petroleum exploration well-test data. A thermal model is used to estimate potential aquifer source depths of 270–802 m. 87Sr/86Sr > 0.715 suggests water–rock interaction with radiogenic basement and the importance of faults for vertical fluid transfer across multiple aquifers. Results show that Dalhousie Springs discharge is sourced by the previously unreported Permian Crown Point Formation and the Jurassic-Cretaceous aquifer. Mitigating effects of future groundwater development on Dalhousie Springs requires managing groundwater from Jurassic-Cretaceous and Permian aquifers to preserve near-spring potentiometric surfaces. Expanded multiple-environmental-tracer monitoring could be used to further refine groundwater sources to Dalhousie Springs.

Résumé

Les Sources de Dalhousie appartiennent au plus grand complexe de sources dans l’ouest du Grand Bassin Artésien (GBA), en Australie. Les sources d’Aridland comme celles de Dalhousie fournissent les seuls milieux aquatiques dans des régions déficitaires en eau de surface et qui sont de manière générale affectées par l’exploitation non durable des eaux souterraines. L’utilisation des eaux souterraines dans la partie orientale du GBA, avec la plus forte densité de population était plus importante de longue date que celle dans l’ouest du GBA, où l’eau souterraine est utilisée en premier lieu pour l’élevage; cependant, les industries minières et énergétiques d’importance économique ont contribué à une augmentation de l’utilisation des eaux souterraines. Dans toute la partie occidentale du GBA, l’exploitation des eaux souterraines a eu pour conséquence une réduction du débit des sources et de l’artésianisme. Les impacts potentiels des pompages à venir sur le débit des sources sont préoccupants. Ainsi, la compréhension des origines des écoulements des eaux souterraines vers les sources est nécessaire pour développer des stratégies de gestion efficace des eaux souterraines qui permettent un maintien des écoulements aux sources. Le modèle hydrogéologique généralement accepté suggère que la décharge des sources de Dalhousie est entièrement assurée par les contributions de l’aquifère du Jurassique et Crétacé. Cependant, cette étude améliore la compréhension du fonctionnement des sources de Dalhousie en intégrant de nouvelles données hydrogéologiques et hydrochimiques, à savoir des données historiques, non publiées auparavant, issues de l’exploration pétrolière. Un modèle thermal est utilisé pour estimer les profondeurs de 270–802 m de l’origine potentielle des eaux souterraines de l’aquifère. Le rapport isotopique 87Sr/86Sr > 0.715 suggère une interaction eau–roche avec le socle radiogénique et l’importance des failles pour la drainance verticale ascendante des fluides au travers des aquifères multiples. Les résultats montrent que la décharge des sources de Dalhousie trouve son origine dans la formation Crown Point du Permien, jamais mentionné auparavant, et de l’aquifère du Jurassique et Crétacé. Pour atténuer les effets de l’exploitation future des eaux souterraines sur les sources de Dalhousie, il faut gérer les eaux souterraines des aquifères du Jurassique-Crétacé et du Permien afin de préserver les surfaces piézométriques à proximité des sources. L’élargissement du suivi à l’aide de traceurs environnementaux multiples pourrait être utilisé pour préciser davantage l’origine des eaux souterraines qui s’écoulent jusqu’aux sources de Dalhousie.

