Advertisement

Hydrogeology Journal

, Volume 27, Issue 7, pp 2581–2593 | Cite as

Sequential indicator simulation for a three-dimensional distribution of hydrofacies in a volcano-sedimentary aquifer in Mexico City

  • Priscila Medina-Ortega
  • Eric Morales-CasiqueEmail author
  • Antonio Hernández-Espriú
Report

Abstract

The Mexico City aquifer is a complex mix of alluvial deposits and volcanic rocks overlapped by an aquitard composed of lacustrine deposits. To characterize this heterogeneous hydrogeologic system, a three-dimensional model of the distribution of hydrofacies is constructed using borehole lithological records. The analysis is based on 111 borehole logs with an average depth of 300 m, in an area of 234 km2, providing a nominal scale of resolution of 2.1 km in the plane and 2-m resolution in the vertical direction. These records were discretized to generate a georeferenced dataset of 13,518 points associated with a lithological category; nine lithological categories were observed. These categories were subsequently grouped into four hydrofacies: A and B, grouping low-permeability lithological categories (lacustrine and volcano-sedimentary materials, respectively); and C and D, grouping high-permeability lithological categories (volcanic rocks and alluvial deposits, respectively). The database was analyzed in terms of proportion of hydrofacies at depth, distribution of layer thickness, and behavior of experimental horizontal and vertical variograms. The experimental variograms of each hydrofacies were fitted to exponential models via minimization of cross-validation errors. Three-dimensional models of probability of occurrence of each hydrofacies and the combined distribution of hydrofacies were then constructed via ensemble averaging of 1,000 realizations obtained by sequential indicator simulation. The potential use of this model for water management, modeling land subsidence, and groundwater pollution is discussed.

Keywords

Indicator geostatistics Hydrofacies Aquifer heterogeneity Lithological logs Mexico 

Simulation d’indicateurs séquentiels pour une distribution tridimensionnelle d’hydro-faciès dans un aquifère volcano-sédimentaire de la Ville de Mexico

Résumé

L’aquifère de la ville de Mexico est un complexe de dépôts alluviaux et de roches volcaniques surmonté par un aquitard composé de dépôts lacustres. Pour caractériser ce système hydrogéologique hétérogène, un modèle en trois dimensions de la distribution des hydro-faciès a été construit en utilisant les enregistrements lithologiques des forages. L’analyse est effectuée sur 111 logs de forage avec une profondeur moyenne de 300 m, pour une région de 234 km2, fournissant une échelle nominale de résolution de 2.1 km en plan et de 2 m de résolution dans la direction verticale. Ces enregistrements ont été discrétisés pour générer un ensemble de données géo-référencées de 13,518 points associés à une catégorie lithologique; neuf catégories lithologiques ont été observées. Ces catégories ont ensuite été regroupées en quatre hydro-faciès: A et B, regroupant des catégories lithologiques de faible perméabilité (matériaux lacustres et volcano-sédimentaires, respectivement) et C et D, regroupant des catégories lithologiques à haute perméabilité (roches volcaniques et gisements alluviaux, respectivement). Cette base de données a été analysée selon la proportion d’hydro-faciès en fonction de la profondeur, la distribution de l’épaisseur d’une couche, et la nature des variogrammes expérimentaux horizontaux et verticaux. Les variogrammes expérimentaux de chaque hydro-faciès ont été calés sur des modèles exponentiels en minimisant les erreurs de validation croisée. Les modèles à trois dimensions de probabilité d’occurrence de chaque hydro-faciès et la distribution combinée des hydro-faciès ont ensuite été construits par une moyenne d’ensemble de 1,000 réalisations obtenues par simulation d’indicateurs séquentiels. L’utilisation potentielle de ce modèle pour la gestion de l’eau, la modélisation de la subsidence des terrains et la pollution des eaux souterraines est discuté.

