Skip to main content
Log in

Numerical simulation of single-well push–pull tests in a radial two-zone confined aquifer

Simulation numérique d’essais de type push–pull d’un puits unique dans un système aquifère captif radial à deux zones

Simulación numérica de ensayos push–pull de un solo pozo en un acuífero confinado radial de dos zonas

径向两区承压含水层中单井注-抽试验数值模拟研究

Simulação numérica de ensaios push–pull em poço único em um aquífero confinado radial de duas zonas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A single-well push–pull test is one of the most effective ways to estimate aquifer transport parameters. However, a patchy aquifer of finite thickness may surround the test well due to a gravel pack, mud invasion and stress redistribution during the well construction, which is usually neglected for single-well push–pull tests. In such a case, the aquifer should be regarded as a radial two-zone system, i.e., patchy zone and aquifer formation zone. In this study, a numerical model of a single-well push–pull test for a radial two-zone confined aquifer was developed using finite-element COMSOL Multiphysics. Two special cases, i.e., uniform patchy aquifer and non-uniform patchy aquifer, were considered. For the uniform patchy aquifer, results indicate that larger values of effective porosity and dispersivity in the patchy zone results in larger values of the breakthrough curves in the pumping phase. Patchy-aquifer thickness was also noted to have considerable impact on the breakthrough curves. As for the nonuniform patchy aquifer, the variation of hydraulic conductivity, dispersivity and effective porosity in the patchy zone leads to a change of concentration along the z-direction around the well screen, and as such, a smaller dispersivity of patchy regions results in more fluctuation in the concentration curve, while little impact can be found for a larger dispersivity. In addition, results showed that the average concentration over the entire screened section with an equivalent uniform patchy aquifer can be applied to interpret the data of a single-well push–pull test for the case of a nonuniform patchy aquifer.

Résumé

Un essai push–pull en puits unique est. un des moyens les plus efficace pour estimer les paramètres de transport d’un aquifère. Cependant, une partie d’aquifère colmatée d’épaisseur finie peut encercler le puits à cause d’un massif filtrant, d’une invasion de boue et de la redistribution des contraintes pendant la construction du puits, ce qui est. généralement négligé pour les essais push–pull en puits unique. Dans ce cas, l’aquifère devrait être considéré comme un système radial à deux zones, c’est-à-dire une zone colmatée et la zone de formation aquifère. Dans cette étude, un modèle numérique d’un essai push–pull en puits unique dans un aquifère captif radial à deux zones a été développé en utilisant le code à éléments finis COMSOL Multiphysics. Deux cas spéciaux, par ex., un aquifère colmaté uniformément et un aquifère colmaté non uniformément, ont été considérés. Pour l’aquifère colmaté uniformément, les résultats indiquent que des valeurs de porosité effective et de dispersivité plus élevées dans la zone colmatée impliquent des valeurs plus élevées des courbes de temps d’arrivée pendant la phase de pompage. Il faut aussi remarquer que l’épaisseur de colmatage de l’aquifère a un impact considérable sur les courbes de temps d’arrivée. Pour les aquifères colmatés de manière non uniforme, la variation de conductivité hydraulique, la dispersivité et la porosité efficace dans la zone colmatée entrainent un changement des concentrations selon la direction z autour du tubage du puits, et de ce fait, une dispersivité plus petite des régions colmatées a pour conséquence plus de fluctuations des courbes de concentration, alors qu’une dispersivité plus élevée a moins d’impact. De plus, les résultats ont montré que la concentration moyenne sur toute la section crépinée avec un aquifère colmaté uniformément peut être appliquée pour l’interprétation de données d’essais push–pull menés sur un puits unique pour le cas d’un aquifère colmaté nonuniformément.

