Skip to main content
Log in

Hydrochemical variations of groundwater and spring discharge of the western Great Artesian Basin, Australia: implications for regional groundwater flow

Variations hydrochimiques des eaux souterraines et du débit des sources du Grand Bassin Artésien occidental en Australie: implications pour l’écoulement régional des eaux souterraines

Variaciones hidroquímicas de las aguas subterráneas y de la descarga de manantiales de la Great Artesian Basin occidental, Australia: implicancias para el flujo regional de aguas subterráneas

澳大利亚大自流盆地西部地下水和泉流量的水化学变化:对区域地下水流动的影响

Variações hidroquímicas da água subterrânea e nascentes no oeste da Grande Bacia Artesiana, Austrália: implicações para o fluxo subterrâneo regional

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The western Great Artesian Basin (GAB) is an important water source for pastoral and town water supplies, as well as for springs containing endemic flora and fauna, within arid Australia. This study focuses on the hydrochemical variations of groundwater and spring discharge in order to determine the major geochemical processes responsible for water quality and evolution across the western GAB. Regional hydrochemical trends within groundwater generally support the modern groundwater potentiometric surface and interpreted flow paths, highlighting that these approximately represent the long-term flow paths. Additionally, the regional chemical variations along the flow paths in the western GAB are complex, with their composition being a function of several controlling processes, including location of recharge, evapo-concentration, mixing and various water–rock interactions. These processes cause groundwater east of Lake Eyre to be predominantly of Na-HCO3 type, whereas groundwater originating from the western margin is of Na-Cl-(-SO4) type. The GAB springs appear to be discharging water predominantly from the main GAB aquifer, the J Aquifer; however, a component of the discharging water from several springs is from a source other than the J Aquifer. Current understanding of the hydrochemical variations of groundwater and spring discharge of the western GAB can help provide constraints on groundwater flow, as well as provide an understanding of the geochemical and hydrological processes responsible for water quality evolution.

Résumé

Le Grand Bassin Artésien occidental (GBA) est une ressource en eau importante pour l’approvisionnement en eau agricole et potable, ainsi que pour les sources présentant une flore et une faune endémiques de l’Australie aride. Cette étude porte sur les variations hydrochimiques des eaux souterraines et du débit des sources afin de déterminer les principaux processus géochimiques responsables de la qualité de l’eau et de son évolution dans l’ensemble du GBA occidental. Les tendances hydrochimiques régionales dans les eaux souterraines sont en accord avec la surface piézométrique et les circulations observées, en soulignant qu’elles représentent approximativement les voies d’écoulement à long terme. En outre, les variations chimiques régionales le long des axes de circulation dans le GBA occidental sont complexes, la composition des eaux dépendant de plusieurs processus de contrôle, y compris la localisation de la recharge, la concentration par évaporation, les processus de mélange et les diverses interactions eau-roche. Ces processus sont tels que les eaux souterraines à l’est du lac Eyre sont principalement de type Na-HCO3, tandis que les eaux souterraines provenant de la marge ouest sont de type Na-Cl-(-SO4). Les sources du GBA semblent majoritairement alimentées par l’aquifère principal du GBA, l’aquifère J; cependant, une composante de l’eau de plusieurs sources provient d’une autre origine que l’aquifère J. La compréhension actuelle des variations hydrochimiques des eaux souterraines et des sources du GBA occidental peut aider à fournir des contraintes concernant l’écoulement des eaux souterraines, ainsi qu’à mieux comprendre les processus géochimiques et hydrologiques responsables de l’évolution de la qualité de l’eau.

Resumen

La Great Artesian Basin (GAB) occidental es una importante fuente de agua para el abastecimiento de agua de pastoreo y de las ciudades, así como para los manantiales que contienen flora y fauna endémicas, dentro de la Australia árida. Este estudio se enfoca en las variaciones hidroquímicas del agua subterránea y de la descarga de manantiales para determinar los principales procesos geoquímicos responsables de la calidad y evolución del agua a través del GAB occidental. Las tendencias hidroquímicas regionales dentro del agua subterránea generalmente respaldan la superficie potenciométrica moderna del agua subterránea y las trayectorias de flujo interpretadas, destacando que éstas representan aproximadamente las trayectorias de flujo a largo plazo. Además, las variaciones químicas regionales a lo largo de las trayectorias de flujo en el GAB occidental son complejas, siendo su composición una función de varios procesos de control, incluyendo la ubicación de la recarga, la evapoconcentración, la mezcla y varias interacciones agua-roca. Estos procesos hacen que las aguas subterráneas al este del lago Eyre sean predominantemente del tipo Na-HCO3, mientras que las aguas subterráneas que se originan en el margen occidental son del tipo Na-Cl-(-SO4). Los manantiales del GAB parecen estar descargando agua predominantemente del acuífero principal del GAB, el Acuífero J; sin embargo, un componente del agua descargada de varios manantiales proviene de una fuente distinta al Acuífero J. El conocimiento actual de las variaciones hidroquímicas de las aguas subterráneas y de la descarga de manantiales del GAB occidental puede ayudar a controlar el flujo de las aguas subterráneas, así como a comprender los procesos geoquímicos e hidrológicos responsables de la evolución de la calidad del agua.