Simulación de indicadores secuenciales para la distribución tridimensional de hidrofacies en un acuífero volcánico sedimentario en la Ciudad de México

Resumen

El acuífero de la Ciudad de México es una compleja mezcla de depósitos aluviales y rocas volcánicas superpuestas por un acuitardo compuesto por depósitos lacustres. Para caracterizar este sistema hidrogeológico heterogéneo, se construye un modelo tridimensional de la distribución de las hidrofacies utilizando registros litológicos de perforaciones. El análisis se basa en 111 registros de perforaciones con una profundidad media de 300 m, en un área de 234 km2, proporcionando una escala nominal de resolución de 2.1 km en el plano y 2 m en la dirección vertical. Estos registros fueron discretizados para generar un conjunto de datos georeferenciados de 13,518 puntos asociados a una categoría litológica; se observaron nueve categorías litológicas. Estas categorías se agruparon posteriormente en cuatro hidrofacies: A y B, agrupando las categorías litológicas de baja permeabilidad (materiales lacustres y volcánicos sedimentarios, respectivamente), y C y D, agrupando las categorías litológicas de alta permeabilidad (rocas volcánicas y depósitos aluviales, respectivamente). La base de datos fue analizada en términos de proporción de hidrofacies en profundidad, distribución del espesor de la capa y comportamiento de los variogramas horizontales y verticales experimentales. Los variogramas experimentales de cada una de las hidrofacies se ajustaron a los modelos exponenciales mediante la minimización de los errores de validación cruzada. Los modelos tridimensionales de probabilidad de ocurrencia de cada una de las hidrofacies y la distribución combinada de las mismas se construyeron a través de un promedio de 1,000 realizaciones obtenidas por simulación de indicadores secuenciales. Se discute el uso potencial de este modelo para la gestión del agua, la modelado de la subsidencia del terreno y la contaminación de las aguas subterráneas.

墨西哥城火山-沉积含水层中水相三维分布的序贯指示模拟

摘要

墨西哥城含水层是由冲积沉积物和与湖泊沉积物组成的隔水层重叠的火山岩经过复杂混合而成。为了表征非均质水文地质系统, 使用钻孔岩性记录建立了水相分布的三维模型。该分析基于平均深度300 m、面积234 km2的111个钻孔记录, 提供了平面分辨率为2.1 km,垂直分辨率为2 m。这些记录被离散化生成与岩性类别相关的13,51 8点的地理参考数据集;可观察到9种岩性类别。这些类别可分为四个水相:A和B, 分别为低渗透岩性类别(分别为湖相和火山-沉积物), C和D, 分别为高渗透岩性类别(火山岩和冲积沉积物)。根据水相随深度的比例, 层厚度的分布以及实验的水平和垂直变差函数特征进行了数据库分析。通过最小化交叉检验误差, 水相的实验变异函数拟合为指数模型。然后以序贯指示模拟获得的1,000个实现的集合平均来构建水相出现概率的三维模型和水相组合的分布。讨论了该模型在水管理, 地面沉降模拟和地下水污染方面的潜在用途。

Simulação sequencial indicatriz para a distribuição tridimensional de hidrofácies em um aquífero vulcanosedimentar na Cidade do México

Resumo

O aquífero da Cidade do México é uma mistura complexa de depósitos aluviais e rochas vulcânicas sobrepostas por um aquitardo composto por depósitos lacustres. Para caracterizar este sistema hidrogeológico heterogêneo, um modelo tridimensional da distribuição de hidrofácies foi construído utilizando registros litológicas de furos de sondagem. A análise baseia-se em 111 descrições de testemunhos com profundidade média de 300 m, em uma área de 234 km2, fornecendo uma escala de resolução de 2.1 km no plano e de 2 m na vertical. Esses registros foram discretizados para gerar um conjunto de dados georreferenciados de 13,518 pontos associados a uma categoria litológica; nove categorias litológicas foram observadas. Essas categorias foram posteriormente agrupadas em quatro hidrofácies: A e B agrupam categorias litológicas de baixa permeabilidade (materiais lacustres e vulcano-sedimentares, respectivamente) e C e D agrupam categorias litológicas de alta permeabilidade (rochas vulcânicas e depósitos aluviais, respectivamente). O banco de dados foi analisado em termos de proporção de hidrofácies em profundidade, distribuição da espessura da camada e comportamento dos variogramas experimentais horizontais e verticais. Os variogramas experimentais de cada hidrofácies foram ajustados por modelos exponenciais através da minimização de erros da validação cruzada. Modelos tridimensionais de probabilidade de ocorrência de cada hidrofácies e a distribuição combinada de hidrofácies foram construídas com o conjunto das médias de 1,000 realizações obtidas por simulação sequencial indicatriz. O uso potencial deste modelo para o gerenciamento de água, modelagem da subsidência do solo e poluição da água subterrânea é discutido.

