Skip to main content
Log in

Evidence for intra-plate seismicity from spring-carbonate mound springs in the Kati Thanda–Lake Eyre region, South Australia: implications for groundwater discharge from the Great Artesian Basin

Preuve de la séismicité intra-plaque à partir des sources à monticules carbonatés dans la région de Kati Thanda-Lake Eyre, Sud de l’Australie: conséquences pour la décharge des eaux souterraines du Grand Basin Artésien

Evidencia de sismicidad intraplaca de los manantiales carbonáticos en la región de Kati Thanda-Lake Eyre, Australia del Sur: implicancias para la descarga de aguas subterráneas de la Great Artesian Basin

南澳大利亚Kati Thanda-Lake Eyre地区碳酸盐泉的丘泉群板内地震活动的证据:对大自流盆地地下水排泄的影响

Evidências de sismicidade intraplaca de nascentes carbonatadas em morros na região de Kati Thanda-Lago Eyre, Austrália do Sul: implicações para a descarga de águas subterrâneas da Grande Bacia Artesiana

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The relationship between fault structures and Great Artesian Basin (GAB) spring occurrence has rarely been discussed in relation to intra-plate seismicity. This is despite the occurrence of mound springs in the southwest portion of the GAB in South Australia being previously linked with the occurrence of faulting and the many studies concerning the role that tectonics plays in the formation and ongoing maintenance of spring activity. This study examines the correlation between seismicity and spring occurrences within the southwestern GAB, as well as field evidence for the relationship between ongoing spring activity and intra-plate seismicity. It was found that spring formation within the southwestern GAB is correlated with an interpreted northwest–southeast, left-lateral transpressional shear zone that is related to the Adelaide Fold Belt underlying the GAB. The influence of seismicity at these sites is implied through the propagation of deformation structures and lineaments concordant with interpreted underlying regional structures. In zones of reactivation, these structures and lineaments develop networks that readily form conduits for the migration of groundwater. Consequently, the spring-carbonate-depositing springs of the southwestern GAB have potential as a record for intra-plate tectonic activity associated with the northern portion of the underlying Adelaide Fold Belt. The work presented here re-enforces the importance of considering the effect that faulting has on groundwater flow paths and interconnectivity with either overlying or underlying aquifers within the southwestern GAB.

Résumé

La relation entre les structures de failles et la présence de sources dans la Grand Bassin Artésien (GBA) a peu été discutée sous l’angle de leur lien avec la séismicité intra-plaque. Et ce, malgré l’apparition de sources à monticules dans la partie sud-ouest du GBA en Australie du Sud, qui était auparavant liée à l’occurrence de failles et aux nombreuses études concernant le rôle que joue la tectonique dans la formation et le maintien continu de l’activité des sources. Cette étude examine la corrélation entre la séismicité et les occurrences de sources dans la région sud-ouest du GBA, ainsi que des évidences de terrains relatives à la relation entre l’activité des sources et la séismicité intra-plaque. Il en ressort que la formation des sources dans cette région est corrélée avec une zone de cisaillement en transpression latérale gauche de direction NW–SE qui est associée à la ceinture de plissement d’Adélaïde sous-jacente au GBA. L’influence de la séismicité sur les sites est implicite dans la propagation des structures de déformation et des linéaments en concordance avec les structures régionales sous-jacentes interprétées. Dans les zones de réactivation, ces structures et linéaments développent des réseaux qui forme de manière lisible des conduits utilisés pour la migration des eaux souterraines. Par conséquence, les sources à monticules de dépôts carbonatés du Sud-Ouest du GBA traduisent une activité tectonique intra-plaque associée à la partie nord de la ceinture de plissement d’Adélaïde sous-jacente. Les travaux présentés ici renforcent l’importance de tenir compte de l’effet des failles sur les écoulements des eaux souterraines et l’inter-connectivité avec les aquifères sus-jacents ou sous-jacents dans le GBA du Sud-Ouest.

