Abstract
Tracing the flow of groundwater with little hydrochemical variability over short distances is challenging. Stable isotopes offer a solution where there is considerable variation in relief. This study used stable isotopes to delineate recharge areas and pinpoint the aquifer responsible for the many springs that issue from the lower slopes of Table Mountain in South Africa. Table Mountain rises 1,086 m above sea level (masl) and, like the surrounding south-western Cape region, experiences a Mediterranean climate. The stable isotope composition of rainfall and springs issuing from the lower slopes was measured over the 2010–2012 period, allowing comparisons over space and time. An amount effect, an altitude effect (δD = −0.48‰/100 m, δ18O = −0.075‰/100 m) and significant interannual variations (year to year ~10‰ δD and ~1‰ δ18O) in isotope composition of rainfall were observed. This enabled estimation of the average altitude of recharge to be ~300 masl, which indicates that the spring sources are aquifers comprising the scree aprons ringing the mountain, with an average groundwater flow path of about a kilometre. Matching the shifts in average annual isotope composition and deuterium excess of the springs with that of nearby rainfall suggests that some groundwater flow is fast: recharge to discharge within months. However, steady discharge rates over seasons and years indicate that flow is generally slow. Hence, a hydrogeological model is proposed with fast, recent water flowing in shallow parts of the aquifer at the same time as slow, older water in deeper parts of the aquifer.
Résumé
Tracer les flux d’eau souterraine avec une faible variabilité hydrochimique sur de faibles distances est complexe. Les isotopes stables offrent une solution lorsqu’il y a une variation importante d’altitude. Cette étude a utilisé les isotopes stables pour définir les aires de recharge et identifier les aquifères en lien avec les sources qui émergent au niveau des bas de pentes de la Montagne de la Table en Afrique du Sud. La montagne de la Table s’élève à 1,086 m au-dessus du niveau de la mer et, comme toute la région avoisinante du sud-ouest du Cap, est sous influence d’un climat Méditerranéen. La composition isotopique des pluies et des sources des bas de pentes a été mesurée sur la période 2010–2012, permettant une analyse spatiale et temporelle. Un effet de masse, un effet d’altitude (δD = −0.48‰/100 m, δ18O = −0.075‰/100 m) et des variations interannuelles significatives (d’une année sur l’autre ~10‰ δD and ~1‰ δ18O) pour la composition isotopique des pluies ont été observées. Ceci permet d’estimer l’altitude moyenne de recharge à ~300 m au- dessus du niveau de la mer, ce qui indique que les sources sont alimentées par les aquifères incluant la zone de talus d’éboulement au pied de la montagne, avec un écoulement souterrain moyen sur environ un kilomètre. La mise en adéquation des variations de la composition isotopique moyenne et l’excès en deutérium des sources avec celles des pluies proches suggère que quelques écoulements d’eaux souterraines sont rapides: de la recharge à la zone de décharge en quelques mois. Toutefois, les taux de décharge de base annuels et interannuels confirment que l’écoulement est généralement faible. Par conséquent, un modèle hydrogéologique est proposé avec un écoulement rapide, d’eau récente, dans les parties superficielles de l’aquifère, et une eau plus ancienne dans les parties plus profondes.
Resumen
El trazado del flujo de agua subterránea con poca variabilidad hidroquímica en distancias cortas es un desafío. Los isótopos estables ofrecen una solución cuando hay una variación considerable en el relieve. Este estudio utilizó isótopos estables para delinear las áreas de recarga y localizar el acuífero responsable de los numerosos manantiales que surgen de las laderas más bajas de la Table Mountain en Sudáfrica. El Table Mountain se eleva a 1,086 m sobre el nivel del mar (msnm) y, al igual que la región suroccidental del Cabo, experimenta un clima mediterráneo. La composición isotópica estable de las precipitaciones y de los manantiales procedentes de las laderas inferiores se midió en el período 2010–2012, lo que permitió realizar comparaciones en el espacio y en el tiempo. Se observó un efecto de cantidad, un efecto de altitud (δD = −0.48‰/100 m, δ18O = −0.075‰/100 m) y variaciones interanuales significativas (año a año ~10‰ δD and ~1‰ δ18O) en la composición isotópica de las precipitaciones. Esto permitió estimar que la altitud media de recarga era de ~300 msnm, lo que indica que las fuentes del manantial son acuíferos que comprenden los derrubios de grava que rodean la montaña, con un recorrido medio de flujo de agua subterránea de aproximadamente un kilómetro. La comparación de los cambios en la composición media anual de los isótopos y el exceso de euterio de los manantiales con la de las lluvias cercanas sugiere que algunos flujos de agua subterránea son rápidos: recarga para descargar en meses. Sin embargo, las tasas de descarga constante a lo largo de las estaciones y años indican que el flujo es generalmente lento. Por lo tanto, se propone un modelo hidrogeológico con agua rápida y reciente que fluye en partes poco profundas del acuífero al mismo tiempo que el agua lenta y más antigua en partes más profundas del acuífero.