摘要

大自流盆地(GAB)西部是澳大利亚干旱地区牧民和城镇供水以及含有特殊动植物的泉水的重要水源。本研究的重点是地下水和泉流量的水化学变化, 以确定支配GAB西部水质和演化的主要地球化学过程。地下水中的区域水化学趋势通常支撑现代地下水等压力面和解释的流动路径解释, 特别是这近似代表了长期的流动路径。此外, GAB西部沿流向的区域化学变化复杂, 受几个控制过程影响, 包括补给位置, 蒸发浓缩, 混合和各种水-岩相互作用。这些过程导致Eyre湖以东的地下水主要为Na-HCO3型, 而源自西部边缘的地下水为Na-Cl-(-SO4)型。 GAB泉主要来自主要的GAB含水层(J 含水层)排泄; 然而, 几个泉水的排泄来自于J含水层以外的其他来源。目前对GAB西部地下水和泉流量的水化学变化的认识可以辅助作为地下水流动分析的约束条件, 并且加深对支配水质演变的地球化学和水文过程的理解。

Resumo

A Grande Bacia Artesiana (GBA) é uma importante fonte de água para abastecimento urbano e rural, assim como para as nascentes contendo fauna e flora endêmicas, dentro da Austrália árida. Este estudo é focado nas variações hidroquímicas das águas subterrâneas e descarga de nascentes a fim de determinar os principais processos geoquímicos responsáveis pela qualidade da água e evolução através da parte oeste da GBA. Tendências hidroquímicas regionais nas águas subterrâneas geralmente suportam a interpretação da superfície potenciométrica atual e os caminhos de fluxo, destacando que esses apresentam, aproximadamente, os caminhos de fluxo de longo termo. Além disso, as variações químicas regionais ao longo dos caminhos de fluxo no oeste da GBA são complexas, sendo suas composições uma função de diversos processos controladores, incluindo local de recarga, evapotranspiração, mistura e diversas interações água-rocha. Esses processos fazem com que a água subterrânea do leste do Lago Eyre seja predominantemente do tipo Na-HCO3, enquanto as águas subterrâneas originárias da margem oeste são do tipo Na-Cl-(-SO4). As nascentes da GBA parecem estar descarregando água predominantemente do principal aquífero da GBA, o Aquífero J; no entanto, um componente da água descarregada em diversas nascentes é proveniente de uma outra fonte. O entendimento atual das variações hidroquímicas das águas subterrâneas e descarga de nascentes no oeste da GBA pode fornecer restrições no fluxo subterrâneo, bem como permitir a compreensão dos processos geoquímicos e hidrológicos responsáveis pela evolução da qualidade da água.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu Risha UA (2016) Radiocarbon dating and the 36Cl/Cl evolution of three Great Artesian Basin wells at Dalhousie, South Australia. Hydrogeol J 24:987–1000. https://doi.org/10.1007/s10040-016-1364-4

    Article  Google Scholar 

  • Airey PL, Calf GE, Hartley PE, Roman D (1980) Aspects of the isotope hydrology of two sandstone aquifers in arid Australia. In: IAEA (ed) Arid-zone hydrology: investigations with isotope techniques. Panel Proceedings Series IAEA 134, Vienna, 6–9 Nov 1978, pp 93–111

  • Allan RJ (1990) Climate. In: Tyler MJ, Twidale CR, Davies M, Wells CB (eds) Natural History of the North East Deserts:107–118.