Resumen

Una de las formas más eficaces de estimar los parámetros de transporte del acuífero es la prueba push–pull en un solo pozo. Sin embargo, un acuífero irregular de espesor finito puede envolver el pozo de prueba debido a un paquete de grava, invasión de lodo y redistribución de la tensión durante la construcción del pozo, lo cual generalmente se descuida en las pruebas push–pull de un solo pozo. En tal caso, el acuífero debe considerarse un sistema radial de dos zonas, es decir, una zona irregular y una zona de formación de acuíferos. En este estudio, se desarrolló un modelo numérico de una prueba push–pull de un solo pozo para un acuífero confinado radial de dos zonas usando elementos finitos COMSOL Multiphysics. Se examinaron dos casos especiales, a saber, el acuífero irregular uniforme y el acuífero irregular no uniforme. En el caso del acuífero irregular uniforme, los resultados indican que los valores mayores de porosidad y dispersión efectivas en la zona irregular dan como resultado valores mayores de las curvas de ruptura en la fase de bombeo. También se observó que el espesor del acuífero colgado tiene un impacto considerable en las curvas de ruptura. En cuanto al acuífero irregular no uniforme, la variación de la conductividad hidráulica, la dispersión y la porosidad efectiva en la zona irregular conduce a un cambio de concentración a lo largo de la dirección z alrededor de los filtros del pozo, y como tal, una menor dispersión de regiones irregulares resulta en una mayor fluctuación en la curva de concentración, mientras que se puede encontrar poco impacto para una mayor dispersión. Además, los resultados mostraron que la concentración media en toda la sección examinada con un acuífero irregular uniforme equivalente puede aplicarse para interpretar los datos de una prueba push–pull de un solo pozo en el caso de un acuífero irregular no uniforme.

摘要

单井注-抽试验是一种非常有效获取水文地质参数的方法之一。然而,通常我们忽略抽水井附近的补丁含水层对单井注-抽试验的影响,所谓的补丁含水层是由于抽水井砾石充填、泥浆入侵以及应力的变化导致的水文地质特征异常的一个特殊含水层。在这种情况下,抽水井附近承压含水层应该被认为是的两个区域组成的含水层系统,分别为抽水井附近的补丁区域以及外部的含水层区域。本文利用有限元COMSOL Multiphysics软件建立了抽水井附近补丁含水层的影响下的单井注-抽试验的数值模型,并且分别讨论了均匀补丁含水层和非均匀补丁含水层对单井注-抽试验的影响。对于均匀的补丁含水层,研究结果表明较大的有效孔隙度以及弥散度导致了抽水阶段的穿透曲线值的增大,并且均匀补丁含水层的厚度变化也引起穿透曲线的较大的变化。对于非均匀补丁含水层来说,补丁含水层的渗透系数、弥散度以及有效孔隙的变化均会导致抽水井滤管在垂向上溶质浓度分布曲线发生变化,并且较小的弥散度会导致较大的浓度分布曲线的波动,然而较大的弥散度对浓度分布曲线波动影响较小。另外,研究结果也表明对于非均匀补丁含水层的单井注-抽试验数据,可以用等效均匀补丁含水层并利用平均浓度来解译该数据。

Resumo

Um teste push–pull de poço único é uma das formas mais eficazes de estimar parâmetros de transporte em aquíferos. No entanto, um aquífero irregular de espessura finita pode cercar o poço de teste devido a um pacote de cascalho, invasão de lama e redistribuição de estresse durante a construção do poço, o que é normalmente negligenciado para testes push–pull de poço único. Em tal caso, o aquífero deve ser considerado como um sistema radial de duas zonas, ou seja, zona irregular e zona de formação do aquífero. Nesse estudo, um modelo numérico de um teste push–pull de poço único para um aquífero confinado de duas zonas radiais foi desenvolvido usando o COMSOL Multiphysics de elementos finitos. Foram considerados dois casos especiais, isto é, um aquífero irregular e um aquífero irregular não uniforme. Para o aquífero uniforme e irregular, os resultados indicam que valores maiores de porosidade e dispersividade efetiva na zona irregular resultam em maiores valores das curvas de ruptura na fase de bombeamento. Também foi notado que a espessura irregular do aquífero, tem um impacto considerável nas curvas de identificação. Quanto ao aquífero irregular não uniforme, a variação da condutividade hidráulica, dispersividade e porosidade efetiva na zona irregular levam a uma mudança de concentração ao longo da direção z ao redor da tela do poço e, como tal, uma menor dispersividade nas regiões irregulares resultou em maiores flutuações na curva de concentração, enquanto que para uma maior dispersividade um pequeno impacto pode ser encontrado. Além disso, os resultados mostraram que a concentração média em toda a seção filtrada com um aquífero irregular uniforme equivalente pode ser aplicada para interpretar os dados de um teste push–pull de poço único para o caso de um aquífero irregular não uniforme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Barker JA, Herbert R (1982) Pumping tests in patchy aquifers. Ground Water 20(2):150–155