Notes

Acknowledgements

The authors thank José Luis Lezama-Campos for elaborating the computational scripts for the geostatistical simulation and for processing and visualizing the data. Comments and suggestions by Martín Díaz-Viera, Peter Johnson and two anonymous reviewers were helpful for improving the manuscript.

Funding information

This research was funded by grant IA101412-2 from UNAM-DGAPA-PAPIIT and by a scholarship from CONACYT to the leading author.

References

  1. Arce JL, Layer PW, Morales-Casique E, Benowitz JA, Rangel E, Escolero OA (2013) New constraints on the subsurface geology of the Mexico City Basin: the San Lorenzo Tezonco deep well, on the basis of 40Ar/39Ar geochronology and whole-rock chemistry. J Volcanol Geothermal Res 266:34–49.  https://doi.org/10.1016/j.jvolgeores.2013.09.004. CrossRefGoogle Scholar
  2. Arce JL, Layer PW, Martínez I, Salinas JI, Macías-Romo MC, Morales-Casique E, Benowitz JA, Escolero O, Lenhardt N (2015) Geología y estratigrafía del pozo profundo San Lorenzo Tezonco y de sus alrededores, sur de la Cuenca de México [Geology and stratigraphy of the San Lorenzo Tezonco deep well and its surroundings, south of the Basin of Mexico]. Bol Soc Geol Mexicana 67(2):123–143.CrossRefGoogle Scholar
  3. Arce JL, Layer PW, Macías JL, Morales-Casique E, García-Palomo A, Jiménez-Domínguez FJ, Benowitz J, Vásquez-Serrano A (2019) Geology and stratigraphy of the Mexico Basin (Mexico City), central Trans-Mexican Volcanic Belt. J Maps 15(2):320–332.  https://doi.org/10.1080/17445647.2019.1593251 CrossRefGoogle Scholar
  4. Arroyo D, Ordaz M, Ovando-Shelley O, Guasch JC, Lermo J, Perez C, Alcantara L, Ramírez-Centeno MS (2013) Evaluation of the change in dominant periods in the lake-bed zone of Mexico City produced by ground subsidence through the use of site amplification factors. Soil Dynam Earthquake Eng 44:54–66.  https://doi.org/10.1016/j.soildyn.2012.08.009 CrossRefGoogle Scholar
  5. Auvinet G (2009) Land subsidence in Mexico City. In: Auvinet GY, Juárez M (eds) Geotechnical engineering in urban areas affected by land subsidence. Volume prepared by ISSMGE Technical Committee 36 for XVII ISSMGE Conference, Alexandria, Egypt, vol 2009. Mexican Society of Soil Mechanics, Mexico City, pp 3–11Google Scholar
  6. Avilés J, Pérez-Rocha LE (2010) Regional subsidence of Mexico City and its effects on seismic response. Soil Dynam Earthquake Eng 30(10):981–989.  https://doi.org/10.1016/j.soildyn.2010.04.009 CrossRefGoogle Scholar
  7. Cabral-Cano E, Dixon TH, Miralles-Wilhelm F, Díaz-Molina O, Sánchez-Zamora O, Carande RE (2008) Space geodetic imaging of rapid ground subsidence in Mexico City. GSA Bull 120(11–12):1556–1566.  https://doi.org/10.1130/B26001.1 CrossRefGoogle Scholar
  8. Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Mathematic Geol 28(4):453–476CrossRefGoogle Scholar
  9. Carle SF, Fogg GE (1997) Modeling spatial variability with one and multidimensional continuous-lag Markov chain. Mathemat Geol 29(7):891–918CrossRefGoogle Scholar
  10. Carreón-Freyre D, Cerca M, Gutiérrez-Calderón R, Huerta-Ladrón De Guevara M (2010) Monitoring of land subsidence and fracturing in Iztapalapa, Mexico City, In: Carreón-Freyre D, Cerca M, Galloway DL (eds) Land subsidence: associated hazards and the role of natural resources development. IAHS Publ. 339, IAHS, Wallingford, UK, pp 44–50Google Scholar