Resumen

La relación entre las estructuras de falla y la ocurrencia de manantiales en la Great Artesian Basin (GAB) rara vez ha sido discutida en relación con la sismicidad intraplaca. Esto es a pesar de la ocurrencia de manantiales en la porción suroccidental del GAB en Australia del Sur, que se había relacionado previamente con la ocurrencia de fallas y los muchos estudios concernientes al papel que la tectónica juega en la formación y el mantenimiento continuo de la actividad de los manantiales. Este estudio examina la correlación entre la sismicidad y las ocurrencias de manantiales dentro del GAB del suroeste, así como la evidencia de campo para la relación entre la actividad de los manantiales y la sismicidad intraplaca. Se encontró que la formación de manantiales dentro del GAB suroccidental está correlacionada con una zona de cizallamiento transpresional interpretada del noroeste-sureste del lado izquierdo que se relaciona con el cinturón de pliegues de Adelaida subyacente al GAB. La influencia de la sismicidad en estos sitios está implícita a través de la propagación de estructuras de deformación y lineamientos concordantes con las estructuras regionales subyacentes interpretadas. En las zonas de reactivación, estas estructuras y lineamientos desarrollan redes que fácilmente forman conductos para la migración del agua subterránea. En consecuencia, los manantiales en depósitos carbonáticos de manantiales del suroeste del GAB tienen potencial para registrar la actividad tectónica intraplaca asociada con la porción norte del cinturón de pliegues subyacentes de Adelaida. El trabajo presentado aquí refuerza la importancia de considerar el efecto que las fallas tienen sobre las trayectorias de flujo de agua subterránea y la interconectividad con los acuíferos superpuestos o subyacentes dentro del GAB del suroeste.

摘要

很少有人讨论断层构造与大自流盆地(GAB)泉出露关系与板内地震活动的联系。尽管南澳大利亚GAB西南部出露了丘陵泉群,但之前均认为与断层的存在有关,而且许多研究关注构造在泉活动的形成和持续维持中所起的作用。本研究考察了西南地区GAB内地震活动与泉出露之间的相关性,以及目前泉活动与板内地震活动之间关系的现场证据。结果发现,GAB西南部泉的形成与解译的西北-东南向和左侧横向剪切带有关,该剪切带与GAB下覆的Adelaide褶皱带有关。变形结构和构造线的展布与解译的潜在区域结构一致,揭示在这些地点有地震活动的影响。在再活化区域,这些结构和构造线形成了易于地下水迁移通道的网络。因此,西南部GAB的碳酸盐泉的沉积泉群有可能记录下覆Adelaide褶皱带北部相关的板内构造活动。这里介绍的工作再次强调了考虑断层对地下水流动路径的影响以及与西南GAB上伏或下覆含水层相互联系的重要性。

Resumo

A relação entre estruturas de falhas e ocorrências de nascentes na Grande Bacia Artesiana (GBA) tem sido raramente discutida em relação à sismicidade intraplaca apesar da ocorrência de nascentes na parte sudoeste do GBA, na Austrália do Sul, que já eram previamente vinculadas à ocorrência de falhas e a muitos estudos sobre o papel que a tectônica desempenha na formação e manutenção contínua da atividade da nascente. Este estudo examina a correlação entre sismicidade e ocorrências de nascentes dentro da GBA sudoeste, bem como evidências de campo para a relação entre a atividade da nascente e sismicidade intraplaca. Verificou-se que a formação de nascentes no sudoeste da GBA está correlacionada com uma zona de cisalhamento interpretada como transpressional esquerda-lateral, noroeste-sudeste, que está relacionada com o Cinturão de Dobra de Adelaide subjacente à GBA. A influência da sismicidade nesses locais é sugerida pela propagação de estruturas de deformação e lineamentos concordantes interpretadas como estruturas regionais subjacentes. Em zonas de reativação, essas estruturas e lineamentos desenvolvem redes que prontamente formam condutos para a migração de águas subterrâneas. Consequentemente, as nascentes de depósito de carbonato de nascentes do sudoeste da GBA têm potencial como um registro para a atividade tectônica intraplaca associada à porção norte do Cinturão de Dobra de Adelaide subjacente. O trabalho aqui apresentado reforça a importância de se considerar o efeito que a falha tem sobre os caminhos de fluxo das águas subterrâneas e a interconectividade com aquíferos sobrejacentes ou subjacentes dentro do sudoeste da GBA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aldam R, Kuang KS (1988) An investigation of structures controlling discharge of springwaters in the south western Great Artesian Basin. Report Book 88/4, Department of Mines and Energy, Adelaide, Australia