    Google Scholar 

  • Bartak R, Macheleidt W, Grischek T (2017) Controlling the formation of the reaction zone around an injection well during subsurface iron removal. Water 9(2):87–99

    Google Scholar 

  • Benson DA, Tadjeran C, Meerschaert MM, Farnham I, Pohll G (2004) Radial fractional-order dispersion through fractured rock. Water Resour Res 40:W12416

    Google Scholar 

  • Berkowitz B, Scher H, Silliman SE (2000) Anomalous transport in laboratory scale, heterogeneous porous media. Water Resour Res 36:149–158

    Google Scholar 

  • Bidaux P, Tsang CF (1991) Fluid flow patterns around a well bore or an underground drift with complex skin effects. Water Resour Res 27(11):2993–3008

    Google Scholar 

  • Borgne TL, Gouze P (2008) Non-Fickian dispersion in porous media: 2. model validation from measurements at different scales. Water Resour Res 44(6):2389–2393

    Google Scholar 

  • Chang CC, Chen CS (2002) An integral transform approach for a mixed boundary problem involving a flowing partially penetrating well with infinitesimal well skin. Water Resour Res 38:1–7

    Google Scholar 

  • Chen CS, Chang CC (2002) Use of cumulative volume of constant-head injection test to estimate aquifer parameters with skin effects: field experiment and data analysis. Water Resour Res 38:189–195

    Google Scholar 

  • Chen CS, Chang CC (2006) Theoretical evaluation of non-uniform skin effect on aquifer response under constant rate pumping. J Hydrol 317:190–201

    Google Scholar 

  • Chen JS, Chen CS, Gau HS, Liu CW (1999) A two-well method to evaluate transverse dispersivity for tracer tests in a radially convergent flow field. J Hydrol 223(3–4):175–197

    Google Scholar 

  • Chen JS, Jang CS, Cheng CT, Liu CW (2010) Conservative solute approximation to the transport of a remedial reagent in a vertical circulation flow field. J Hydrol 390(3–4):155–168

    Google Scholar 

  • Chen K, Zhan HB, Yang Q (2017) Fractional models simulating non-Fickian behavior in four-stage single-well push–pull tests. Water Resour Res 53(11):9528–9545

    Google Scholar 

  • Chen YJ, Yeh HD, Chang KJ (2012) A mathematical solution and analysis of contaminant transport in a radial two-zone confined aquifer. J Contam Hydrol 138–139(2):75–82

    Google Scholar 

  • Feng Q, Wen Z (2016) Non-Darcian flow to a partially penetrating well in a confined aquifer with a finite-thickness skin. Hydrogeol J 72:1–10

    Google Scholar 

  • Gelhar LW, Collins MA (1971) General analysis of longitudinal dispersion in nonuniform flow. Water Resour Res 7(6):1511–1521

    Google Scholar 

  • Guvanasen V, Guvanasen VM (1987) An approximate semianalytical solution for tracer injection tests in a confined aquifer with a radially converging flow field and finite volume of tracer and chase fluid. Water Resour Res 23(8):1607–1619

    Google Scholar 

  • Haggerty R, Schroth MH, Istok JD (1998) Simplified method of “push–pull” test data analysis for determining in situ reaction rate coefficients. Ground Water 36(2):314–324

    Google Scholar 

  • Haggerty R, Fleming SW, Meigs LC, McKenna SA (2001) Tracer tests in a fractured dolomite: 2. analysis of mass transfer in single well injection-withdrawal tests. Water Resour Res 37(5):1129–1142

    Google Scholar 

  • Hall SH, Luttrell SP, Cronin WE (1991) A method for estimating effective porosity and ground-water velocity. Ground Water 29(2):171–174

    Google Scholar 

  • Hansen SK, Berkowitz B, Vesselinov VV, O’Malley D, Karra S (2016) Push–pull tracer tests: their information content and use for characterizing non-Fickian, mobile–immobile behavior. Water Resour Res 52(12):9565–9585

    Google Scholar 

  • Hartog N, Stuyfzand PJ (2017) Water quality considerations on the rise as the use of managed aquifer recharge systems widens. Water 9(10):808

    Google Scholar 

  • Houben GJ (2015) Review: Hydraulics of water wells—head losses of individual components. Hydrogeol J 23(8):1659–1675

    Google Scholar 

  • Houben GJ, Treskatis C (2007) Water well rehabilitation and reconstruction. McGraw-Hill, New York, 391 pp

    Google Scholar 

  • Houben GJ, Halisch M, Kaufhold S, Weidner C, Sander J, Reich M (2016) Analysis of wellbore skin samples-typology, composition, and hydraulic properties. Ground Water 54(5):634–645

    Google Scholar 

  • Hsieh PF, Yeh HD (2014) Semi-analytical and approximate solutions for contaminant transport from an injection well in a two-zone confined aquifer system. J Hydrol 519:1171–1176

    Google Scholar 

  • Huang JQ, Christ JA, Goltz MN (2010) Analytical solutions for efficient interpretation of single-well push–pull tracer tests. Water Resour Res 46(8):863–863

    Google Scholar 

  • Huang CS, Yang SY, Yeh HD (2015) Technical note: approximate solution of transient drawdown for constant-flux pumping at a partially penetrating well in a radial two-zone confined aquifer. Hydrol Earth Syst Sci 19:2639–2647

    Google Scholar 

  • Istok JD, Humphrey MD, Schroth MH, Hyman MR, O’Reilly KT (1997) Single-well“push–pull” test for in situ determination of microbial activities. Ground Water 35(4):619–631

    Google Scholar 

  • Istok JD, Field JA, Schroth MH (2001) In situ determination of subsurface microbial enzyme kinetics. Ground Water 39(3):348–355

    Google Scholar 

  • Kang PK, Le Borgne T, Dentz M, Bour O, Juanes R (2015) Impact of velocity correlation and distribution on transport in fractured media: field evidence and theoretical model. Water Resour Res 51:940–959

    Google Scholar 

  • Larsson M, Doughty C, Tsang CF, Niemi A (2013) Understanding the effect of single-fracture heterogeneity from single-well injection-withdrawal (SWIW) tests. Hydrogeol J 21(8):1691–1700

    Google Scholar 

  • Li N, Wen Z, Zhan HB, Zhu Q (2018) The single-well test dilemma: the skin effect and variable-rate pumping perspective. Hydrogeol J 26:2521–2529

    Google Scholar 

  • Lu C, Wang Z, Zhao Y, Rathore SS, Huo J, Tang Y, Liu M, Gong R, Cirpka O, Luo J (2018) A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields. J Hydrol 560:79–108

    Google Scholar 

  • Novakowski KS (1989) A composite analytical model for analysis of pumping tests affected by wellbore storage and finite thickness skin. Water Resour Res 25(9):1937–1946

    Google Scholar 

  • Paradis CJ, Mckay LD, Perfect E, Istok JD, Hazen TC (2018a) Push–pull tests for estimating effective porosity: expanded analytical solution and in situ application. Hydrogeol J 26(3):381–393

    Google Scholar 

  • Paradis CJ, Dixon ER, Lui LM, Arkin AP, Parker JC, Istok JD, Perfect E, Mckay LD, Hazen TC (2018b) Improved method for estimating reaction rates during push–pull tests. Groundwater 4:1–11

