Skip to main content

Advertisement

Log in

Review: Advances in groundwater potential mapping

Revue: Avancées sur la cartographie de la disponibilité des ressources en eaux souterraines

Revisión: Avances en la cartografía de potencial hidrogeológico

评述:地下水势制图的进展

Revisão: Avanços no mapeamento do potencial de águas subterrâneas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater resources can be expected to be increasingly relied upon in the near future, as a consequence of rapid population growth and global environmental change. Cost-effective and efficient techniques for groundwater exploration are gaining recognition as tools to underpin hydrogeological surveys in mid- and low-income regions. This paper provides a state of the art on groundwater potential mapping, an explorative technique based on remote sensing and geographical databases that has experienced major developments in recent years. A systematic review of over 200 directly relevant papers is presented. Twenty variables were found to be frequently involved in groundwater potential investigations, of which eight are almost always present: geology, lineaments, landforms, soil, land use/land cover, rainfall, drainage density, and slope. The more innovative approaches draw from satellite images to develop indicators related to vegetation, evapotranspiration, soil moisture and thermal anomalies, among others. Data integration is carried out either through expert judgement or through machine-learning techniques, the latter being less common. Three main conclusions were reached: (1) for optimal results, groundwater mapping must be used as a tool to complement field work, rather than a low-cost substitute; (2) the potential of remote-sensing techniques in groundwater exploration is enormous, particularly when the power of machine learning is harnessed by involving human judgement; (3) quality assurance remains the main challenge ahead, as exemplified by the fact that a majority of the existing studies in the literature lack adequate validation.

Résumé

Il est attendu, comme conséquence de l’augmentation rapide de la population et des changements environnementaux globaux, que les ressources en eaux souterraines soient de plus en plus nécessaires dans le futur. Des techniques efficaces et à bas coût pour l’exploration des aquifères sont de plus en plus reconnues en tant qu’outils en support aux investigations hydrogéologiques dans les régions à moyen et bas revenus. Cet article dresse un état de l’art concernant la cartographie du potentiel en eaux souterraines, une technique exploratoire basée sur la télédétection et les bases de données géographiques qui ont montré d’importants développements ces dernières années. Un examen systématique de plus de 200 articles traitant directement ce sujet est présenté. Vingt variables sont fréquemment prises en compte dans les études du potentiel en eaux souterraines, dont huit sont presque systématiquement utilisées: géologie, linéaments, reliefs, sol, utilisation/occupation des sols, pluies, densité de drainage, et pentes. Les approches les plus innovantes se basent sur les images satellitaires pour développer des indicateurs liés, entre autre, à la végétation, l’évapotranspiration, l’humidité des sols et les anomalies thermiques. L’intégration des données est réalisée soit par avis d’experts soit, moins fréquemment, par des techniques d’apprentissage machine. Trois conclusions principales peuvent être établies: (1) pour un résultat optimal, la cartographie du potentiel doit être utilisée comme un outil complémentaire au travail de terrain plutôt qu’un substitut à bas coût; (2) le potentiel d’utilisation des techniques de télédétection est très important, surtout lorsque la puissance de l’apprentissage machine est consolidée par l’avis d’expert; (3) le contrôle de la qualité reste le défi principal pour le futur, la majorité des études relevées dans la littérature manquant cruellement d’une validation adéquate.

Resumen

Las aguas subterráneas constituyen un recurso estratégico cuya importancia tenderá a incrementarse en el actual contexto de crecimiento poblacional y cambio climático. Las técnicas de exploración y prospección basadas en metodologías de bajo coste son de especial importancia en regiones de renta media y baja. Este artículo presenta un estado del arte sobre la cartografía de potencial hidrogeológico, una técnica exploratoria basada en la utilización conjunta de teledetección, cartografía tradicional y sistemas de información geográfica que ha experimentado importantes avances en tiempos recientes. Para su elaboración se ha llevado a cabo la revisión de más de 200 artículos de la bibliografía especializada. Hasta veinte variables distintas se encuentran habitualmente en trabajos de estas características, de las cuales ocho aparecen casi siempre: litología, lineamientos, geomorfología, suelo, uso del territorio, precipitación, densidad de drenaje y pendiente. Los estudios de carácter más avanzado utilizan además imágenes de satélite para el desarrollo de indicadores relativos a la vegetación, evapotranspiración, humedad y anomalías térmicas, entre otros. La integración de todas las capas de información se lleva a cabo habitualmente mediante criterio experto, siendo las técnicas de aprendizaje artificial menos comunes. De lo anterior se derivan tres conclusiones principales: (1) la cartografía de potencial hidrogeológico debe interpretarse como una herramienta para complementar el trabajo de campo, más que como un sustituto de bajo coste para el mismo; (2) el potencial de este tipo de técnicas es enorme, especialmente si se combina el criterio experto con las posibilidades que hoy brinda la inteligencia artificial; y (3) el control de calidad constituye el principal reto de futuro, como demuestra el hecho de que la mayoría de los estudios consultados carece de un procedimiento de validación.