  • Bentley HW, Phillips FM, Davis SN, Habermehl MA, Airey PL, Calf GE, Elmore D, Gove HE, Torgersen T (1986) Cl-36 dating of very old groundwater. 1. The Great Artesian Basin, Australia. Water Resour Res 22:1991–2001

    Article  Google Scholar 

  • Cook PG, Herczeg AL (2000) Environmental tracers in subsurface hydrology. Springer, New York

  • Crosbie R, Morrow D, Cresswell R, Leaney F, Lamontagne S, Lefournour M (2012) New insights to the chemical and isotopic composition of rainfall across Australia. CSIRO Water for a Healthy Country Flagship, Adelaide, Australia

  • Crossey LE, Karlstrom KE, Springer A, Newell D, Hilton D, Fischer T (2009) Degassing of mantle-derived CO2 and He from springs in the southern Colorado plateau region-Neotectonic connections and implications for groundwater systems. Geol Soc Am Bull 121:1034–1053. https://doi.org/10.1130/B26394.1

  • Crossey LJ, Priestley SC, Shand P, Karlstrom KE, Love AJ, Keppel M (2013) Source and origin of western GAB spring water. In: Love AJ, Shand P, Crossey L, Harrington GA, Rousseau-Gueutin P (eds) Allocating water and maintaining springs in the Great Artesian Basin, vol III: groundwater discharge of the Western Great Artesian Basin. National Water Commission, Canberra

  • Doan TV (1988) Sedimentary and mineralogy of some Jurassic-Cretaceous sediments of the southern Eromanga Basin. MSc Thesis, University of Adelaide, Australia

  • Dogramaci S, Skrzypek G, Dodson W, Grierson PF (2012) Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical northwest Australia. J Hydrol 475:281–293. https://doi.org/10.1016/j.jhydrol.2012.10.004

  • Freeze AA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Fulton S, Wohling D, Love AJ, Berens V (2013) Ephemeral river recharge. In: Love AJ, Wohling D, Fulton S, Rousseau-Gueutin P, De Ritter S (eds) Allocating water and maintaining springs in the Great Artesian Basin, vol II: groundwater recharge, hydrodynamics and hydrochemistry of the Western Great Artesian Basin. National Water Commission, Canberra

  • Gardner WP, Harrington GA, Smerdon BD (2012) Using excess 4He to quantify variability in aquitard leakage. J Hydrol 468:63–75. https://doi.org/10.1016/j.jhydro1.2012.08.014

    Article  Google Scholar 

  • Government of South Australia (2017) WaterConnect. https://www.waterconnect.sa.gov.au/Systems/GD/Pages/Default.aspx. Accessed December 2017

  • Habermehl MA (1980) The Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5:9–38

  • Halihan T, Love A, Keppel M, Dailey MKM, Berens V, Wohling D (2019) Evidence for groundwater mixing at Freeling Spring Group, South Australia. Hydrogeol J. https://doi.org/10.1007/s10040-019-02069-x

  • Hasegawa T, Nakata K, Mahara Y, Habermehl MA, Oyama T, Higashihara T (2016) Characterization of a diffusion-dominant system using chloride and chlorine isotopes (36Cl, 37Cl) for the confining layer of the Great Artesian Basin, Australia. Geochim Cosmochim Acta 192:279–294. https://doi.org/10.1016/j.gca.2016.08.002

    Article  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. Water Suppl Pap 2254, US Geol Surv, Alexandria, USA

  • Herczeg AL, Torgersen T, Chivas AR, Habermehl MA (1991) Geochemistry of ground waters from the Great Artesian Basin, Australia. J Hydrol 126:225–245. https://doi.org/10.1016/0022-1694(91)90158-E

    Article  Google Scholar 

  • Hollins SE, Hughes CE, Crawford J, Cendón DI, Meredith KT (2018) Rainfall isotope variations over the Australian continent: implications for hydrology and isoscape applications. Sci Total Environ 645:630–645. https://doi.org/10.1016/j.scitotenv.2018.07.082

    Article  Google Scholar 

  • Inverarity K, Heinson G, Hatch M (2016) Groundwater flow underneath mound spring tufas from geophysical surveys in the southwestern Great Artesian Basin, Australia. Aust J Earth Sci 63:857–872. https://doi.org/10.1080/08120099.2016.1261942

    Article  Google Scholar 

  • Italiano F, Yuce G, Uysal IT, Gasparon M, Morelli G (2014) Insights into mantle-type volatiles contribution from dissolved gases in artesian waters of the Great Artesian Basin, Australia. Chem Geol 378-379:75–88. https://doi.org/10.1016/j.chemgeo.2014.04.013

    Article  Google Scholar 

  • Jack RL (1923) The composition of the waters of the Great Australian Artesian Basin in South Australia and its significance. Trans R Soc S Aust 47:316–321

    Google Scholar 

  • Jiang Z, Mariethoz G, Schrank C, Cox M, Timms W (2016) Mapping the hydraulic connection between a coalbed and adjacent aquifer: example of the coal-seam gas resource area, north Galilee Basin, Australia. Hydrogeol J 24:2143–2155. https://doi.org/10.1007/s10040-016-1447-2

  • Keppel M, Jensen-Schmidt B, Wohling D, Sampson L (2015) A hydrogeological characterisation of the Arckaringa Basin. Dept. of Environment, Water and Natural Resources, Adelaide, Australia

  • Keppel M, Karlstrom KE, Love AJ, Priestley SC, Wohling D, De Ritter S (2013) Allocating water and maintaining springs in the Great Artesian Basin, vol I: hydrogeological framework of the Western Great Artesian Basin. National Water Commission, Canberra

  • Keppel M, Gotch T, Inverarity K, Niejalke D, Wohling D (2016) A hydrogeological and ecological characterisation of springs near Lake Blanche, Lake Eyre Basin. Dept. of Environment, Water and Natural Resources, Adelaide, Australia

  • Keppel M, Miles C, Harding C, Turner D, Costelloe J, Clarke K, Lewis L (2017) An examination of ecosystem dependence on shallow groundwater systems in the Western Rivers region, Lake Eyre Basin, South Australia, vol 2: supplementary report. Dept. of Environment, Water and Natural Resources, Adelaide, Australia

  • Keppel MN, Post VEA, Love AJ, Clarke JDA, Werner AD (2012) Influences on the carbonate hydrochemistry of mound spring environments, Lake Eyre South region, South Australia. Chem Geol 296:50–65. https://doi.org/10.1016/j.chemgeo.2011.12.017

  • Stearns K (1984) Olympic Dam project supplementary environmental studies: Mound Springs. Kinhill Stearns, Adelaide, Australia

    Google Scholar 

  • Krieg GW (1989) Geology. In: Zeider W, Ponder WF (eds) Natural history of Dalhousie Springs. South Australian Museum, Adelaide, Australia

  • Krieg GW, Alexander EM, Alley NF, Armstrong D, Farrand MG, Gatehouse CG, Gravestock DI, Hill AJ, Kwitko G, Morton JGG, Rogers PA (1995) Mesozoic, chap 9. In: Drexel JF, Preiss WV (eds) The geology of South Australia, vol 2, the Phanerozoic. Bull Geol Surv South Aust 54(2)

  • Lehmann BE, Love A, Purtschert R, Collon P, Loosli HH, Kutschera W, Beyerle U, Aeschbach-Hertig W, Kipfer R, Frape SK, Herczeg A, Moran J, Tolstikhin IN, Groning M (2003) A comparison of groundwater dating with Kr-81, Cl-36 and He-4 in four wells of the Great Artesian Basin, Australia. Earth Planet Sci Lett 211:237–250. https://doi.org/10.1016/s0012-821x(03)00206-1

    Article  Google Scholar 

  • Love AJ, Herczeg AL, Sampson L, Cresswell RG, Fifield LK (2000) Sources of chloride and implications for Cl-36 dating of old groundwater, southwestern Great Artesian Basin, Australia. Water Resour Res 36:1561–1574. https://doi.org/10.1029/2000WR900019

    Article  Google Scholar 

  • Love AJ, Shand P, Crossey L, Harrington GA, Rousseau-Gueutin P (2013a) Allocating water and maintaining springs in the Great Artesian Basin, vol III: groundwater discharge of the Western Great Artesian Basin. National Water Commission, Canberra

  • Love AJ, Wohling D, Fulton S, Rousseau-Gueutin P, De Ritter S (2013b) Allocating water and maintaining springs in the Great Artesian Basin, vol II: groundwater recharge, hydrodynamics and hydrochemistry of the Western Great Artesian Basin. National Water Commission, Canberra

  • Mahara Y, Habermehl MA, Hasegawa T, Nakata K, Ransley TR, Hatano T, Mizuochi Y, Kobayashi H, Ninomiya A, Senior BR, Yasuda H, Ohta T (2009) Groundwater dating by estimation of groundwater flow velocity and dissolved 4He accumulation rate calibrated by 36Cl in the Great Artesian Basin, Australia. Earth Planet Sci Lett 287:43–56. https://doi.org/10.1016/j.epsl.2009.07.034

  • McMahon T, Murphy R, Little P, Costelloe J, Peel M, Chiew F, Hayes S, Nathan R, Kandel D (2005) Hydrology of Lake Eyre Basin. Sinclair Knight Merz, Armadale.

  • Meredith KT, Han LF, Cendón DI, Crawford J, Hankin S, Peterson M, Hollins SE (2018) Evolution of dissolved inorganic carbon in groundwater recharged by cyclones and groundwater age estimations using the 14C statistical approach. Geochim Cosmochim Acta 220:483–498. https://doi.org/10.1016/j.gca.2017.09.011

    Article  Google Scholar 

  • Moya CE, Raiber M, Cox ME (2014) Three-dimensional geological modelling of the Galilee and central Eromanga basins, Australia: new insights into aquifer/aquitard geometry and potential influence of faults on inter-connectivity. J Hydrol Reg Stud 2:119–139

    Article  Google Scholar 

  • Moya CE, Raiber M, Taulis M, Cox ME (2015) Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach. Sci Total Environ 508:411–426. https://doi.org/10.1016/j.scitotenv.2014.11.099

    Article  Google Scholar 

  • Moya CE, Raiber M, Taulis M, Cox ME (2016) Using environmental isotopes and dissolved methane concentrations to constrain hydrochemical processes and inter-aquifer mixing in the Galilee and Eromanga basins, Great Artesian Basin, Australia. J Hydrol 539:304–318. https://doi.org/10.1016/j.jhydrol.2016.05.016

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99-4259

  • Peeters L (2014) A background color scheme for piper plots to spatially visualize hydrochemical patterns. Groundwater 52:2–6. https://doi.org/10.1111/gwat.12118

    Article  Google Scholar 

  • Pirlo MC (2004) Hydrogeochemistry and geothermometry of thermal groundwaters from the Birdsville Track Ridge, Great Artesian Basin, South Australia. Geothermics 33:743–774. https://doi.org/10.1016/j.geothermics.2004.07.001

    Article  Google Scholar 

  • Priestley SC, Wohling DL, Keppel MN, Post VEA, Love AJ, Shand P, Tyroller L, Kipfer R (2017) Detecting inter-aquifer leakage in areas with limited data using hydraulics and multiple environmental tracers, including 4He, 36Cl/Cl, 14C and 87Sr/86Sr. Hydrogeol J 25:2031–2047. https://doi.org/10.1007/s10040-017-1609-x

    Article  Google Scholar 

  • Priestley SC, Karlstrom KE, Love AJ, Crossey LJ, Polyak VJ, Asmerom Y, Meredith KT, Crow R, Keppel MN, Habermehl MA (2018) Uranium series dating of Great Artesian Basin travertine deposits: implications for palaeohydrogeology and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 490:163–177. https://doi.org/10.1016/j.palaeo.2017.10.024

    Article  Google Scholar 

  • Radke BM, Ferguson J, Cresswell RG, Ransley TR, Habermehl MA (2000) Hydrochemistry and implied hydrodynamics of the Cadna-owie-Hooray Aquifer, Great Artesian Basin, Australia Bureau of Rural Sciences, Canberra

  • Ransley TR, Radke BM, Feitz AJ, Kellett JR, Owens R, Bell J, Stewart G, Carey H (2015) Hydrogeological atlas of the Great Artesian Basin. Geoscience Australia, Canberra

  • Rousseau-Gueutin P, Love AJ, Vasseur G, Robinson NI, Simmons CT, de Marsily G (2013a) Time to reach near-steady state in large aquifers. Water Resour Res 49:6893−6908

  • Rousseau-Gueutin P, Simon S, Love AJ, Post V, Doublet C, Simmons C, Wohling D, Fulton S (2013b) Groundwater flow and hydrodynamics. In: Love AJ, Wohling D, Fulton S, Rousseau-Gueutin P, De Ritter S (eds) Allocating water and maintaining springs in the Great Artesian Basin, vol II: groundwater recharge, hydrodynamics and hydrochemistry of the Western Great Artesian Basin, vol 2, part 6. National Water Commission, Canberra, pp 171–201

  • Shand P, Edmunds WM (2008) The baseline inorganic chemistry of European groundwaters. In: Edmunds WM, Shand P (eds) Natural groundwater quality. Wiley-Blackwell, London

  • Shand P, Johannesson K, Chudaev O, Chudaeva V, Edmunds W (2005) Rare earth element contents of high pCO2 groundwaters of Primorye, Russia: mineral stability and complexation controls. In: Johannesson KH (eds) Rare earth elements in groundwater flow systems. Water Science and Technology Library, vol 51. Springer, Dordrecht, The Netherlands, pp 161–186

  • Shand P, Gotch T, Love A, Raven M, Priestley S, Grocke S (2016) Extreme environments in the critical zone: linking acidification hazard of acid sulfate soils in mound spring discharge zones to groundwater evolution and mantle degassing. Sci Total Environ 568:1238–1252. https://doi.org/10.1016/j.scitotenv.2016.05.147

    Article  Google Scholar 

  • Sheard MJ (1981) Marla town water supply investigation: progress report no. 1. Dept. of Mines and Energy, Adelaide, Australia

  • Smerdon BD, Ransley TR, Radke BM, Kellett JR (2012) Water resource assessment for the Great Artesian Basin. Report, CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Adelaide, Australia

  • Sreekanth J, Cui T, Pickett T, Rassam D, Gilfedder M, Barrett D (2018) Probabilistic modelling and uncertainty analysis of flux and water balance changes in a regional aquifer system due to coal seam gas development. Sci Total Environ 634:1246–1258. https://doi.org/10.1016/j.scitotenv.2018.04.123

    Article  Google Scholar 

  • Torgersen T, Habermehl MA, Phillips FM, Elmore D, Kubik P, Jones BG, Hemmick T, Gove HE (1991) Chlorine 36 dating of very old groundwater, 3: further-studies in the Great Artesian Basin, Australia. Water Resour Res 27:3201–3213

    Article  Google Scholar 

  • Underschultz JR, Pasini P, Grigorescu M, de Souza TL (2016) Assessing aquitard hydraulic performance from hydrocarbon migration indicators: Surat and Bowen basins, Australia. Mar Pet Geol 78:712–727. https://doi.org/10.1016/j.marpetgeo.2016.09.025

    Article  Google Scholar 

  • Wolaver B, Priestley SC, Crossey LJ, Karlstrom KE, Keppel MN, Love AJ (2019) Elucidating sources to aridland springs to inform conservation: Dalhousie Springs, Australia. Hydrogeol J. https://doi.org/10.1007/s10040-019-02072-2

  • Zhang M, Frape SK, Love AJ, Herczeg AL, Lehmann BE, Beyerle U, Purtschert R (2007) Chlorine stable isotope studies of old groundwater, southwestern Great Artesian Basin, Australia. Appl Geochem 22:557–574. https://doi.org/10.1016/j.apgeochem.2006.12.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Sue Vink and an anonymous reviewer for their constructive corrections and comments. We would like to acknowledge and thank all the people who contributed to this work, in particular Samantha De Ritter (Flinders University) and Simon Fulton (Northern Territory Government). The authors are also grateful for the support provided by landowners and managers of pastoral leases on which groundwater sampling was undertaken, in particular Nilpinna, The Peake, Anna Creek, New Crown, Macumba, Wintinna, Finnis Springs, Muloorina, Mt Sarah, Hamilton, Billa Kalina, Allandale, Mt Barry, Lilla Creek, Numery, Henbury, Andado, Atula and De Rose Hill Stations. We also acknowledge the traditional owners and custodians (present and past) of the Great Artesian Basin and South Australian spring country, particularly the Arrabuna, Dieri, Lower Southern Arrente, Wokangurru and Kuyani peoples.

Funding

This work was funded through the Australian Government National Water Commission’s Raising National Water Standards Program, administered through the South Australian Arid Lands Natural Resources Management Board and Flinders University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey C. Priestley.

Additional information

Published in the special issue “Advances in hydrogeologic understanding of Australia’s Great Artesian Basin”

Electronic supplementary material

ESM 1

(PDF 311 kb)

ESM 2

(XLSX 396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priestley, S.C., Shand, P., Love, A.J. et al. Hydrochemical variations of groundwater and spring discharge of the western Great Artesian Basin, Australia: implications for regional groundwater flow. Hydrogeol J 28, 263–278 (2020). https://doi.org/10.1007/s10040-019-02071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02071-3

Keywords

Navigation