Resumen

Dalhousie Springs es el complejo de manantiales más grande del oeste de la Great Artesian Basin (GAB), Australia. Los manantiales de tierras áridas como los de Dalhousie son los únicos hábitats acuáticos en regiones que carecen de agua superficial y están amenazados a nivel mundial por un desarrollo no sostenible de las aguas subterráneas. El uso de agua subterránea en el GAB oriental más densamente poblado fue históricamente más alto que en el GAB occidental, donde el agua subterránea se utiliza principalmente para la cría en granjas; sin embargo, las industrias mineras y energéticas económicamente importantes han incrementado el uso de agua subterránea. En todo el GAB occidental, el desarrollo de aguas subterráneas ha reducido la descarga de los manantiales y la carga hidráulica artesiana. Son preocupantes los impactos potenciales en la descarga de los manantiales por el bombeo futuro. Por lo tanto, se necesita un conocimiento de las fuentes de agua subterránea de los manantiales para desarrollar estrategias efectivas de manejo de agua subterránea que mantengan el flujo en los manantiales. El modelo hidrogeológico generalmente aceptado sugiere que la descarga de Dalhousie Springs está totalmente compuesta de contribuciones de acuíferos del Jurásico-Cretácico. Sin embargo, este estudio mejora el conocimiento de Dalhousie Springs al integrar nuevos datos hidrogeológicos e hidroquímicos con datos de ensayos de pozos históricos de exploración petrolera, no publicados anteriormente. Se utiliza un modelo térmico para estimar las profundidades potenciales de la fuente del acuífero de 270–802 m. La relación 87Sr/86Sr > 0.715 sugiere la interacción agua–roca con el basamento radiogénico y la importancia de las fallas para la transferencia vertical de fluidos a través de acuíferos múltiples. Los resultados muestran que la descarga de Dalhousie Springs proviene de la Crown Point Formation del Pérmico no reportada anteriormente y del acuífero Jurásico-Cretáceo. La mitigación de los efectos del futuro desarrollo de las aguas subterráneas en Dalhousie Springs requiere el manejo de las aguas subterráneas de los acuíferos Jurásico-Cretácico y Pérmico para preservar las superficies potenciométricas cercanas a la fuente. La expansión del monitoreo de múltiples trazadores ambientales podría utilizarse para refinar aún más las fuentes de agua subterránea hasta Dalhousie Springs.

摘要

Dalhousie泉水是澳大利亚大自流盆地(GAB)西部复杂的最大泉。像Dalhousie的干旱区泉水是地表水地区唯一的水生栖息地, 并且由于不可持续地下水开发受到全球威胁。历史上人口较稠密的GAB东部的地下水开采量高于GAB西部, 地下水主要用于牧场; 然而, 经济上重要的矿产和能源工业增加了地下水的开发。在整个GAB西部, 地下水开发减少了泉流量和自流水头。值得关注的是未来抽取对泉水的潜在影响。因此, 需要了解泉水的地下水补给来源, 以制定维系泉水的有效地下水管理策略。普遍接受的水文地质模型表明Dalhousie泉水完全来自于侏罗系-白垩系含水层。然而, 本研究通过应用新的水文地质和水化学数据, 以及之前未发表的石油勘探试井数据, 提高了对Dalhousie 泉水的了解。热模型用于估算270–802 m的含水层潜在补给深度。7Sr/86Sr > 0.715表明水-岩与放射性基底的相互作用以及断层对多个含水层垂直流体运动的重要性。结果表明, Dalhousie 泉水来自之前未报导的二叠系Crown Point组和侏罗系-白垩系含水层。减轻未来地下水开发对Dalhousie 泉水的影响需要从侏罗系-白垩系和二叠系含水层管理地下水, 以保护泉水附近的等压面。扩展的多环境示踪剂监测可用于进一步细化Dalhousie泉水的地下水补给源。