  11. Carreón-Freyre D, González-Hernández M, Cerca M, Gutiérrez-Calderón R, Jiménez Sánchez CA (2011) Caracterización geomecánica de los suelos de Iztapalapa, México, para evaluar el fracturamiento causado por deformación diferencial [Geomechanical characterization of soils in Iztapalapa, México, to evaluate fracturing caused by differential deformation]. In: Conference Proceedings 2011 Pan-Am CGS Geotechnical Conference, Canadian Geotechnical Society, Richmond, BC, pp 1599–1606Google Scholar
  12. Carrera-Hernández JJ, Gaskin SJ (2008) Spatio-temporal analysis of potential aquifer recharge: application to the Basin of Mexico. J Hydrol 353:228–246.  https://doi.org/10.1016/j.jhydrol.2008.02.012 CrossRefGoogle Scholar
  13. dell’Arciprete D, Bersezio R, Felletti F, Giudici M, Comunian A, Renard P (2012) Comparison of three geostatistical methods for hydrofacies simulation: a test on alluvial sediments. Hydrogeol J 20(2):299–311.  https://doi.org/10.1007/s10040-011-0808-0 CrossRefGoogle Scholar
  14. Deutsch CV, Journel AG (1998) GSLIB geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  15. Doherty J (2010) PEST, Model-independent parameter estimation: user manual, 5th edn. Watermark, Brisbane, AustraliaGoogle Scholar
  16. Domínguez-Mariani E, Vargas-Cabrera C, Martínez-Mijangos F, Gómez-Reyes E, Monroy-Hermosillo O (2015) Determinación de los procesos hidrogeoquímicos participantes en la composición del agua de las fuentes de abastecimiento a pobladores de la delegación Iztapalapa, D.F., México [Determination of hydrogeochemical processes associated with the composition of water from supply wells for the inhabitants of the Iztapalapa District, D.F., Mexico]. Bol Soc Geol Mexicana 67(2):299–313.  https://doi.org/10.18268/BSGM2015v67n2a12 CrossRefGoogle Scholar
  17. Escolero O, Kralisch S, Martínez SE, Perevochtchikova M (2016) Diagnóstico y análisis de los factores que influyen en la vulnerabilidad de las fuentes de abastecimiento de agua potable a la Ciudad de México, México [Diagnosis and analysis of factors that affect the vulnerability of potable water supply sources to Mexico City, Mexico]. Bol Soc Geol Mexicana 68(3):409–427CrossRefGoogle Scholar
  18. Ezzedine S, Rubin Y, Chen J (1999) Bayesian method for hydrogeological site characterization using borehole and geophysical survey data: theory and application to the Lawrence Livermore National Laboratory Superfund Site. Water Resour Res 35(9):2671–2683CrossRefGoogle Scholar
  19. Fogg GE, Noyes CD, Carle SF (1998) Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting. Hydrogeol J 6(1):131–143CrossRefGoogle Scholar
  20. Freeze RA, Massmann J, Smith L, Sperling T, James B (1990) Hydrogeological decision-analysis 1: a framework. Ground Water 28(5):738–766.  https://doi.org/10.1111/j.1745-6584.1990.tb01989.x CrossRefGoogle Scholar
  21. García-Palomo A, Zamorano JJ, López-Miguel C, Galván-García A, Carlos-Valerio V, Ortega R, Macías JL (2008) El arreglo morfoestructural de la Sierra de Las Cruces, México central [The morphostructural arrangement of the Sierra de Las Cruces, central Mexico]. Rev Mexicana Cien Geol 25(1):158–178Google Scholar
  22. He X, Koch J, Sonnenborg TO, Jørgensen F, Schamper C, Refsgaard JC (2014) Transition probability-based stochastic geological modeling using airborne geophysical data and borehole data. Water Resour Res 50.  https://doi.org/10.1002/2013WR014593 CrossRefGoogle Scholar
  23. Hernández-Espriú A, Reyna-Gutiérrez JA, Sánchez-León E, Cabral-Cano E, Carrera-Hernández J, Martínez-Santos P, Macías-Medrano S, Falorni G, Colombo D (2014) The DRASTIC-Sg model: an extension to the DRASTIC approach for mapping groundwater vulnerability in aquifers subject to differential land subsidence, with application to Mexico City. Hydrogeol J 22(6):1469–1485.  https://doi.org/10.1007/s10040-014-1130-4 CrossRefGoogle Scholar