    Google Scholar 

  • Altunel E, Hancock PL (1993) Morphology and structural setting of Quaternary travertines at Pamukkale, Turkey. Geol J 28(3–4):335–346

    Article  Google Scholar 

  • Babiker M, Gudmundsson A (2004) The effects of dykes and faults on groundwater flow in an arid land: the Red Sea Hills, Sudan. J Hydrol 297(1–4):256–273

    Article  Google Scholar 

  • Barton CA, Zoback MD, Moos D (1995) Fluid-flow along potentially active faults in crystalline rock. Geology 23(8):683–686

    Article  Google Scholar 

  • Brogi A (2004) Faults linkage, damage rocks and hydrothermal fluid circulation: tectonic interpretation of the Rapolano Terme travertines (southern Tuscany, Italy) in the context of Northern Apennines Neogene-Quaternary extension. Eclogae Geol Helv 97(3):307–320

    Article  Google Scholar 

  • Cartwright, J, James, D and Bolton, A (2003) The genesis of polygonal fault systems: a review. In: Van Rensbergen P et al. (eds) Subsurface sediment mobilization. Geol. Soc. Spec. Publ. 216, Geol. Soc. London, pp 223–243

  • Celerier J, Sandiford M, Hansen DL, Quigley M (2005) Modes of active intraplate deformation, Flinders Ranges, Australia. Tectonics 24(6):TC6006 1–TC600612

    Article  Google Scholar 

  • Chia YP, Chiu JJ, Chiang H, Lee TP, Liu CW (2008) Spatial and temporal changes of groundwater level induced by thrust faulting. Pure Appl Geophys 165(1):5–16

    Article  Google Scholar 

  • Cloetingh S, Wortel R (1986) Stress in the Indo-Australian Plate. Tectonophysics 132(1–3):49–67

    Article  Google Scholar 

  • Crossey LJ, Karlstrom KE, Springer A, Newell D, Hilton D, Fischer T (2009) Degassing of mantle-derived CO2 and 3He from springs in the southern Colorado Plateau region: flux rates, neotectonics connections, and implications for understanding the groundwater system. Geol Soc Am Bull 121(7–8):1034–1053

    Article  Google Scholar 

  • Crossey LJ, Karlstrom KE, Schmandt B, Crow R, Coleman D, Cron B, Takacs-Vesbach TD, Dahm C, Northup DE, Hilton DR, Ricketts JR, Lowry AR (2016) Continental smokers couple mantle degassing and unique microbiology within continents. Earth Planet Sci Lett 435:22–30

    Article  Google Scholar 

  • Curewitz D, Karson JA (1997) Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction. J Volcanol Geotherm Res 79(3–4):149–168

    Article  Google Scholar 

  • Dailey, MKM (2011) Hydrogeophysical evidence for ground water mixing at Freeling Spring Group, South Australia. MSc Thesis, Oklahoma State University, Stillwater, OK

  • Davidson GJ, Bavea M, Harris K (2011) Ferruginous thermal spring complexes, northwest Tasmania: evidence that far-field stresses acting on a fracture mesh can open and maintain vertical flow in carbonate terrains. Hydrogeol J 19(7):1367–1386