Resumo

As nascentes Dalhousie são o maior complexo de nascentes da Grande Bacia Artesiana (GAB), na Austrália. As nascentes áridas como Dalhousie fornecem os únicos habitats aquáticos em regiões carentes de águas superficiais e são globalmente ameaçadas pelo desenvolvimento insustentável das águas subterrâneas. O uso das águas subterrâneas na GAB oriental, mais densamente povoada historicamente, foi mais alto do que na GAB ocidental, onde as águas subterrâneas são usadas principalmente para a pecuária; no entanto, indústrias economicamente importantes de minerais e energia aumentaram o uso das águas subterrâneas. Em todo o oeste da GAB, o desenvolvimento das águas subterrâneas reduziu a descarga das nascentes e a carga hidráulica artesiana. Preocupam os possíveis impactos na descarga das nascentes por bombeamento futuro. Assim, é necessário um entendimento das fontes de água subterrânea para as nascentes para desenvolver estratégias eficazes de gerenciamento das águas subterrâneas que mantenham o fluxo das nascentes. O modelo hidrogeológico geralmente aceito sugere que a descarga das Nascentes Dalhousie é inteiramente composta por contribuições de aquíferos Jurássico-Cretáceos. No entanto, este estudo melhora a compreensão das Nascentes Dalhousie, integrando novos dados hidrogeológicos e hidroquímicos com dados históricos de testes de poço de exploração de petróleo, não publicados anteriormente. Um modelo térmico é usado para estimar profundidades potenciais de fontes de aquífero de 270 a 802 m. 87Sr/86Sr > 0.715 sugere interação água–rocha com embasamento radiogênico e a importância de falhas para a transferência vertical de fluidos através de vários aquíferos. Os resultados mostram que a descarga das Nascentes Dalhousie é originada pela Formação de Pico de Coroa Permiana não relatada e pelo aquífero Jurássico-Cretáceo. Os efeitos atenuantes do desenvolvimento futuro das águas subterrâneas nas Nascentes Dalhousie exigem o gerenciamento das águas subterrâneas dos aquíferos Jurássico-Cretáceo e Permiano para preservar superfícies potenciométricas próximas às nascentes. O monitoramento expandido de múltiplos traçadores ambientais pode ser usado para refinar ainda mais as fontes de águas subterrâneas nas Nascentes Dalhousie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abu Risha UA (2016) Radiocarbon dating and the 36Cl/Cl evolution of three Great Artesian Basin wells at Dalhousie, South Australia. Hydrogeol J 24:987–1000. https://doi.org/10.1007/s10040-016-1364-4

    Article  Google Scholar 

  • Abu Risha U, Clark I, Beecham S (2009) Evaluation of groundwater flow and travel times using 14C. Paper presented at the Thirteenth International Water Technology Conference, ITWC 13, Hurghada, Egypt, 12–15 March 2009

  • Aldam R, Kuang KS (1989) An investigation of structures controlling natural discharge of artesian waters in the southwestern Great Artesian Basin. Report Book 88/4, Department of Mines and Energy, Adelaide, Australia, pp 2–9

  • Alfoldi L, Galfi J, Liebe P (1985) Heat flow anomalies caused by water circulation. J Geodynamics 4:199–217. https://doi.org/10.1016/0264-3707(85)90060-2

    Article  Google Scholar 

  • Allan RJ (1990) Climate. In: Tyler MJ, Twidale CR, Davies M, Wells CB (eds) Natural history of the North East deserts. Royal Society of South Australia, Adelaide, SA, Australia, pp 107–118

  • Allred BW, Smith WK, Twidwell D, Haggerty JH, Running SW, Naugle DE, Fuhlendorf SD (2015) Ecosystem services lost to oil and gas in North America. Science 348:401–402. https://doi.org/10.1126/science.aaa4785

    Article  Google Scholar 

  • Amerada (1965) Amerada Petroleum Company of Australia Limited (Amerada). Well completion report Amerada McDills no. 1, Open File Envelope no. 573, Northern Territory Minerals and Energy, Darwin, NT, Australia

  • Anderson M (2005) Heat as a ground water tracer. Ground Water 43:951–968

    Article  Google Scholar 

  • BHP (2019) South Australian Government major development declaration for Olympic Dam. https://www.bhp.com/media-and-insights/news-releases/2019/02/south-australian-government-major-development-declaration-for-olympic-dam. Accessed 26 March 2019

  • BOM (Bureau of Meteorology) (2010) Online climate data. http://www.bom.gov.au/climate/data/. Accessed 1 Aug 2010

  • Carne GE, Alexander E (1997) Eromanga Basin prospects inventory Blocks ER97-A to C. Report book 97/21, Mines and Energy Resources, South Australia, Adelaide, Australia, 137 pp

  • Costelloe JF, Shields A, Grayson RB, McMahon TA (2007) Determining loss characteristics of arid zone river waterbodies. River Res Appl 23:715–731. https://doi.org/10.1002/rra.991

    Article  Google Scholar 

  • Crossey LJ, Priestley SC, Shand P, Karlstrom KE, Love AJ, Keppel MN (2013) Source and origin of western GAB spring water. In: Love AJ, Shand P, Crossey LJ, Harrington GA, Rousseau-Gueutin P (eds) Groundwater discharge of the western Great Artesian Basin, allocating water and maintaining springs in the Great Artesian Basin. National Water Commission, Canberra, pp 11–33