  24. Instituto de Geofísica-UNAM (1994) Diagnóstico del estado presente de las aguas subterráneas de la Ciudad de México y determinación de sus condiciones futuras [Diagnosis of the current state of groundwater in Mexico City and determination of its future conditions]. Technical report for Departamento del Distrito Federal, Dirección General de Construcción y Operación Hidráulica, Mexico City, 110 ppGoogle Scholar
  25. Jaime-P A, Méndez-Sánchez E (2010) Evolution of Mexico City clay properties affected by land subsidence. In: Carreón-Freyre D, Cerca M, Galloway DL, Silva-Corona JJ (eds) Land subsidence, associated hazards and the role of natural resources development. IAHS Publ. 339, IAHS, Wallingford, UK, pp 232–234Google Scholar
  26. Johnson NM (1995) Characterization of alluvial hydrostratigraphy with indicator semivariograms. Water Resour Res 31(12):3217–3227CrossRefGoogle Scholar
  27. Johnson NM, Dreis SJ (1989) Hydrostratigraphic interpretation using indicator geostatistics. Water Resour Res 25(12):2501–2510CrossRefGoogle Scholar
  28. Jørgensen F, Høyera AS, Sandersen PBE, He X, Foged N (2015) Combining 3D geological modelling techniques to address variations in geology, data type and density: an example from southern Denmark. Comput Geosci 81:53–63.  https://doi.org/10.1016/j.cageo.2015.04.010 CrossRefGoogle Scholar
  29. Journel AG (1983) Nonparametric estimation of spatial distributions. Math Geol 15(3):445–468CrossRefGoogle Scholar
  30. Lozano-García S, Brown ET, Ortega B, Caballero M, Werne J, Fawcett PJ, Schwalb A, Valero-Garcés BL, Schnurrenberger D, O’Grady R, Stockhecke M, Steinman B, Cabral-Cano E, Caballero C, Sosa-Nájera S, Soler AM, Pérez L, Noren A, Myrbo A, Bücker M, Wattrus N, Arciniega A, Wonik T, Watt S, Kumar D, Acosta C, Martínez I, Cossio R, Ferland T, Vergara-Huerta F (2017) Perforación profunda en el lago de Chalco: reporte técnico [Deep drilling at the Chalco lake: a technical report]. Bol Soc Geol Mexicana 69(2):299–311.  https://doi.org/10.18268/BSGM2017v69n2a2 CrossRefGoogle Scholar
  31. Marsal RJ, Mazari M (1959) The subsoil of Mexico City, vol 377. Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  32. Medina-Ortega P (2016) Modelo geoestadístico de hidrofacies y parametrización hidrogeológica de una porción del acuífero aluvial de la Ciudad de México [Geostatistical model of hydrofacies and hydrogeologic parameterization of a portion of the alluvial aquifer of Mexico City]. MSc Thesis, Universidad Nacional Autónoma de México, Mexico, 227 ppGoogle Scholar
  33. Montiel-Palma S, Armienta-Hernández MA, Rodríguez-Castillo R, Domínguez-Mariani E (2014) Identificación de zonas de contaminación por nitratos en el agua subterránea de la zona sur de la Cuenca de México [Identification of zones contaminated by nitrate in groundwater in the southern portion of the Basin of Mexico]. Rev Internacional de Contaminación Ambiental 30(2):149–165Google Scholar
  34. Morales-Casique E, Escolero OA, Arce JL (2015) Estimación de parámetros mediante inversión y análisis de las pérdidas hidráulicas lineales y no-lineales durante el desarrollo y aforo del pozo San Lorenzo Tezonco [Estimation of parameters using inversion and analysis of linear and non-linear hydraulic losses during the development and step-drawdown testing of the San Lorenzo Tezonco well]. Bol Soc Geol Mexicana 67(2):203–214.  https://doi.org/10.18268/BSGM2015v67n2a5 CrossRefGoogle Scholar
  35. Mooser F (2018) Geología del Valle de México y otras regiones del país, vol I [Geology of the Valley of Mexico and other regions of the country, vol 1], 1st edn. Colegio de Ingenieros Civiles de México, Mexico CityGoogle Scholar