    Google Scholar 

  • Park E, Zhan HB (2002) Hydraulics of a finite-diameter horizontal well with wellbore storage and skin effect. Adv Water Resour 25:389–400

    Google Scholar 

  • Pickens JF, Jackson RE, Inch KJ, Merritt WF (1981) Measurement of distribution coefficients using a radial injection dual-tracer test. Water Resour Res 17(3):529–544

    Google Scholar 

  • Schroth MH, Istok JD (2005) Approximate solution for solute transport during spherical-flow push–pull tests. Ground Water 43(2):280–284

    Google Scholar 

  • Tsang YW (1995) Study of alternative tracer tests in characterizing transport in fractured rocks. Geophys Res Lett 22(11):1421–1424

    Google Scholar 

  • Turnadge C, Smerdon BD (2014) A review of methods for modelling environmental tracers in groundwater: advantages of tracer concentration simulation. J Hydrol 519:3674–3689

    Google Scholar 

  • van Beek CGEMV, Breedveld RJM, Juhász-Holterman M, Oosterhof A, Stuyfzand PJ (2009) Cause and prevention of well bore clogging by particles. Hydrogeol J 17(8):1877–1886

    Google Scholar 

  • van Beek CGEMV, Hubeek AA, Gonzalez BDLL, Stuyfzand PJ (2017) Chemical and mechanical clogging of groundwater abstraction wells at well field Heel, the Netherlands. Hydrogeol J 25(1):1–12

    Google Scholar 

  • Wang QR, Zhan HB, Wang Y (2017) Single-well push–pull test in transient Forchheimer flow field. J Hydrol 549:125–132

    Google Scholar 

  • Wang QR, Shi WG, Zhan HB, Gu HC, Chen KW (2018) Models of single-well push–pull test with mixing effect in the wellbore. Water Resour Res 54:10155–10171

    Google Scholar 

  • Wen Z, Wang QR (2013) Approximate analytical and numerical solutions for radial non-Darcian flow to a well in a leaky aquifer with wellbore storage and skin effect. Int J Numer Anal Methods Geomech 37:1453–1469

    Google Scholar 

  • Wen Z, Zhan HB, Huang G, Jin M (2011) Constant-head test in a leaky aquifer with a finite-thickness skin. J Hydrol 399:326–334

    Google Scholar 

  • Yang SY, Yeh HD (2006) A novel analytical solution for constant-head test in a patchy aquifer. Int J Numer Anal Methods Geomech 30(12):1213–1230

    Google Scholar 

  • Yang SY, Yeh HD (2009) Radial groundwater flow to a finite diameter well in a leaky confined aquifer with a finite-thickness skin. Hydrol Process 23:3382–3390

    Google Scholar 

  • Yeh HD, Yang S, Peng H (2003) A new closed-form solution for a radial two-layer drawdown equation for groundwater under constant-flux pumping in a finite-radius well. Adv Water Resour 26(7):747–757

    Google Scholar 

  • Yildiz T, Cinar Y (1997) Inflow performance and transient pressure behavior of selectively completed vertical wells. SPE Reserv Eval Eng 1:467–475

    Google Scholar 

Download references

Acknowledgements

We greatly appreciate the constructive comments from the Associate Editor (Dr. Willem Zaadnoordijk), which significantly helped to improve the quality of the paper. We would also like to thank the two anonymous reviewers for their useful comments and observations.

Funding

This research was partially supported by the National Natural Science Foundation of China (Grant Numbers: 41772259, 41830862, 41372253, 41521001), the Natural Science Foundation of Hubei Province, China (2018CFA085, 2018CFA028), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wen, Z., Zhu, Q. et al. Numerical simulation of single-well push–pull tests in a radial two-zone confined aquifer. Hydrogeol J 27, 2645–2658 (2019). https://doi.org/10.1007/s10040-019-02014-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02014-y

Keywords

Navigation