    Article  Google Scholar 

  • Dias RP, Cabral J (2002) Interpretation of recent structures in an area of cryptokarst evolution: neotectonic versus subsidence genesis. Geodin Acta 15(4):233–248

    Article  Google Scholar 

  • Geoscience Australia (2009) Earthquakes. Geoscience Australia, Canberra. http://www.ga.gov.au/earthquakes. Accessed 28 May 2019

  • Government of South Australia (2019) South Australian Resources Information Gateway. https://map.sarig.sa.gov.au/. Accessed 28 May 2019

  • Grohmann CH, Campanha GA (2010) OpenStereo: Open Source, Cross-Platform Software for Structural Geology Analysis. Presented at 2010 Fall Meeting, American Geophysics Union (AGU), San Francisco, CA, 13–17 December 2010. http://www.agu.org/meetings/fm10/. Accessed 28 May 2019

  • Gudmundsson A (2000) Active fault zones and groundwater flow. Geophys Res Lett 27(18):2993–2996

    Article  Google Scholar 

  • Gudmundsson A, Brenner SL (2001) How hydrofractures become arrested. Terra Nova 13(6):456–462

    Article  Google Scholar 

  • Gudmundsson A, Fjeldskaar I, Brenner SL (2002) Propagation pathways and fluid transport of hydrofractures in jointed and layered rocks in geothermal fields. J Volcanol Geotherm Res 116(3–4):257–278

    Article  Google Scholar 

  • Habermehl, MA (1982) Springs in the Great Artesian Basin: their origin and nature. Report 235, Bureau of Mineral Resources, Geology and Geophysics, Canberra, Australia, 50 pp

  • Hancock PL, Chalmers RML, Altunel E, Cakir Z (1999) Travitonics: using travertines in active fault studies. J Struct Geol 21(8–9):903–916

    Article  Google Scholar 

  • Harrington GA, Smerdon BD, Gardner, PW, Taylor AR and Hendry J (2013). Chapter 8: Diffuse discharge. In: Love AJ et al. (eds) Allocating water and maintaining springs in the Great Artesian Basin, vol III: groundwater discharge of the western Great Artesian Basin. National Water Commission, Canberra, Australia

  • Hillis RR, Meyer JJ, Reynolds SD (1998) The Australian stress map. Explor Geophys 29(4):420–427

    Article  Google Scholar 

  • Hillis RR, Reynolds SD (2000) The Australian stress map. J Geol Soc 157:915–921

    Article  Google Scholar 

  • Homberg C, Hu JC, Angelier J, Bergerat F, Lacombe O (1997) Characterization of stress perturbations near major fault zones: insights from 2-D distinct-element numerical modelling and field studies (Jura mountains). J Struct Geol 19(5):703–718

    Article  Google Scholar 

  • Inverarity K (2014) Electrical geophysics of carbonate mound springs of the south-western Great Artesian Basin. PhD Thesis, University of Adelaide, Australia

  • Jessup RW, Norris RM (1971) Cainozoic stratigraphy of the Lake Eyre Basin and part of the arid region lying to the south. J Geol Soc Aust 18:303–331

    Article  Google Scholar 

  • Karlstrom KE, Keppel MN, Love AJ, Crossey L (2013) Structural and tectonic history, chapt 4. In: Keppel MN et al. (eds) Hydrogeological framework of the western margin of the Great Artesian Basin, Australia. National Water Commission, Canberra, Australia

  • Keppel MN (2013) The geology and hydrochemistry of calcareous mound spring wetland environments in the Lake Eyre South region, Great Artesian Basin, South Australia. PhD Thesis, Flinders University, Bedford Park, SA, Australia

  • Keppel MN, Clarke JDA, Halihan T, Love AJ, Werner AD (2011) Mound springs in the arid Lake Eyre South region of South Australia: a new depositional tufa model and its controls. Sediment Geol 240:55–70

  • Keppel MN, Halihan T, Love A, Post V, Werner A, Clarke J (2013) Formation and evolution of mound springs, chapt. 3. In: Love A, Shand P, Crossey L, Harrington GA, Rousseau-Gueutin P (eds) Allocating water and maintaining springs in the Great Artesian Basin, vol III: groundwater discharge of the western Great Artesian Basin. National Water Commission, Canberra, Australia

  • Keppel MN, Inverarity K, Wohling DL (2015) A hydrogeological characterisation of springs in the Neales River catchment and Lake Cadibarrawirracanna regions, Lake Eyre Basin, South Australia. DEWNR Technical report 2015/13, Department of Environment, Water and Natural Resources, Adelaide, Australia

  • Krieg GW (1989) Geology. In: Zeider W, Ponder WF (eds) Natural History of Dalhousie Springs. South Australian Museum, Adelaide, Australia, pp 19–26

    Google Scholar 

  • Krieg GW, Rogers PA, Callen RA, Freeman PJ, Alley NF, Forbes BG (1991) Curdimurka, South Australia, explanatory notes: 1:250,000 geological series, Sheet SH 53-8. Geological Survey South Australia, Adelaide, Australia

    Google Scholar 

  • Kulikowski D, Amrouch K, Cooke D, Gray ME (2018) Basement structural architecture and hydrocarbon conduit potential of polygonal faults in the Cooper-Eromanga Basin, Australia. Geophys Prospect 66:366–396

    Article  Google Scholar 

  • Langbein J, Hill DP, Parker TN, Wilkinson SK (1993) An episode of reinflation of the Long Valley Caldera, eastern California: 1989–1991. J Geophys Res Solid Earth 98(B9):15851–15870

    Article  Google Scholar 

  • Leonard M (2008) One hundred years of earthquake recording in Australia. Bull Seismol Soc Am 98(3):1458–1470

    Article  Google Scholar 

  • Love A, Rosseau-Gueutin P, Simmons C, Karlstrom K, Crossey L, Shand P, Priestley S (2010) Toward a new paradigm for the Great Artesian Basin hydrologic mixing, partitioned sub-basins, and mantle influences on groundwater quality. In: Groundwater 2010, Proceedings of National Groundwater Conference, Canberra, Australia, October 2010

  • Love A, Wohling D, Fulton S, Rousseau-Gueutin P, De Ritter S (2013) Allocating water and maintaining springs in the Great Artesian Basin, vol II: groundwater recharge, hydrodynamics and hydrochemistry of the western Great Artesian Basin. National Water Commission, Canberra, Australia

  • Manga M, Wang CY (2007) Earthquake hydrology. In: Schubert G (ed) Treatise on geophysics. Elsevier, Amsterdam, pp 293–320

    Chapter  Google Scholar 

  • Manga M, Rowland JC (2009) Response of Alum Rock springs to the October 30, 2007 Alum Rock earthquake and implications for the origin of increased discharge after earthquakes. Geofluids 9(3):37–250

    Article  Google Scholar 

  • Martinez-Diaz JJ (2002) Stress field variation related to fault interaction in a reverse oblique-slip fault: the Alhama de Murcia fault, Betic Cordillera, Spain. Tectonophysics 356(4):291–305

    Article  Google Scholar 

  • Matthews C (2009) Geothermal energy prospectivity of the Torrens Hinge Zone: evidence from new heat flow data. Explor Geophys 40(3):288–300

    Article  Google Scholar 

  • McCutchin WR (1982) Some elements of a theory of in situ stresses. Int J Rock Mech Min Sci 19(4):201–203

    Article  Google Scholar 

  • Miller PJ (1987) Affinities, origin and adaptive features of the Australian Desert Goby Chlamydogobius eremius (Zietz, 1896) (Teleostei: Gobiidae). J Nat Hist 21:687705

    Article  Google Scholar 

  • Muir-Wood R (1993) Neohydrotectonics. In: Stewart I, Vita-Finzi C, Owen L (eds) International Conference on Neotectonics, Zeitschrift Geomorphologie Supplementband, vol 94. Balogh, London, pp 275–284

    Google Scholar 

  • Murphy NP, Adams M, Austin AD (2009) Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia’s Great Artesian Basin. Mol Ecol 18(1):109–122

    Google Scholar 

  • Ollier CD (1995) Tectonics and landscape evolution in southeast Australia. Geomorphology 12(1):37–44

    Article  Google Scholar 

  • Palmström A, Singh R (2001) The deformation modulus of rock masses. Tunn Undergr Space Technol 16(3):115–131

    Article  Google Scholar 

  • Preiss WV (1987) The Adelaide Geosyncline: Late Proterozoic stratigraphy, sedimentation, palaeontology and tectonics. South Australian Geological Survey, Adelaide, Australia

    Google Scholar 

  • Prescott JR, Habermehl MA (2008) Luminescence dating of spring mound deposits in the southwestern Great Artesian Basin, northern South Australia. Aust J Earth Sci 55(2):167–181

    Article  Google Scholar 

  • Priestley SC, Karlstrom KE, Love AJ, Crossey LJ, Polyak VJ, Asmerom Y, Meredith KT, Crow R, Keppel MN, Habermehl MA (2018) Uranium series dating of Great Artesian Basin travertine deposits: implications for palaeohydrogeology and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 490:163–177

    Article  Google Scholar 

  • Quigley M, Sandiford M, Fifield K, Alimanovic A (2007) Bedrock erosion and relief production in the northern Flinders Ranges, Australia. Earth Surf Process Landf 32(6):929–944

    Article  Google Scholar 

  • Radke BM (1990) Petrology of mound spring complexes, Curdimurka 1:250,000 Sheet Great Artesian Basin. Bureau of Mineral Resources, Canberra, Australia

    Google Scholar 

  • Radke BM, Ferguson J, Cresswell RG, Ransley TR, Habermehl MA (2000) Hydrochemistry and implied hydrodynamics of the Cadna-owie-Hooray Aquifer, Great Artesian Basin Australia. Bureau of Rural Sciences, Canberra, Australia

    Google Scholar 

  • Reynolds SD, Coblentz DD, Hillis RR (2002) Tectonic forces controlling the regional intraplate stress field in continental Australia: results from new finite element modeling. J Geophys Res Solid Earth 107(B7):ETG 1-1–ETG 1-15

  • Riedel W (1929) Zur Mechanik Geologischer Brucherscheinungen [On the mechanics of geological fracturing]. Zentralblatt Mineral Geol Paleontol B:354–368

  • Ring U, Uysal IT, Yűce G, Űnal-Ímer E, Italiano F, Ímer A, Zhao J (2016) Recent mantle degassing recorded by carbonic spring deposits along sinistral strike-slip faults, south-central Australia. Earth Planter Sci Lett 454:304–318

    Article  Google Scholar 

  • Rogers PA, Freeman PJ (1994) Explanatory notes for the Warrina, South Australia: 1:250,000 geological map. Report Book 93/10. Geological Survey South Australia, Adelaide, Australia

  • Royden L (1996) Coupling and decoupling of crust and mantle in convergent orogens: umplications for strain partitioning in the crust. J Geophys Res Solid Earth 101(B8):17679–17705

  • Sampson L, Jensen-Schmidt B (2013) Appendix 1: Hydrogeological map of the western margin of the GAB. In: Keppel MN et al. (eds) (2013) Allocating water and maintaining springs in the Great Artesian Basin, vol I: hydrogeological framework of the western Great Artesian Basin. National Water Commission, Canberra, Australia

  • Sandiford M, Lawrie K, Brodie RS (2019) Hydrogeological implications of active tectonics in the Great Artesian Basin. Hydrogeol J. https://doi.org/10.1007/s10040-019-02046-4

  • Sandiford M, Quigley M (2009) TOPO-OZ: insights into the various modes of intraplate deformation in the Australian continent. Tectonophysics 474(1–2):405–416

    Article  Google Scholar 

  • Sandiford M, Quigley M, de Broekert P, Jakica S (2009) Tectonic framework for the Cenozoic cratonic basins of Australia. Aust J Earth Sci 56:5–18

    Article  Google Scholar 

  • Singh B, Geol RK (2011) Engineering rock mass classification: tunnelling, foundations, and landslides. Elsevier, Amsterdam, 364 pp

    Google Scholar 

  • Smerdon BD, Turnadge C (2015) Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia’s Great Artesian Basin. Hydrogeol J 23:949–960

    Article  Google Scholar 

  • Smerdon BD, Welsh WD, Ransley TR (2012) Water resource assessment for the Western Eromanga region: a report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Canberra, Australia

  • Sprigg RC (1957) The Great Artesian Basin in South Australia. J Geol Soc Aust 5(2):88–101

    Google Scholar 

  • Underschultz J, Esterle J, Strand J, Hayes S (2018) Conceptual representation of fluid flow conditions associated with faults in sedimentary basins. Prepared for the Department of the Environment and Energy by The University of Queensland Centre for Coal Seam Gas, Brisbane, Australia, 61 pp

  • Uysal IT, Feng Y, Zhao J, Isik V, Nuriel P, Golding SD (2009) Hydrothermal CO2 degassing in seismically active zones during the Late Quaternary. Chem Geol 265(3–4):442–454

    Article  Google Scholar 

  • Watterson J, Walsh J, Nicol A, Nell PAR, Bretan PG (2000) Geometry and origin of a polygonal fault system. J Geol Soc 157:151–162

    Article  Google Scholar 

  • Wopfner H, Twidale CR (1967) Geomorphological History of the Lake Eyre Basin. In: Jennings JN, Mabbutt JA (eds) Landform studies from Australia and New Guinea. Australian National University Press, Canberra, Australia, pp 144–182

    Google Scholar 

  • Wopfner H, Freytag B, Heath GR (1970) Basal Jurassic-Cretaceous rocks of the western Great Artesian Basin, South Australia: stratigraphy and environment. Am Assoc Petrol Geologists Bull 54(3):383–416

    Google Scholar 

  • Yechieli Y, Bein A (2002) Response of groundwater systems in the Dead Sea Rift Valley to the Nuweiba earthquake: changes in head, water chemistry, and near-surface effects. J Geophys Res Solid Earth 107(B12):ETG4-9–ETG4-10)

    Article  Google Scholar 

  • Zoback ML (1992) First and second-order patterns of stress in the lithosphere: the world stress map project. J Geophys Res 97(11):703–728

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following organizations and people: the traditional owners of this land, the Arabana People, for graciously allowing us to undertake this work, the Australian Federal Government National Water Commission (NWC), the South Australian Arid Lands Natural Resources Management Board (SAAL NRM) and the Great Artesian Basin Coordinating Committee (GABCC) for providing management assistance. The authors would also like to thank Dr. Phil Hayes and Prof. Mike Sandiford for reviewing the original manuscript and Dr. Graham Green and Dr. Mel White for donating two of the images in Fig. 9. This work was first presented as part of a PhD dissertation by Keppel (2013).

Funding

Funding was provided by the Australian Federal Government National Water Commission (NWC), the South Australian Arid Lands Natural Resources Management Board (SAAL NRM) and the Great Artesian Basin Coordinating Committee (GABCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark N. Keppel.

Additional information

Published in the special issue “Advances in hydrogeologic understanding of Australia’s Great Artesian Basin”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keppel, M.N., Karlstrom, K., Crossey, L. et al. Evidence for intra-plate seismicity from spring-carbonate mound springs in the Kati Thanda–Lake Eyre region, South Australia: implications for groundwater discharge from the Great Artesian Basin. Hydrogeol J 28, 297–311 (2020). https://doi.org/10.1007/s10040-019-02049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02049-1

Keywords

Navigation