摘要
追踪短距离水化学变异性很小的地下水流是一个难点。稳定同位素为地形变动相关大区域提供了解决方案。本研究使用稳定同位素来划定补给区,并确定与南非Table Mountain较低斜坡许多泉水补给相关的含水层。Table Mountain海拔1,086 m(masl),与开普敦西南部周边地区一样,是地中海气候。在2010–2012年期间测量了较低斜坡的降雨和泉水的稳定同位素组成,从而可从时空角度进行比较。观测到了降雨同位素组成的数量效应,海拔效应(δD = −0.48‰/100 m, δ18O = −0.075‰/100 m)和显著的年际变化(逐年~10‰ δD 和 ~1‰ δ18O)。因此估计补给的平均高度为~300 masl,这表明泉水补给来源是包括山周边碎石圈的含水层,平均地下水流动路径约为1千米。将泉水的年平均同位素组成和过量氘与附近降雨量的变化相比较表明,部分地下水流速很快:从补给到排泄只需要几个月。然而,季节和年份稳定排泄率表明流量一般较慢。因此,提出了一种水文地质模型,其中包括在含水层浅部流动快和新水,以及在含水层深部流动较慢和老水。
Resumo
Rastrear o fluxo de águas subterrâneas com pouca variabilidade hidroquímica em distâncias curtas é um desafio. Isótopos estáveis oferecem uma solução em que há uma variação considerável no relevo. Este estudo usou isótopos estáveis para delinear áreas de recarga e identificar o aquífero responsável pelas muitas nascentes que emergem das encostas mais baixas da Montanha da Mesa na África do Sul. A Montanha da Mesa se eleva 1,086 m acima do nível do mar (manm) e, como a região sudoeste do Cabo, experimenta um clima mediterrâneo. A composição isotópica estável das chuvas e nascentes das encostas inferiores foi medida no período 2010–2012, permitindo comparações no espaço e no tempo. Observou-se um efeito de quantidade, efeito de altitude (δD = −0.48‰/100 m, δ18O = −0.075‰/100 m) e variações interanuais significativas (ano a ano ~10‰ δD e ~1‰ δ18O) na composição isotópica das chuvas. Isso permitiu que a estimativa da altitude média de recarga fosse de ~300 manm, o que indica que as fontes das nascentes são aquíferos que compreendem os depósitos de talus que circundam a montanha, com um caminho médio de fluxo de águas subterrâneas de cerca de um quilômetro. Combinar as mudanças na composição anual média de isótopos e no excesso de deutério das nascentes com o das chuvas próximas sugere que algum fluxo de águas subterrâneas é rápido: recarregar para descarregar dentro de meses. No entanto, taxas de descarga constantes ao longo das estações e anos indicam que o fluxo é geralmente lento. Portanto, um modelo hidrogeológico é proposto com águas recentes e rápidas que fluem em partes rasas do aquífero ao mesmo tempo que águas mais antigas e lentas em partes mais profundas do aquífero.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Argiriou AA, Lykoudis S (2006) Isotopic composition of precipitation in Greece. J Hydrol 327:486–495
Beuster H, Thompson I, Görgens AH, Jonker V, Clarke FA (2009) Application of geostatistical analyses to develop a new mean annual rainfall surface for the south-western Cape. In: South African National Committee for the IAHS: Symposium 2009, Pietermaritzburg, South Africa, 21–23 September 2009, 18 pp
Blasch KW, Bryson JR (2007) Distinguishing sources of groundwater recharge by using δ2H δ18O. Groundwater 45:294–308
Boelhouwers J (1993) A discussion regarding weathering in the Western Cape Mountains, South Africa: implications for Pleistocene cryoclastic debris production. S Afr Geogr J 75:46
Brown C, Magoba R (eds) (2009) Rivers and Wetlands of Cape Town. TT376/08, Water Research Commission, Pretoria
Caballero Y, Jomelli V, Chevallier P, Ribstein P (2002) Hydrological characteristics of slope deposits in high tropical mountains (Cordillera Real, Bolivia). Catena 47:101–116
Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton
Compton JS (2004) The Rocks & Mountains of Cape Town. Double Storey, Juta, Cape Town
Conrad J, Soltau L, Gibson L, Peek C (2013) Hydrogeological investigation of existing water springs in the City of Cape Town Environs: Wynberg Region. Technical report, GEOSS, Stellenbosch, South Africa
Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703
CSAG (2013) Climate information portal. Climate Systems Analysis Group, University of Cape Town. http://cip.csag.uct.ac.za/webclient2/app/. Accessed December 2013
Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468
Desmarais K, Rojstaczer S (2002) Inferring source waters from measurements of carbonate spring response to storms. J Hydrol 260:118–134
Diamond RE, Harris C (1997) Oxygen and hydrogen isotope composition of Western Cape meteoric water. S Afr J Sci 93:371–374
Diamond RE, Harris C (2000) Oxygen and hydrogen isotope geochemistry of thermal springs of the Western Cape, South Africa: recharge at high altitude? J Afr Earth Sci 31:467–481
Diamond RE, Harris C (2019) Stable isotope constraints on hydrostratigraphy and aquifer connectivity in the Table Mountain Group. S Afr J Geol 122:273–286
Dogramaci S, Skrzypek G, Dodson W, Grierson PF (2012) Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical Northwest Australia. J Hydrol 475:281–293
Dose EJ, Stoeckl L, Houben GJ, Vacher HL, Vassolo S, Dietrich J, Himmelsbach T (2014) Experiments and modeling of freshwater lenses in layered aquifers: steady state interface geometry. J Hydrol 509:621–630
Gat JR (1996) Oxygen and hydrogen isotopes in the hydrological cycle. Ann Rev Earth Planet Sci 24:225–262
Gat JR, Gonfiantini R (1981) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. Technical report series no. 210, International Atomic Energy Agency, Vienna
Geological Survey (1990) 3318 Cape Town. 1:250,000 geological series. Geological Survey, Pretoria
Gonfiantini R, Roche MA, Olivry JC, Fontes JC, Zuppi GM (2001) The altitude effect on the isotopic composition of tropical rains. Chem Geol 181:147–167
Guglielmi Y, Bertrand C, Compagnon F, Follaci JP, Mudry J (2000) Acquisition of water chemistry in a mobile fissured basement massif: its role in the hydrogeological knowledge of the La Clapiére landslide (Mercantour Massif, southern Alps, France). J Hydrol 229:138–148
Harris C, Burgers C, Miller J, Rawoot F (2010) O- and H-isotope record of Cape Town rainfall from 1996 to 2008, and its application to recharge studies of Table Mountain groundwater, South Africa. S Afr J Geol 113:33–56
Hartnady CJ, Hay ER (2002) Boschkloof groundwater discovery. In: Pietersen K, Parsons R (eds) A synthesis of the hydrogeology of the Table Mountain Group: formation of a research strategy. TT 158/01, Water Research Commission, Pretoria, pp 168–177
Kurita N (2013) Water isotopic variability in response to mesoscale convective system over the tropical ocean. J Geophys Res: Atmos 118:10376–10390
Ladouche B, Luc A, Nathalie D (2009) Chemical and isotopic investigation of rainwater in southern France (1996–2002): potential use as input signal for karst functioning investigation. J Hydrol 367:150–164
Larsen D, Swihart GH, Xiao Y (2001) Hydrochemistry and isotope composition of springs in the Tecopa basin, southeastern California, USA. Chem Geol 179:17–35
Lin L, Jia H, Xu Y (2007) Fracture network characteristics of a deep borehole in the Table Mountain Group, South Africa. Hydrogeol J 15:1419–1432
Miller JA, Dunford AJ, Swana KA, Palcsu L, Butler M, Clarke CE (2017) Stable isotopes and noble gas constraints on the residence time of spring water from the Table Mountain Group aquifer, Paarl, South Africa and implications for large scale abstraction. J Hydrol 551:100–115
Muir DL, Hayashi M, McClymont AF (2011) Hydrological storage and transmission characteristics of an alpine talus. Hydrol Process 25:2954–2966
Peng TR, Wang CH, Huang CC, Fei LY, Chen CT, Hwong JL (2010) Stable isotope characteristics of Taiwan’s precipitation: a case study of Western Pacific Monsoon Region. Earth Planet Sci Lett 289:357–366
Plummer LN, Busenberg E, Böhlke JK, Nelms DL, Michel RL, Schlosser P (2001) Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach. Chem Geol 179:93–111
Preston-Whyte RA, Tyson PD (1988) The atmosphere and weather of southern Africa. Oxford University Press, Cape Town
Rademacher LK, Clark JF, Hudson GB, Erman DC, Erman NA (2001) Chemical evolution of shallow groundwater as recorded by springs, Sagehen basin: Nevada County, California. Chem Geol 179:37–51
Rock NMS (1988) Lecture notes in earth sciences, 18: numerical geology. Springer, Berlin, 427 pp
Roy JW, Hayashi M (2009) Multiple, distinct groundwater flow systems of a single moraine–talus feature in an alpine watershed. Journal of Hydrology 373 (1-2):139–150
SAWB (1996) The weather and climate of the extreme south-western Cape. South African Weather Bureau, Dept. of Environmental Affairs and Tourism, Pretoria
Scheepers R, Armstrong R (2002) New U-Pb SHRIMP zircon ages of the Cape Granite Suite: implications for the magmatic evolution of the Saldania Belt. South African Journal of Geology 105 (3):241–256
Sidle WC, Cvetic V (2011) Stable water isotope climate archives in springs from the Olympic Mountains, Washington. Environ Earth Sci 62:569–580
Socki RA, Karlsson HR, Gibson EK Jr (1992) Extraction technique for the determination of oxygen-18 in water using preevacuated glass vials. Anal Chem 64:829–831
Tanweer A, Hut G, Burgman JO (1988) Optimal conditions for the reduction of water to hydrogen by zinc for mass spectrometric analysis of the deuterium content. Chem Geol (Isotope Geoscience Section) 73:199–203
Theron JN, Gresse PG, Siegfried HP, Rogers J (1992) The Geology of the Cape Town area, explanation of sheet 3318. Technical report, Geological Survey, Dept. of Mineral and Energy Affairs, Pretoria
Uemura R, Yonezawa N, Yoshimura K, Asami R, Kadena H, Yamada K, Yoshida N (2012) Factors controlling isotopic composition of precipitation on Okinawa Island, Japan: implications for palaeoclimate reconstruction in the East Asian Monsoon Region. J Hydrol 475:314–322
Villaros A, Buick IS, Stevens G (2012) Isotopic variations in S-type granites: an inheritance from a heterogeneous source?. Contributions to Mineralogy and Petrology 163 (2):243–257
Vitvar T, Balderer W (1997) Estimation of mean water residence times and runoff generation by 18O measurements in a pre-alpine catchment (Rietholzbach, eastern Switzerland). Appl Geochem 12:787–796
Vogel JC, van Urk H (1975) Isotopic composition of groundwater in semi-arid regions of southern Africa. J Hydrol 25:23–36
Wu C (2008) Groundwater occurrence in the Table Mountain area of Cape Town, South Africa. MA, University of the Western Cape, Cape Town
Acknowledgements
Rain water samples were taken by Fayrooza Rawoot at UCT, Marie Abraham at the Table Mountain Cableway, Richard Humphris at Wolfkop, Citrusdal, and Patrick Lane at Uitkyk, Cederberg. Spring water sampling was assisted by Marius Bonthuis of the City of Cape Town, and knowledge of springs was shared by Pixie Littlewort and Caron von Zeil.
Funding
RED and CH received financial support from the National Research Foundation and the Water Research Commission of South Africa.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Diamond, R.E., Harris, C. Annual shifts in O- and H-isotope composition as measures of recharge: the case of the Table Mountain springs, Cape Town, South Africa. Hydrogeol J 27, 2993–3008 (2019). https://doi.org/10.1007/s10040-019-02045-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-019-02045-5