    Google Scholar 

  • Cull P, Conley D (1983) Geothermal gradients and heat flow in Australian sedimentary basins. BMR J Aust Geol Geophys 8:329–337

    Google Scholar 

  • Curewitz D, Karson J (1997) Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction. J Volcanol Geotherm Res 79:149–168. https://doi.org/10.1016/S0377-0273(97)00027-9

    Article  Google Scholar 

  • Davis JA, Kerezsy A, Nicol S (2017) Springs: conserving perennial water is critical in arid landscapes. Biol Conserv 211:30–35. https://doi.org/10.1016/j.biocon.2016.12.036

    Article  Google Scholar 

  • DEM (Department for Energy and Mining) (2019a) Proposed Expansion of Olympic Dam declared a major development. Government of South Australia, DEM. http://www.energymining.sa.gov.au/minerals/latest_updates/proposed_expansion_of_olympic_dam_declared_a_major_development. Accessed 26 March 2019

  • DEM (Department for Energy and Mining) (2019b) South Australia’s developing projects resource estimates and production statistics. Government of South Australia, DEM. https://map.sarig.sa.gov.au/CrystalRunner/Report/Export/2?exportName=DevelopingProjects. Accessed 9 January 2019

  • Department for Water (2010) Drillhole Enquiry System. Government of South Australia, Adelaide, Australia

  • Drexel JF, Preiss WV (1995) The geology of South Australia, vol 2: the Phanerozoic mines and energy, South Australia. Bull. 54, Geological Survey of South Australia, Adelaide, Australia

  • Drexel JF, Preiss WV, Parker AJ (1993) The geology of South Australia, vol 1: the Precambrian. Bull. 54, South Australia Geological Survey, Adelaide, Australia

  • Ebony Energy Ltd (2017) Relinquishment Report for EL29239, Pedirka Basin Project, Exploration for Thermal Coal, for the year 4/1/2016 to 3/1/2017. https://geoscience.nt.gov.au/gemis/ntgsjspui/bitstream/1/85163/1/EL29239_2017_P.pdf. Accessed 18 January 2019

  • Freytag IB (1966) Proposed rock units for marine lower cretaceous sediments in the Oodnadatta region of the Great Artesian Basin. Q Geol Notes 18:3–7

    Google Scholar 

  • Fulton S, Wohling D, Love AJ, Behrens V (2013) Ephemeral river recharge. In: Love AJ, Wohling D, Fulton S, Rousseau-Gueutin P, Ritter S (eds) Groundwater recharge, hydrodynamics and hydrochemistry of the Great Artesian Basin. National Water Commission, Canberra, pp 37–81

    Google Scholar 

  • Geoscience Australia (2012) Surface geology of Australia 1:1 million scale dataset. https://data.gov.au/dataset/ds-dga-48fe9c9d-2f10-49d2-bd24-ac546662c4ec/details. Accessed 14 Jan 2019

  • Geoscience Australia (2013) OZMIN mineral deposits database. Bioregional Assessment Source Dataset. http://data.bioregionalassessments.gov.au/dataset/34247a24-d3cf-4a98-bb9d-81671ddb99de. Accessed 3 Sept 2019

  • Geoscience Australia (2018) Australian energy resource assessment. https://aera.ga.gov.au/#!/home. Accessed 18 Jan 2019

  • Goldstein B, Menpes S, Hill A, Wickham A, Alexander E, Jarosz M, Pepicelli D, Malavazos M, Staritski K, Taliangis P, Coda J, Hill D, Webb M (2012) Roadmap for unconventional gas projects in South Australia. Government of South, Australia Energy Resource Division. http://www.energymining.sa.gov.au/petroleum/roundtable_for_oil_and_gas#q=Roadmap. Accessed 26 March 2019

  • Green G, White M, Gotch T, Scholz G (2013) Risk assessment process for evaluating water use impacts on Great Artesian Basin springs, allocating water and maintaining springs in the Great Artesian Basin. National Water Commission, Canberra

    Google Scholar 

  • Gulley RL (2015) Heads above water: the inside story of the Edwards Aquifer recovery implementation program. Texas A&M University Press, College Station, TX