  36. Moysey S, Caers J, Knight R, Allen-King RM (2003) Stochastic estimation of facies using ground penetrating radar data. Stochast Environ Res Asses 17(5):306–318.  https://doi.org/10.1007/s00477-003-0152-6 CrossRefGoogle Scholar
  37. National Research Council (1995) Mexico City’s water supply: improving the outlook for sustainability. The National Academies Press, Washington, DC.  https://doi.org/10.17226/4937
  38. Ortega-Guerrero A, Rudolph DL, Cherry JA (1999) Analysis of long-term land subsidence near Mexico City: field investigations and predictive modeling. Water Resour Res 35(11):3327–3341CrossRefGoogle Scholar
  39. Ortega-Guerrero B, Lozano-García S, Herrera-Hernandez D, Caballero M, Beramendi-Orosco L, Bernal JP, Torres-Rodríguez E, Avendano-Villeda D (2017) Lithostratigraphy and physical properties of lacustrine sediments of the last ca. 150 kyr from Chalco basin, central Mexico. J South Am Earth Sci 79:507–524.  https://doi.org/10.1016/j.jsames.2017.09.003 CrossRefGoogle Scholar
  40. Ovando-Shelley E, Ossa A, Santoyo E (2013) Effects of regional subsidence and earthquakes on architectural monuments in Mexico City. Bol Soc Geol Mexicana 65(1):157–167CrossRefGoogle Scholar
  41. Poeter E, Gaylord DR (1990) Influence of aquifer heterogeneity on contaminant transport at the Hanford Site. Ground Water 28(6):900–909.  https://doi.org/10.1111/j.1745-6584.1990.tb01726.x CrossRefGoogle Scholar
  42. Ritzi RW, Jayne DF, Zahradnik AJ, Field AA, Fogg GE (1994) Geostatistical modeling of heterogeneity in glaciofluvial, buried-valley aquifers. Ground Water 32(4):666–674.  https://doi.org/10.1111/j.1745-6584.1994.tb00903.x CrossRefGoogle Scholar
  43. Ritzi RW (2000) Behavior of indicator variograms and transition probabilities in relation to the variance in lengths of hydrofacies. Water Resour Res 36(11):3375–3381CrossRefGoogle Scholar
  44. Ritzi RW, Dominic DF, Slesers AJ, Greer CB, Reboulet EC, Telford JA, Masters RW, Klohe CA, Bogle JL, Means BP (2000) Comparing statistical models of physical heterogeneity in buried-valley aquifers. Water Resour Res 36(11):3179–3192CrossRefGoogle Scholar
  45. Tortajada C (2006) Water management in Mexico City metropolitan area. Water Resour Develop 22(2):353–376.  https://doi.org/10.1080/07900620600671367 CrossRefGoogle Scholar
  46. Valencia-Cruz, NI (2002) Geología y correlación litoestratigráfica del subsuelo de la porción sur sureste del Valle de México. Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, 85 ppGoogle Scholar
  47. Vargas C, Ortega-Guerrero A (2004) Fracture hydraulic conductivity in the Mexico City clayey aquitard: field piezometer rising-head tests. Hydrogeol J 12(3):336–344.  https://doi.org/10.1007/s10040-003-0302-4 CrossRefGoogle Scholar
  48. Vazquéz-Sanchéz E, Jaimes-Palomera R (1989) Geología de la Cuenca de México [Geology of the Basin of Mexico]. Geofís Int 28(2):133–190Google Scholar
  49. Zapata-Norberto B, Morales-Casique E, Herrera GS (2018) Nonlinear consolidation in randomly heterogeneous highly compressible aquitards. Hydrogeol J 26(3):755–769.  https://doi.org/10.1007/s10040-017-1698-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Priscila Medina-Ortega
    • 1
  • Eric Morales-Casique
    • 2
    Email author
  • Antonio Hernández-Espriú
    • 3
  1. 1.Posgrado en Ciencias de la TierraUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  2. 2.Instituto de GeologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  3. 3.Hydrogeology Group, Facultad de IngenieríaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations