Abstract
The Great Artesian Basin (GAB) in Australia underlies semi-arid and arid regions across 1.7 million km2 or one-fifth of Australia. The basin’s groundwater resources were discovered around 1880 and their development allowed pastoral activities, homestead and town water supplies, and petroleum and mining ventures to exist. The GAB is a multi-layered confined aquifer system, with aquifers in Jurassic and Cretaceous continental sandstones and intervening confining beds of siltstone and mudstone of the constituent Eromanga, Surat and Carpentaria sedimentary basins. The basin is up to 3,000 m thick and forms a large synclinal structure, uplifted and exposed along its eastern margin and tilted southwest. Recharge to the exposed aquifers occurs in the eastern margin, an area of relative high rainfall. The western margin in Australia’s arid centre receives minor recharge. Regional groundwater flow is towards the southern, south-western, western and northern margins. Flowing artesian springs discharge in the southwest margin and have produced carbonate mounds. Although lateral groundwater movement dominates, vertical upwards leakage is considered important. Potentiometric surfaces of the Jurassic and Lower Cretaceous aquifers are still above ground level throughout most of the basin, though pressure drawdowns of up to 100 m have been recorded in recent decades in highly developed areas, and consequently some artesian water boreholes and springs have ceased flowing. Government borehole rehabilitation programs have led to groundwater pressure recovery in some areas. This paper outlines the history of GAB exploration, scientific investigations (hydrogeology, hydrochemistry, isotope hydrology, groundwater modelling) and management, summarising the recent knowledge on the GAB.
Résumé
Le Grand Bassin Artésien (GBA) est à l’origine de régions semi-arides et arides portant sur 1.7 million de km2, soit un cinquième de l’Australie. Les ressources en eaux souterraines du Bassin ont été découvertes vers 1880 et leur exploitation a permis l’existence d’activités pastorales, d’approvisionnement en eau en zones rurales et urbaines, ainsi que d’entreprises pétrolières et minières. Le GBA est un système aquifère captif multi-couches, avec des aquifères dans les grès continentaux du Jurassique et du Crétacé et des niveaux interstratifiés confinant de siltites et mudstone des bassins sédiemtnaires d’Eromanga, Surat et Carpentaria. Le Bassin a une épaisseur atteignant jusqu’à 3000 m et forme une grande structure synclinale, soulevée et exposée le long de sa marge orientale et inclinée vers le sud-ouest. La recharge des aquifères exposés prend place dans la marge orientale, une région de précipitations relativement élevées. La marge occidentale dans le centre aride de l’Australie reçoit une recharge plus faible. Les écoulements régionaux des eaux souterraines se dirigent vers les marges sud, sud-ouest, ouest et nord. Les sources artésiennes se déchargent vers la marge du sud-ouest et qui ont produit des monticules de carbonate. Bien que l’écoulement latéral des eaux souterraines domine, un drainage vertical ascendant est considéré comme important. Les surfaces piézométriques des aquifères du Jurassique et du Crétacé inférieur sont toujours supérieures au niveau du sol dans la majeure partie du bassin, bien que des rabattements allant jusqu’à 100 m aient été enregistrés au cours des dernières décennies dans des zones très développées, et par conséquent l’écoulement artésien a cessé au niveau de certains forages et sources. Des programmes gouvernementaux de réhabilitation de forages ont mené à la récupération de la pression des eaux souterraines dans certaines régions. Cet article décrit l’histoire de l’exploration du GBA, des études scientifiques (hydrogéologie, hydrochimie, hydrologie des isotopes, modélisation des eaux souterraines) et de la gestion, résumant les connaissances récentes sur le GBA.
Resumen
La Great Artesian Basin (GAB) subyace las regiones semiáridas y áridas a lo largo de 1.7 millones de km2 o una quinta parte de Australia. Los recursos de agua subterránea de la cuenca fueron descubiertos alrededor de 1880 y su desarrollo permitió que existieran actividades pastoriles, abastecimiento de agua a los hogares y a las ciudades, y a empresas petroleras y mineras. El GAB es un sistema acuífero confinado de múltiples capas, con acuíferos en areniscas continentales del Jurásico y el Cretácico y capas confinantes intermedias de limolitas y arcilitas de las cuencas sedimentarias constitutivas de Eromanga, Surat y Carpentaria. La cuenca tiene un espesor de hasta 3000 m y forma una gran estructura sinclinal, elevada y expuesta a lo largo de su margen oriental e inclinada hacia el suroeste. La recarga de los acuíferos expuestos se produce en el margen oriental, una zona de precipitaciones relativamente altas. El margen occidental en el centro árido de Australia recibe una pequeña recarga. El flujo regional de aguas subterráneas se dirige hacia los márgenes sur, suroeste, oeste y norte. El flujo de los manantiales artesianos descarga en el margen suroeste y han producido colinas de carbonato. Aunque predomina el movimiento lateral del agua subterránea, se considera importante la filtración vertical hacia arriba. Las superficies potenciométricas de los acuíferos del Jurásico y del Cretácico Inferior siguen estando por encima del nivel del suelo en la mayor parte de la cuenca, aunque en los últimos decenios se han registrado descensos de presión de hasta 100 m en zonas muy desarrolladas y, en consecuencia, algunos pozos de agua y manantiales artesanales han dejado de fluir. Los programas gubernamentales de rehabilitación de pozos han llevado a la recuperación de la presión del agua subterránea en algunas áreas. Este documento describe la historia de la exploración del GAB, las investigaciones científicas (hidrogeología, hidroquímica, hidrología de isótopos, modelización de aguas subterráneas) y la gestión, resumiendo los conocimientos recientes sobre el GAB.
摘要
大自流盆地(GAB)位于半干旱和干旱区,面积170万km2,是澳大利亚的五分之一。该盆地的地下水资源在1880年左右被发现,其开发使得牧民活动,宅基地和城镇供水以及石油和采矿企业得以保障。 GAB盆地是多层承压含水层系统,包括侏罗系和白垩系大陆砂岩含水层,以及Eromanga,Surat和Carpentaria沉积盆地粉砂岩和泥岩的中间隔水层。该盆地厚达3000米,形成一个大的向斜构造,沿其东缘抬升并出露,向西南方向倾斜。在东部边缘有裸露含水层的补给,该区降雨量相对较高。澳大利亚干旱中心的西缘受到轻微补给。区域地下水流向南部,西南部,西部和北部边缘。流动的自流泉在西南边缘排泄并产生碳酸盐丘。虽然侧向地下水运动占主导地位,但垂直向上排泄也很重要。尽管高度开采区在最近几十年已经有高达100米的压力下降,导致了一些自流水井和泉水已经停止流动,但侏罗纪和下白垩统含水层的压力面在盆地大部分地区仍然高于地面。政府的钻孔修复计划使一些地区地下水位恢复。本文概述了GAB勘探,科学研究(水文地质学,水化学,同位素水文学,地下水模拟)和管理的历史,总结了最近关于GAB盆地的认识。
Resumo
A Grande Bacia Artesiana (GBA) está subjacente a regiões semiáridas e áridas em 1.7 milhões km2 ou um quinto da Austrália. Os recursos hídricos subterrâneos da bacia foram descobertos em torno de 1880 e seu desenvolvimento permitiu atividades pastorais, abastecimento de água em cidades e distritos, e empreendimentos de petróleo e mineração existirem. A GBA é um sistema aquífero multicamadas confinado, com aquíferos em arenitos continentais Jurássico e Cretáceo e interferências de leitos confinantes de siltito e argilito das bacias sedimentares constituintes Eromanga, Surat e Carpentaria. A bacia tem mais de 3000 m de espessura e forma uma grande estrutura sinclinal, erguida e exposta ao longo de sua margem oriental e sudoeste inclinado. A recarga para os aquíferos aflorantes ocorre na margem oriental, uma área de relativa alta pluviosidade. A margem ocidental no centro árido da Austrália recebe pequenas recargas. O fluxo regional das águas subterrâneas é voltado para as margens sul, sudoeste, oeste e norte. Fontes artesianas de descarga fluem na margem sudoeste e tem produzido montes carbonatados. Embora o movimento lateral da água subterrânea domine, a dispersão vertical ascendente é considerada importante. As superfícies potenciométricas dos aquíferos Jurássico e Cretáceo inferior ainda estão acima do nível do solo ao longo da maior parte da bacia, embora as quedas de pressão de até 100 m tenham sido registradas nas últimas décadas em áreas altamente desenvolvidas e, consequentemente, alguns poços artesianos e nascentes cessaram o fluxo. Programas de reabilitação de poços do governo levaram à recuperação da pressão das águas subterrâneas em algumas áreas. Este artigo descreve a história da exploração de GBA, investigações científicas (hidrogeologia, hidroquímica, hidrologia isotópica, modelagem de águas subterrâneas) e gestão, resumindo os conhecimentos recentes sobre o GBA.
This is a preview of subscription content, access via your institution.








References
Airey PL, Calf GE, Campbell BL, Habermehl MA, Hartley PE, Roman D (1979) Aspects of the isotope hydrology of the Great Artesian Basin, Australia. Isotope Hydrology 1978, International Symposium on Isotope Hydrology. IAEA, Vienna, pp 205–219
Airey PL, Bentley H, Calf GE, Davis SN, Elmore D, Gove H, Habermehl MA, Phillips F, Smith J, Torgersen T (1983) Isotope hydrology of the Great Artesian Basin, Papers of the International Conference on Groundwater and Man. Australian Government, Canberra, pp 1–11
Allan GL, Fifield LK, Bird JR, Smith AM, Ophel TR, Habermehl MA (1991) The use of accelerator mass spectrometry measurements of 36Cl in the interpretation of hydrological processes. In: International Hydrology and Water Resources Symposium, Perth, 2–4 October 1991, Australia National Conference Publ. 91/22, pp 750–754
Andrews JN, Fontes J-C (1993) Comment on “Chlorine 36 dating of very old groundwater. 3. Further results on the Great Artesian Basin, Australia” by T. Torgersen et al. (1991). Water Resour Res 29(6):1871–1874
Australian Government (2019) Geoscience Australia website. http://www.ga.gov.au/. Accessed August 2019
Bentley HW, Phillips FM, Davis SN, Habermehl MA, Airey PL, Calf GE, Elmore D, Gove HE, Torgersen T (1986) Cl-36 dating of very old groundwater: 1. the Great Artesian Basin, Australia. Water Resour Res 22:1991–2001
Bethke CM, Zhao X, Torgersen T (1999) Groundwater flow and the 4He distribution in the Great Artesian Basin of Australia. J Geophys Res 104(B6):12999–13011
Beyerle U, Asschenbach-Hertig W, Peeters R, Kipfer R, Puttschert R, Lehmann BE (1999) Noble gas data from the Great Artesian Basin provide a temperature record of Australia on time scales of 105 years. Proceedings of International Symposium on Isotope Techniques in Water Resources Development and Management, IAEA-SM-361/25, IAEA, Vienna
Blake T, Cook M (2006) Great Artesian Basin historical overview. Queensland Government: Natural Resources, Mines and Water, Brisbane, Australia, 89 pp
Calf GE, Habermehl MA (1984) Isotope hydrology and hydrochemistry of the Great Artesian Basin, Australia. In: Isotope Hydrology 1983, IAEA, Vienna, pp 397–413
Chopra PN, Holgate F (2005) A GIS analysis in the Australian crust. Proceedings of the World Geothermal Congress, Antalya, Turkey, April 2005, 7 pp
Collerson KD, Ullman WJ, Torgersen T (1988) Ground waters with unradiogenic 87Sr/86Sr ratios in the Great Artesian Basin, Australia. Geology 16:59–63
Collon P, Kutschera W, Loosli HH, Lehmann BE, Purtschert R, Love A, Sampson L, Anthony D, Cole D, Davids B, Morrissey DJ, Sherrill BM, Steiner M, Pardo RC, Paul M (2000) 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater. Earth Planet Sci Lett 182:103–113
Cox R, Barron A (1998) Great Artesian Basin Resource Study. Great Artesian Basin Consultative Council, Brisbane, Australia, 235 pp
Cresswell RG, Fifield LK, Keywood MD, Habermehl MA, Kellett JR, Jacobson G, Wischusen J (1996) Theory, rainfall and recharge: a chlorine-36 story. EOS Trans Am Geophys Union 77(22):W44
Day RW, Whitaker WG, Murray CG, Wilson IH, Grimes KG (1983) Queensland geology: a companion volume to the 1:2 500 000 scale geological map (1975). Publ. 383, Geological Survey of Queensland, Brisbane, Australia, 194 pp
Drexel JF, Preiss WV (1995) The geology of South Australia, vol 2: the Phanerozoic. Bulletin 54, Geological Survey of South Australia, 347 pp (includes Geological Map South Australia scale 1:2,000,000)
Endersbee LA (2005) Voyage of discovery: a history of ideas about the earth, with a new understanding of the global resources of water and petroleum, and the problems of climate change. Endersbee, Tasmania, Australia, 264 pp
Environment Protection and Biodiversity Conservation Act (EPBC) (1999) and (2013) Commonwealth of Australia, Canberra
Exon NF (1976) Geology of the Surat Basin in Queensland. Bulletin 166, Bureau of Mineral Resources, Canberra, Australia
Fabryka–Martin J, Bentley H, Elmore D, Airey PL (1985) Natural iodine-129 as an environmental tracer. Geochim Cosmochim Acta 49:337–347
Fairfax RJ, Fensham RJ (2003) Great Artesian Basin springs in southern Queensland 1911–2000. Mem Queensland Museum 49:285–293
Fensham RJ, Fairfax RJ (2003) Spring wetlands of the Great Artesian Basin, Queensland, Australia. Wetl Ecol Manag 11:343–362
Fensham RJ, Ponder WF, Fairfax RJ (2010) Recovery plan for the community of native species dependent on natural discharge of groundwater from the Great Artesian Basin. Queensland Department of Environment and Resource Management, Brisbane, Australia
Fensham RJ, Silcock JL, Powell O, Habermehl MA (2016) In search of lost springs: a protocol for locating active and inactive springs. Groundwater 54(3):374–383
GABCC (Great Artesian Basin Consultative Council) (1998) Great Artesian Basin Resource Study, GABCC, Canberra, 235 pp
GABCC (Great Artesian Basin Consultative Council) (2000) Great Artesian Basin Strategic Management Plan. Great Artesian Basin Consultative Council for the Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, 60 pp
GABCC (Great Artesian Basin Coordinating Committee) (2017) Summary of past drilling activity within the Great Artesian Basin, Canberra, 27 pp
Geoscience Australia and Habermehl MA (2010) Advice in relation to the potential impacts of coal seam gas extraction in the Surat and Bowen basins, Queensland: phase one final report. Summary Report 29, Australian Government Department of the Environment, Water, Heritage and the Arts, Canberra, Australia, 106 pp
Gotch T (2006) Great Artesian Basin and Great Artesian Basin Springs bibliography. In: Gotch TB, Defavari J (eds) Proceedings of the 6th Great Artesian basin Springs Researcher’s Forum, Adelaide, 23–24 February 2006, South Australian Arid Lands Natural Resources Management Board, Adelaide, Australia
Gotch T (2013) Allocating water and maintaining springs in the Great Artesian Basin, vol 5: groundwater dependent ecosystems of the Western Great Artesian Basin. National Water Commission, Canberra, 180 pp
Habermehl MA (1980) The Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5:9–38
Habermehl MA (1982a) Investigations of the geology and hydrology of the Great Artesian Basin, 1878–1980. Report 234 (BMR Microfiche MF 169), Bureau of Mineral Resources, Geology and Geophysics, Canberra, Australia
Habermehl MA (1982b) Springs in the Great Artesian Basin, Australia: their origin and nature. Report 235 (BMR Microfiche MF 179), Bureau of Mineral Resources, Geology and Geophysics, Australia, Canberra
Habermehl MA (1983) Hydrogeology and hydrochemistry of the Great Artesian Basin, Australia. Invited Keynote Paper. In: Papers of the International Conference on Groundwater and Man. Sydney, 5–9 December 1983, Australian Water Resources Council (AWRC) Conference Series, no. 8, vol 3, 83–98 pp. Australian Government, Canberra
Habermehl MA (1986) Regional groundwater movement, hydrochemistry and hydrocarbon migration in the Eromanga Basin. In: Gravestock DI, Moore PS, Pitt GM (eds) Contributions to the geology and hydrocarbon potential of the Eromanga Basin, vol 12. Special Publ., Geological Society of Australia, Hornsby, Australia, pp 353–376
Habermehl, MA (1990) Hydrogeology of the Great Artesian Basin. In: BMR 90: yearbook of the Bureau of Mineral Resources, Geology & Geophysics. BMR, Canberra, pp 65–67
Habermehl MA (1996) Groundwater movement, hydrochemistry and isotope hydrology of the Great Artesian Basin, Australia. In: Report of Special Research Project on Global Environmental Change, vol 4. University of Tsukuba, Ibaraki, Japan, pp 97–114
Habermehl MA (1998) Geology and hydrogeology of the Great Artesian Basin. In: Cox R, Barron A (ed) Great Artesian Basin Resource Study. Great Artesian Basin Consultative Council, Brisbane, pp 33–59
Habermehl MA (2001a) Hydrogeology and environmental geology of the Great Artesian Basin, Australia. In: Gostin VA (ed) Gondwana to greenhouse: Australian environmental geoscience. Geol Soc Austral Spec Publ 21:127–143, 344-346
Habermehl MA (2001b) Wire-line logged waterbores in the Great Artesian Basin, Australia: digital data of logs and waterbore data acquired by AGSO. Bureau of Rural Sciences, Canberra and Australian Geol Surv Org Bull 245, 98 pp (Report + data CD + 3 maps at scale 1:2,500,000)
Habermehl MA (2001c) Hydrogeology of the Great Artesian Basin, Australia. Invited Keynote Address. In: Proceedings of the International Conference Regional Aquifer Systems in Arid Zones: Managing Non-Renewable Resources, Tripoli, 20–24 November 1999, IHP-V, Technical documents in Hydrology 2001, Libyan Arab Jamahiriya and UNESCO-IHP, Paris, pp 123–142
Habermehl MA (2002) Hydrogeology, hydrochemistry and isotope hydrology of the Great Artesian Basin, Australia. In: Proceedings of the IAH conference, Balancing the Groundwater Budget, IAH, Goring, UK, 17 pp on CD
Habermehl MA (2006) Artesian springs of the Great Artesian Basin. In: Gotch TB, Defavari J (eds) (2006) Proceedings of the 6th Great Artesian Basin Springs Researchers’ Forum, 23–24 February 2006, Adelaide. South Australian Arid Lands Natural Resources Management Board, Adelaide, Australia, pp 1–12
Habermehl MA (2009) Inter-aquifer leakage in the Queensland and New South Wales parts of the Great Artesian Basin. Final report for the Australian Government Department of Environment and Water Resources, Heritage and Arts, Bureau of Rural Sciences, Canberra, Australia, 33 pp + 22 appendices
Habermehl MA (2018) Groundwater governance in the Great Artesian Basin, Australia, chapt 21. In: Villholth KG, López-Gunn E, Conti K, Garrido A, van der Gun J (eds) Advances in groundwater governance. Taylor and Francis, London, 594 pp. http://gripp.iwmi.org/2019/01/11/book-on-advances-in-groundwater-governance-now-open-source/ and https://www.un-igrac.org/news/open-access-book-groundwater-governance. Accessed September 2019
Habermehl MA (2020) Artesian springs of the Great Artesian Basin: hydrogeology, hydrochemistry and age dating of artesian (spring) groundwater and spring deposits. In: Rossini R, Arthington A (eds) Proceedings of the Royal Society of Queensland – Springs Special Issue 2020, vol 12. Royal Society of Queensland, St. Lucia, Australia
Habermehl MA, Draper JJ (1997) Groundwater. In: Bain,JHC, Draper JJ (eds) North Queensland Geology. AGSO Bull 240, AGSO, Canberra and Queensland Geology 9, GSQ, Brisbane, pp 391–392
Habermehl MA, Lau JE (1993) Fluoride in groundwater of Cape York Peninsula. AGSO J Aust Geol Geophys 14:316–317
Habermehl MA, Lau JE (1997) Hydrogeology of the Great Artesian Basin, Australia. Australian Geological Survey Organisation, Canberra, Map at scale 1:2,500,000
Habermehl MA, Pestov I (2002) Geothermal resources of the Great Artesian Basin, Australia. Geo-Heat Center Q Bull 23(2):20–26
Habermehl MA, Ransley T (1997) Groundwater: groundwater quality, groundwater hazard and groundwater levels. In: Bain JHC, Draper JJ (eds) 1997 Atlas of North Queensland Geology 1:3 Million scale. Maps 35, 36 and 37, AGSO, Canberra and GSQ, Brisbane, pp 75–79
Habermehl MA, Seidel GE (1979) Groundwater resources of the Great Artesian Basin. In: Hallsworth EG, Woodcock JT (eds) Proceedings of the Second Invitation Symposium Land and Water Resources of Australia: Dynamics of Utilisation. Australian Academy of Technological Sciences, Sydney, pp 71–93
Habermehl MA, Lau JE, Mackenzie DE, Wellman P (1996) Sources of fluoride in groundwater in North Queensland, Australia. 13th Australian Geological Convention, Canberra. Geol Soc Austral Abstr 41:176
Habermehl MA, Devonshire J, Magee J (2009) Sustainable groundwater allocations in the intake beds of the Great Artesian Basin in New South Wales (Recharge to the New South Wales part of the Great Artesian Basin). Final report, National Water Commission, Canberra, 44 pp + 5 appendices
Hasegawa T, Mahara Y, Nakata K, Habermehl MA (2010) Verification of 4He and 36Cl dating of very old groundwater in the Great Artesian Basin, Australia. In: Taniguchi M, Holman IP (eds) Groundwater response to changing climate. IAH Selected Papers on Hydrogeology 16, Taylor and Francis, London, pp 99–111
Hasegawa T, Nakata K, Mahara Y, Habermehl MA, Oyama T, Higashihara T (2016) Characterization of a diffusion-dominant system using chloride and chlorine isotopes (36Cl, 37Cl) for the confining layer of the Great Artesian Basin, Australia. Geochim Cosmochim Acta 192:279–294
Hawke JM, Cramsie JN (1984) Contributions to the geology of the Great Australian Basin in New South Wales. Bull 31, Geological Survey of New South Wales, Maitland, Australia, 295 pp
Herczeg AL, Torgersen T, Chivas AR, Habermehl MA (1987) Geochemical evolution of groundwaters from the Great Artesian Basin, Australia. EOS Trans Am Geophys Union 68:1275–1276
Herczeg AL, Torgersen T, Chivas AR, Habermehl MA (1991) Geochemistry of ground waters from the Great Artesian Basin, Australia. J Hydrol 126:225–245
Jacobson G, Lau JE (1987) Hydrogeology of Australia. Map at scale 1:5 000 000. Bureau of Mineral Resources, Geology and Geophysics, Canberra
Jeffcoat K (1988) More precious than gold: an illustrated history of water in New South Wales. NSW Department of Water Resources, Sydney, 180 pp
Kellett JR, Ransley TR, Coram J, Jaycock J, Barclay DF, McMahon GA, Foster LM, Hillier JR (2003) Groundwater recharge in the Great Artesian Basin intake beds, Queensland. Queensland Department of Natural Resources and Mines, Brisbane, Australia
Keppel M, Clarke JA, Halihan T, Love AJ, Werner AD (2011) Mound springs in the arid Lake Eyre South region of South Australia: a new depositional tufa model and its controls. Sediment Geol 240:55–70
Keppel M, Karlstrom KE, Love AJ, Priestley S, Wohling D, De Ritter S (2013) Allocating water and maintaining springs in the Great Artesian Basin, vol 1: hydrogeological framework of the western Great Artesian Basin, National Water Commission, Canberra, 7 vols, 121 pp
Landsberg J, James CD, Morton SR, Hobbs TJ, Drew A, Tonway H (1997) The effects of artificial sources of water on rangeland biodiversity. Environment Australia & CSIRO Wildlife and Ecology, Canberra, 208 pp
Lehmann BE, Love AJ, Purtschert R, Collon P, Loosli HH, Kutschera W, Beyerle U, Aeschbach-Hertig W, Kipfer R, Frape SK, Herczeg A, Moran J, Tolstikhin IN, Gröning M (2003) A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia. Earth Planet Sci Lett 211:237–250
Love A, Herczeg AL, Sampson L, Cresswell RG, Fifield LK (2000) Sources of chloride and implications for 36Cl dating of old groundwater, southwestern Great Artesian Basin, Australia. Water Resour Res 36:1561–1574
Love AJ, Wohling D, Fulton S, Rousseau-Gueutin P (2013) In: De Ritter S (ed) Allocating water and maintaining springs in the Great Artesian Basin, vol 2: groundwater recharge, hydrodynamics and hydrochemistry of the western Great Artesian Basin. National Water Commission, Canberra, 238 pp
Love AJ, Shand P, Fulton S, Wohling D, Larlstrom KE, Crossey L, Rousseau P, Priestley SC (2017) A reappraisal of the hydrogeology of the Western margin of the Great Artesian Basin: chemistry, isotopes and groundwater flow. Procedia Earth Planet Sci 17(2017):428–431
Macaulay S, Carey H, Habermehl MA (2009) Artesian pressure trends within the Great Artesian Basin. Technical report, Bureau of Rural Sciences, Canberra, 123 pp
Magee JW, Miller GH, Spooner NA, Questiaux D (2004) Continuous 150 k.y. monsoon record from Lake Eyre, Australia: insolation-forcing implications and unexpected Holocene failure. Geology 32:885–888
Mahara Y, Habermehl MA, Miyakawa K, Shimada J, Mizuochi Y (2007) Can the 4He clock be calibrated by 36Cl for groundwater dating? Nuclear Instruments and Methods in Physics Research B 259, Proceedings AMS 10, pp 536–546. https://doi.org/10.1016/j.nimb.2007.01.198
Mahara Y, Habermehl MA, Hasegawa T, Nakata K, Ransley TR, Hatano T, Mizuochi Y, Kobayashi H, Ninomiya A, Senior BR, Yasud H, Ohta T (2009) Groundwater dating by estimation of groundwater flow velocity and dissolved 4He accumulation rate calibrated by 36Cl in the Great Artesian Basin, Australia. Earth Planet Sci Lett 287:43–56
Mazor E (1995) Stagnant aquifer concept, part 1: large-scale artesian systems—Great Artesian Basin, Australia. J Hydrol 173:219–240
McMahon GA, Ransley TM, Barclay DF, Coram J, Foster LM, Jaycock J, Hillier JR, Kellett JR (2002) Aquifer recharge in the Great Artesian Basin of Queensland, vol 11. Proceedings International Association of Hydrogeologists International Groundwater Conference, Darwin, Australia, May 2002
Middlemis H (2000) Groundwater flow modelling guideline. Murray-Darling Basin Commission, Canberra, 72 pp + appendices
National Water Commission (2013) Allocating water and maintaining springs in the Great Artesian Basin, vol VII. Summary of findings for natural resource management of the western Great Artesian Basin, National Water Commission, Canberra, 70 pp
New South Wales Department of Water and Energy (2009) Water Sharing Plan NSW Great Artesian Basin Groundwater Sources. NSW Government, Sydney
Noble JC, Habermehl MA, James CD, Landsberg J, Langston AC, Morton SR (1998) Biodiversity implications of water management in the Great Artesian Basin. Rangel J 20(2):275–300
Pirlo MC (2004) Hydrogeochemistry and geothermometry of thermal groundwaters from the Birdsville Track Ridge, Great Artesian Basin, South Australia. Geothermics 33:743–774
Ponder WF (1986) Mound springs of the Great Artesian Basin. In: De Deckker P, Williams WD (eds) Limnology in Australia. Springer, Dordrecht, The Netherlands, pp 403–420
Powell JM (1991) Plains of promise, rivers of destiny: water management and development of Queensland 1824–1990. Boolarong, Brisbane, Australia, 395 pp
Prescott JR, Habermehl MA (2008) Luminescence dating of spring mound deposits in the southwestern Great Artesian Basin, northern South Australia. Aust J Earth Sci 55:167–181
Priestley SC, Karlstrom KE, Love AJ, Crossey LJ, Polyak VJ, Asmerom Y, Meredith KT, Crow R, Keppel MN, Habermehl MA (2018) Uranium series dating of Great Artesian Basin travertine deposits: implications for palaeohydrogeology and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 490:163–177
Queensland Government Natural Resources and Water (2007) Great Artesian Basin Resource Operations Plan, Queensland Government Natural Resources and Water, Brisbane, Australia, 43 pp
Radke BM, Ferguson J, Cresswell RG, Ransley TR, Habermehl MA (2000) Hydrochemistry and implied hydrodynamics of the Cadna-owie–Hooray Aquifer, Great Artesian Basin, Australia. Bureau of Rural Sciences, Canberra, 229 pp
Ransley TR, Radke BM, Feitz AJ, Kellett JR, Owens R, Bell J, Stewart G, Carey H (2015) Hydrogeological Atlas of the Great Artesian Basin. Geoscience Australia, Canberra, 134 pp
Raymond OL (2012) Surface Geology of Australia 1:1 000 000 dataset. Geoscience Australia, Canberra
Reyenga PJ, Habermehl MA, Howden SM (1998) The Great Artesian Basin: bore rehabilitation, rangelands and groundwater management. Bureau of Resource Sciences, Canberra, 76 pp
Ring U et al (2016) Recent mantle degassing recorded by carbonic spring deposits along sinistral strike-slip faults, south-central Australia. Earth Planet Sci Lett 454:304–318
Sampson L, Wohling D, Jensen-Schmidt B, Fulton, S (2012) South Australia and Northern Territory Great Artesian Basin (Eromanga Basin) hydrogeological map: part 1 and part 2. Department of Environment, Water and Natural Resources, South Australian Government, Adelaide
Seidel GE (1980) Application of the GABHYD groundwater model of the Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5:39–45
Senior BR, Habermehl MA (1980) Structure, hydrodynamics and hydrocarbon potential of the central Eromanga Basin, Queensland, Australia. BMR J Aust Geol Geophys 5:47–55
Senior BR, Mond A, Harrison PL (1978) Geology of the Eromanga Basin. Bulletin 167, Bureau of Mineral Resources, Canberra, Australia
Shimada J, Habermehl MA, Mahara Y, Kayane I, Miyaoka K, Tanaka T (1997) A 100,000 year paleohydrological information from artesian groundwater in the Great Artesian Basin, Australia. International Workshop on Global Change and Terrestrial Environment in Monsoon Asia, Tsukuba, Japan, pp 156–159
Shimada J, Habermehl MA, Mahara Y, Kayane I (1999) Use of 36Cl to compile the recent 200 K year paleohydrological information from artesian groundwater in the Great Artesian Basin, Australia. In: Proceedings of the International Symposium on Groundwater in Environmental Problems, Chiba University, Japan, pp 125–131
Smart J, Grimes KG, Doutch HF, Pinchin J (1980) The Mesozoic Carpentaria and Cainozoic Karumba Basin, Queensland. Bulletin 202, Bureau of Mineral Resources, Canberra
Smerdon BD, Rousseau-Guetin P, Love AJ, Taylor AR, Davies PJ, Habermehl MA (2012a) Regional hydrodynamics, chapt 7. In: Ransley TR Smerdon, BD (eds) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. Technical report, CSIRO Water for a Healthy Country Flagship, Canberra
Smerdon BD, Ransley TR, Radke BM, Kellett JR (2012b) Water resource assessment for the Great Artesian Basin: a report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Canberra, 45 pp
Smerdon BD, Turnadge C (2015) Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia’s Great Artesian Basin. Hydrogeol J 23:949–960
South Australian Arid Lands Natural Resources Management Board (2009) Water Allocation Plan for the Far North Prescribed Wells Area. Natural Resources Centre SA Arid Lands, Augusta, Australia, 64 pp
Torgersen T, Clarke WB (1985) Helium accumulation in groundwater, I: an evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim Cosmochim Acta 49:1211–1218
Torgersen T, Phillips FM (1993) Reply to “Comment on ‘Chlorine-36 Dating of very old groundwater 3. Further results on the Great Artesian Basin, Australia’ by T. Torgersen et al.” by J.N. Andrews and J.C. Fontes. Water Resour Res 29:1875–1877
Torgersen T, Habermehl MA, Clarke WB (1987) Helium isotope evidence for recent subcrustal volcanism in eastern Australia. Geophys Res Lett 14:1215–1218
Torgersen T, Kennedy BM, Hiyagon H, Chiou KY, Reynolds JH, Clarke WB (1989) Argon accumulation and the crustal degassing flux of 40Ar in the Great Artesian Basin, Australia. Earth Planet Sci Lett 92:43–56
Torgersen T, Habermehl MA, Phillips FM, Elmore D, Kubik P, Jones BG, Hemmick T, Gove HE (1991) Chlorine-36 dating of very old groundwater 3. Further studies in the Great Artesian Basin, Australia. Water Resour Res 27:3201–3213
Torgersen T, Habermehl MA, Clarke WB (1992) Crustal helium fluxes and heat flow in the Great Artesian Basin. Chemical Geology (Isotope Geoscience Section) 102:139–152
Ungemach P (1975) Great Artesian Basin Groundwater Project: explanatory note on digital model package, Great Artesian Basin Simulation Model (GABSIM). Record 1975/169, Bureau of Mineral Resources, Geology and Geophysics, Canberra
Uysal IT, Ring U, Unal-Imer E, Yüce G, Imer A, Italiano F, Zhao J-X (2019) Comment on “Uranium series dating of Great Artesian Basin travertine deposits: Implications for palaeohydrogeology and palaeoclimate” by Priestley et al. 2018
Welsh WD (2000) GABFLOW: A steady state groundwater flow model of the Great Artesian Basin. Bureau of Rural Sciences, Canberra
Welsh WD (2006) Great Artesian Basin transient groundwater model. Bureau of Rural Sciences, Canberra, 58 pp
Welsh WD, Doherty J (2005) Great Artesian Basin groundwater modelling. Engineers Australia 29th Hydrology and Water Resources Symposium, Canberra, February 2995, 8 pp
Williams T, Moriarty K (1986) Hydrocarbon flushing in the Eromanga Basin: fact or fallacy? In: Gravestock DI, Moore PS, Pitt GM (eds) Contributions to the geology and hydrocarbon potential of the Eromanga Basin. Geol Soc Austral Spec Publ 12:377–384
Woolley DR, Habermehl MA, Palmer J, Sibenaler X, O’Neill D (1987) Improved efficiency of artesian groundwater use, rehabilitation of bores and conversion from drains to piping. Report to the Australian Water Resources Council-Groundwater Committee (AWRC-GC) by the Great Artesian Basin Sub-Committee. AWRC-GC, Canberra, 18 pp
Zeidler WF, Ponder WF (eds) (1989) Natural history of Dalhousie Springs. South Australian Museum, Adelaide, Australia, 138 pp
Acknowledgements
This paper draws on many of the studies and papers listed in the text and references, and the author’s studies of the hydrogeology of the Great Artesian Basin since 1971 within: the Bureau of Mineral Resources, Geology and Geophysics; Australian Geological Survey Organisation; Bureau of Rural Sciences and Geoscience Australia, Canberra, ACT, Australia. Some repetition and overlap of these studies, their results and published texts quoted in this compilation are inevitable and is acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in the special issue “Advances in hydrogeologic understanding of Australia’s Great Artesian Basin”
Electronic supplementary material
ESM 1
(PDF 517 kb)
Rights and permissions
About this article
Cite this article
Habermehl, M.A. Review: The evolving understanding of the Great Artesian Basin (Australia), from discovery to current hydrogeological interpretations. Hydrogeol J 28, 13–36 (2020). https://doi.org/10.1007/s10040-019-02036-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-019-02036-6