    Google Scholar 

  • Habermehl MA (1980) The Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5:9–38

    Google Scholar 

  • Habermehl MA (1982) Springs in the Great Artesian Basin, Australia: their origin and nature. BMR report, BMR, Canberra, 235 pp

  • Hancock PL, Chalmers RML, Altunel E, Çakir Z (1999) Travitonics: using travertines in active fault studies. J Struct Geol 21:903–916. https://doi.org/10.1016/S0191-8141(99)00061-9

    Article  Google Scholar 

  • Harrington R, Rainville K, Blandford TN (2017) Comment on “Drawdown ‘triggers’: a misguided strategy for protecting groundwater-fed streams and springs,” by Matthew J. Currell (2016, groundwater 54[5]: 619–622). Groundwater 55:152–153. https://doi.org/10.1111/gwat.12503

    Article  Google Scholar 

  • Hunter ML (2017) Conserving small natural features with large ecological roles: an introduction and definition. Biol Conserv 211:1–2. https://doi.org/10.1016/j.biocon.2016.12.019

    Article  Google Scholar 

  • IEA (International Energy Agency) (2018) Australia production. https://www.iea.org/ugforum/ugd/australia/. Accessed 8 January 2019

  • Ikonnikova S, Male F, Scanlon BR, Reedy RC, McDaid G (2017) Projecting the water footprint associated with shale resource production: Eagle Ford shale case study. Environ Sci Technol. https://doi.org/10.1021/acs.est.7b03150

  • Jacque M (1966a) Mokari 1 well completion report. Open File Envelope no. 640, Primary Industries and Resources SA, Adelaide

  • Jacque M (1966b) Mount Crispe 1 well completion report. Open File Envelope no. 626, Primary Industries and Resources SA, Adelaide

  • Kennet B, Fishwick S, Reading A, Rawlinson N (2004) Contrasts in mantle structure beneath Australia: relation to Tasman lines? Aust J Earth Sci 51:563–569

  • Keppel MN, Clarke JDA, Halihan T, Love AJ, Werner AD (2011) Mound springs in the arid Lake Eyre south region of South Australia: a new depositional tufa model and its controls. Sediment Geol 240:55–70

    Article  Google Scholar 

  • Keppel MN, Post VE, Love AJ, Clarke JD, Werner AD (2012) Influences on the carbonate hydrochemistry of mound spring environments, Lake Eyre south region, South Australia. Chem Geol 296:50–65

    Article  Google Scholar 

  • Keppel MN, Wohling D, Fulton S, Sampson L, Karlstrom KE, Nelson G, Ransley T, Love AJ (2013) Summary of hydrogeology and hydrostratigraphy. In: Keppel MN, Karlstrom KE, Love AJ, Priestley S, Fulton S, Wohling D, Ritter SD (eds) Hydrogeological framework of the western Great Artesian Basin, allocating water and maintaining springs in the Great Artesian Basin. National Water Commission, Canberra, pp 23–44

    Google Scholar 

  • Kodric-Brown A, Brown JH (2007) Native fishes, exotic mammals, and the conservation of desert springs 5:549–553. https://doi.org/10.1890/070002

  • Krieg GW (1985) Dalhousie South Australia, Explanatory Notes, 1:250000 Geologic Series—Sheet SG/53–11, Geological Survey of South Australia, Adelaide, 64 pp

  • Krieg GW (1986) Stratigraphy and tectonics of the Dalhousie anticline, southwest Eromanga Basin. In: Gravestock DI, Moore SP, PittGM (ed) Contributions to the geology and hydrocarbon potential of the Eromanga Basin. Geological Society of Australia, Hornsby, Australia, pp 145–158

  • Krieg GW (1989) Geology. In: Zeider W, Ponder WF (eds) Natural history of Dalhousie Springs. South Australia Museum, Adelaide, pp 19–26

    Google Scholar 

  • Lai ÉCS, Sundaram B, Evans R, Ransley TR, Evans TJ (2016) Summary of the Great Artesian Basin Research Priorities Workshop. Canberra, 27–28 April 2016. Record 2016/23, eCat 101440, Geoscience Australia, Canberra, 28 pp

  • Lewis MMW, White DC (2013) Evaluation of remote sensing approaches. In: Lewis MMW, Davina C, Gotch TB (eds) Spatial survey and remote sensing of artesian springs of the western Great Artesian Basin, allocating water and maintaining springs in the Great Artesian Basin. National Water Commission, Canberra, pp 103–106

  • Magnier P (1964a) Purni no. 1 well completion report. SA Dept. Mines Open File Envelope 352, South Australia Department of Mines, Adelaide

  • Magnier P (1964b) Witcherrie no. 1 well completion report. SA Dept. Mines Open File Envelope 347, South Australia Department of Mines, Adelaide

  • Manga M (2001) Using springs to study groundwater flow and active geological processes. Annu Rev Earth Planet Sci 29:201–228. https://doi.org/10.1146/annurev.earth.29.1.201

  • Martel DJ, Deak J, Dovenyi P, Horvath F, O’Nions RK, Oxburgh ER, Stegena L, Stute M (1989) Leakage of helium form the Pannonian basin. Nature 342:908–912

    Article  Google Scholar 

  • Matthews I (1997) Hydrogeology of the Great Artesian Basin in the Northern Territory Water Resources Division, Darwin, NT, Australia

  • McCallie SW (1913) A preliminary report on the mineral springs of Georgia. Bull. no. 20, Geological Survey of Georgia, Atlanta, GA, 190 pp

  • McCutchin JA (1930) Determination of geothermal gradients in Oklahoma. Bull Am Assoc Pet Geol 14:535–557

  • McMahon T, Murphy R, Little P, Costelloe J, Peel M, Chiew F, Hayes S, Nathan R, Kandel D (2005) Hydrology of Lake Eyre Basin. Sinclair Knight Merz, Armadale, VIC, Australia

    Google Scholar 

  • Meaney R (2007) The unconventional petroleum potential of EP 93 and EPA’s 130 & 131 and Pela 77, Pedirka Basin, onshore Northern Territory and South Australia, Australia. Mulready Consulting Services. http://www.territorystories.nt.gov.au/bitstream/10070/213140/1/cbm-evaluation-gas-liquids-potential.pdf. Accessed 18 Jan 2019

  • Menpes S, Hill A, Sansome A (2012) Unconventional hydrocarbon plays in the permian succession, South Australia. Eastern Australasian Basins Symposium IV, Brisbane, QLD, 10–14 Sept 2012, PESA, Perth, Australia

  • Middleton MF, Barker CE, Heugh H (2005) The geology of the western part of the Pedirka Basin: Madigan and Eringa Troughs. Central Australian Basins Symposium, Petroleum and Minerals Potential, Alice Springs, NT, Australia

  • Moore PS, Pitt GM (1982) Cretaceous of the southwestern Eromanga Basin: stratigraphy, facies variations and petroleum potential. In: Moore PS, Mount TJ (eds) Eromanga Basin Symposium Adelaide 1982 Summary papers, Eromanga Basin Symposium, Adelaide, 1982, pp 127–144

  • Polak EJ, Horsfall CL (1979) Geothermal gradients in the Great Artesian Basin, Australia. Bull Aust Soc Explor Geophys 10:144–148. https://doi.org/10.1071/EG979144

  • Priestley SC, Shand P, Love AJ, Crossey LJ, Karlstrom KE (2013) Hydrochemistry. In: Love AJ, Wohling D, Fulton S, Rousseau-Gueutin P, Ritter SD (eds) Groundwater recharge, hydrodynamics and hydrochemistry of the western Great Artesian Basin, allocating water and maintaining springs in the Great Artesian Basin. National Water Commission, Canberra, pp 171–201

    Google Scholar 

  • Priestley SC, Karlstrom KE, Love AJ, Crossey LJ, Polyak VJ, Asmerom Y, Meredith KT, Crow R, Keppel MN, Habermehl MA (2018) Uranium series dating of Great Artesian Basin travertine deposits: implications for palaeohydrogeology and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 490:163–177. https://doi.org/10.1016/j.palaeo.2017.10.024

    Article  Google Scholar 

  • Priestley SC, Shand P, Love AJ, Crossey LJ, Karlstrom KE, Keppel MN, Wohling D, Rousseau-Gueutin P (2019) Hydrochemical variations of groundwater and spring discharge of the western Great Artesian Basin, Australia. Hydrogeol J. https://doi.org/10.1007/s10040-019-02071-3

  • Questa (Questa Australia) (1990) Northern Territory Geological Survey petroleum basin survey. Eromanga Basin GS90/008:40, National Library of Australia Collection, Canberra

  • Radke BM, Ferguson J, Cresswell RG, Ransley TR, Habermehl MA (2000) Hydrochemistry and implied hydrodynamics of the Cadna-owie-Hooray aquifer Great Artesian Basin. Commonwealth Department of Agriculture, Fisheries and Forestry, Canberra, 229 pp

    Google Scholar 

  • Ransley TR, Radke BM, Feitz AJ, Kellett JR, Owens R, Bell J, Stewart G, Carey H (2015) Hydrogeological atlas of the Great Artesian Basin. Geoscience Australia, Canberra. https://doi.org/10.11636/9781925124668

  • Ring U, Tonguç Uysal I, Yüce G, Ünal-İmer E, Italiano F, İmer A, J-x Z (2016) Recent mantle degassing recorded by carbonic spring deposits along sinistral strike-slip faults, south-Central Australia, earth and planet. Sci Lett 454:304–318. https://doi.org/10.1016/j.epsl.2016.09.017

    Article  Google Scholar 

  • Rossini RA, Fensham RJ, Stewart-Koster B, Gotch T, Kennard MJ (2018) Biogeographical patterns of endemic diversity and its conservation in Australia’s artesian desert springs. Divers Distrib 24:1199–1216. https://doi.org/10.1111/ddi.12757

    Article  Google Scholar 

  • Sanz E, Yélamos JG (1998) Methodology for the study of unexploited aquifers with thermal water: application to the aquifer of the Alhama de Aragón Hot Springs. Ground Water 36:913–923. https://doi.org/10.1111/j.1745-6584.1998.tb02098.x

    Article  Google Scholar 

  • Scanlon BR, Reedy RC, Male F, Walsh M (2017) Water issues related to transitioning from conventional to unconventional oil production in the Permian Basin. Environ Sci Technol 51:10903–10912. https://doi.org/10.1021/acs.est.7b02185

    Article  Google Scholar 

  • Scott J, Hinman M, Hepple A, Wetering Nvd, Israni S, Harmston D (2012) Hale River Project. Technical report, Global Ore Discovery, Ebony Coal Ltd., Eastwood, NSW, Australia, 71 pp

  • Shaw R, Etheridge M, Lambeck KJT (1991) Development of the late Proterozoic to mid-Paleozoic, intracratonic Amadeus Basin in central Australia: a key to understanding tectonic forces in plate interiors. Techtonics 10:688–721. https://doi.org/10.1029/90TC02417

    Article  Google Scholar 

  • Smith DR, Allan NL, McGowan CP, Szymanski JA, Oetker SR, Bell HM (2018) Development of a species status assessment process for decisions under the U.S. Endangered Species Act. J Fish Wildl Manag 9:302–320. https://doi.org/10.3996/052017-JFWM-041

  • Smith PC (1989) Hydrogeology. In: Zeidler W, Ponder WF (eds) Natural history of Dalhousie Springs. South Australia Museum, Adelaide, pp 27–40

    Google Scholar 

  • Springer AE, Stevens LE (2009) Spheres of discharge of springs. Hydrogeol J 17:83–93. https://doi.org/10.1007/s10040-008-0341-y

    Article  Google Scholar 

  • Van der Pluijm BA, Marshak S (2004) Earth structure: an introduction to structural geology and tectonics, 2nd edn. Norton, London

    Google Scholar 

  • Waring GA, Blankenship RR, Bentall R (1965) Thermal springs of the United States and other countries of the world: a summary. US Geol Surv Prof Pap 492, 383 pp

  • Wells AT, Stewart AJ, Skwarko SK (1966) Geology of the southeastern part of the Amadeus Basin, Northern territory. BMR Geology and geophysics report 88, Bureau of Mineral Resources, Canberra

  • White DC, Gotch T, Alaak Y, Clark M, Ryan J, Lewis MM (2013) Characterizing spring groups. In: Lewis MMW, Davina C, Gotch TB (eds) Spatial survey and remote sensing of artesian springs of the western Great Artesian Basin, allocating water and maintaining springs in the Great Artesian Basin. National Water Commission, Canberra, pp 13–24

    Google Scholar 

  • White DC, Lewis MM (2011) A new approach to monitoring spatial distribution and dynamics of wetlands and associated flows of Australian Great Artesian Basin springs using QuickBird satellite imagery. J Hydrol 408:140–152. https://doi.org/10.1016/j.jhydrol.2011.07.032

    Article  Google Scholar 

  • White DC, Lewis MM, Green G, Gotch TB (2016) A generalizable NDVI-based wetland delineation indicator for remote monitoring of groundwater flows in the Australian Great Artesian Basin. Ecol Indicators 60:1309–1320. https://doi.org/10.1016/j.ecolind.2015.01.032

    Article  Google Scholar 

  • Wiltshire MJ (1978) Macumba 1 well completion report. Open File Envelope no. 3227, Primary Industries and Resources SA, Adelaide

  • Wolaver BD, Pierre JP, Ikonnikova SA, Andrews JR, McDaid G, Ryberg WA, Hibbitts TJ, Duran CM, Labay BJ, LaDuc TJ (2018a) An improved approach for forecasting ecological impacts from future drilling in unconventional shale oil and gas plays. Environ Manag 62:323–333. https://doi.org/10.1007/s00267-018-1042-5

    Article  Google Scholar 

  • Wolaver BD, Pierre JP, Labay BJ, LaDuc TJ, Duran CM, Ryberg WA, Hibbitts TJ (2018b) An approach for evaluating changes in land-use from energy sprawl and other anthropogenic activities with implications for biotic resource management. Environ Earth Sci 77:220–263. https://doi.org/10.1007/s12665-018-7323-8

    Article  Google Scholar 

  • Wopfner H, Freytag IB, Heath GR (1970) Basal Jurassic-Cretaceous rocks of the western Great Artesian Basin, South Australia: stratigraphy and environment. AAPG Bull 54:381–416

    Google Scholar 

  • Youngs BC (1975) The early Permian Pumi formation of the Pedirka Basin.GSSA Quarterly Geological Notes, Geological Survey of South Australia, Adelaide, pp 8–12

  • Youngs BC (1976) The geology and hydrocarbon potential of the Pedirka Basin. GSSA Report of Investigations 44, Geological Survey of South Australia, Adelaide, 44 pp

  • Zeider W, Ponder WF (1989) Natural history of the Dalhousie Springs. South Australian Museum, Adelaide, 138 pp

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dean Ah Chee (one of the traditional owners and custodians of Dalhousie Springs), the Witjira National Park Co-management Board, and the owners of the New Crown Station (who graciously provided accommodation and site access). B. Wolaver extends his gratitude to John M. (Jack) Sharp, Jr., for introducing him to aridland springs at Balmorhea, Texas, and at the Cuatro Ciénegas Basin of northeast Mexico. Thanks also to V. Behrens, A. Costar, S. De Ritter, D. Freebairn, S. Fulton, T. Gotch, R. Habermehl, T. Halihan, M. Keppel, N. Robinson, P. Rousseau-Gueutin, C. Simmons, and D. Wohling for their support of the project.

Funding

This study was funded by a grant to A. Love from the National Water Commission under its Raising National Water Standards Program. Preparation of this manuscript was funded by The University of Texas at Austin Jackson School of Geosciences. The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad D. Wolaver.

Additional information

Published in the special issue “Advances in hydrogeologic understanding of Australia’s Great Artesian Basin”

Electronic supplementary material

ESM 1

(DOC 405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolaver, B.D., Priestley, S.C., Crossey, L.J. et al. Elucidating sources to aridland Dalhousie Springs in the Great Artesian Basin (Australia) to inform conservation. Hydrogeol J 28, 279–296 (2020). https://doi.org/10.1007/s10040-019-02072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02072-2

Keywords

Navigation