摘要

由于人口迅速增长和全球环境变化,预计在不久的将来地下水资源的依赖性将逐渐增加。经济有效的地下水勘探技术正被认为是支撑中低收入地区水文地质调查的工具。本文提供了基于近年来经历重大发展的遥感和地理数据库探索技术的地下水势制图的最新技术。对200多篇直接相关论文进行了系统评述。发现与地下水势相关的20个常用变量,其中8个经常被用到:地质,地表特征,地貌,土壤,土地利用/土地覆盖,降雨,排水密度和坡度。更具创新的方法是利用卫星图像来确定与植被,蒸散发,土壤湿度和热异常等有关的指标。数据集成通过专家判断或机器学习技术进行,后者不常见。得出了三个主要结论:(1)为获得最佳结果,必须将地下水势制图作为补充野外工作的工具,而不是低成本的替代品。(2)遥感技术在地下水勘探中的潜力是巨大的,特别是当包括人类判断的机器学习的能力。(3)质量保证仍然是未来的主要挑战,例如文献中的大多数现有研究缺乏充分的验证。

Resumo

Espera-se que os recursos hídricos subterrâneos sejam crescentemente demandados até um futuro próximo, como consequência do rápido crescimento populacional e mudanças ambientais globais. Técnicas custo-efetivas e eficientes para exploração de águas subterrâneas estão ganhando reconhecimento como ferramenta para sustentar pesquisas hidrogeológicas em regiões de baixa e média renda. Este trabalho fornece o estado da arte para o mapeamento do potencial hídrico subterrâneo, uma técnica exploratória baseada em sensoriamento remoto e bancos de dados geográficos que tem experienciado desenvolvimentos expressivos nos últimos anos. Uma revisão sistemática de mais de 200 artigos relevantes são apresentados. Descobriu-se que vinte variáveis são frequentemente envolvidas em investigações sobre o potencial das águas subterrâneas, oito das quais são quase sempre presentes: geologia, lineamentos, relevo, solo, uso e cobertura da terra, precipitação, densidade de drenagem e declividade. As abordagens mais inovadoras partem de imagens de satélite para desenvolver indicadores relacionados à vegetação, evapotranspiração, umidade do solo, anomalias termais, entre outros. A integração de dados é realizada seja através de julgamento especialista ou através de técnicas de aprendizado de máquinas, sendo a última menos comum. Três principais conclusões foram alcançadas: (1) para resultados ótimos, o mapeamento da água subterrânea deve ser utilizado como uma ferramenta para complementar o trabalho de campo, em vez de um substituto de baixo custo; (2) o potencial de técnicas de sensoriamento remoto na exploração de águas subterrâneas é enorme, particularmente quando o poder de aprendizado da máquina é aproveitado ao envolver o julgamento humano; (3) a garantia de qualidade permanece sendo o principal desafio, como exemplificado pelo fato de que a maioria dos estudos existentes na literatura não possui validação adequada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdalla F (2012) Mapping of groundwater prospective zones using remote sensing and GIS techniques: a case study from the central Eastern Desert, Egypt. J Afr Earth Sci 70:8–17

    Article  Google Scholar 

  • Abrams W, Ghoneim E, Shew R, LaMaskin T, Al-Bloushi K, Hussein S, AbuBakr M, Al-Mulla E, Al-Awar M, El-Baz F (2018) Delineation of groundwater potential (GWP) in the northern United Arab Emirates and Oman using geospatial technologies in conjunction with simple additive weight (SAW), analytical hierarchy process (AHP), and probabilistic frequency ratio (PFR) techniques. J Arid Environ. https://doi.org/10.1016/j.jaridenv.2018.05.005

  • Adeyeye OA, Ikpokonte AE, Arabi AS (2015) The dual use of drainage characteristics in groundwater potential modelling using remote sensing and GIS: an example from Dengi area, northcentral Nigeria. Sustain Water Resour Manag. https://doi.org/10.1007/s40899-018-0261-5

  • Agarwal E, Agarwal R, Garg RD, Garg PK (2013) Delineation of groundwater potential zone: an AHP/ANP approach. J Earth Syst Sci 122(3):887–898

    Article  Google Scholar 

  • Agarwal R, Garg PK (2016) Remote sensing and GIS based groundwater potential & recharge zones mapping using multi-criteria decision making technique. Water Resour Manag 30:243–260. https://doi.org/10.1007/s11269-015-1159-8

    Article  Google Scholar 

  • Ahmed K, Shahid S, Bin Harun S, Ismail T, Nawaz N, Shamsudin S (2014) Assessment of groundwater potential zones in an arid region based on catastrophe theory. Earth Sci Inf. https://doi.org/10.1007/s12145-014-0173-3

  • Ahmed R, Sajjad H (2018) Analyzing factors of groundwater potential and its relation with population in the lower Barpani watershed, Assam, India. Nat Resour Res 27(4):503–515

    Article  Google Scholar 

  • Akinlalu AA, Adegbuyiro A, Adiat KAN, Akeredolu BE, Lateef WY (2017) Application of multi-criteria decision analysis in prediction of groundwater resources potential: a case of Oke-Ana, Ilesa area southwestern, Nigeria. NRIAG J Astron Geophys 6:184–200

    Article  Google Scholar 

  • Al Abadi AM (2015) Groundwater potential mapping at northeastern Wasit and Missan governorates, Iraq using a data-driven weights of evidence technique in framework of GIS. Environ Earth Sci 74:1109–1124. https://doi.org/10.1007/s12665-015-4097-0

    Article  Google Scholar 

  • Al Abadi AM, Pourghasemi HR, Shahid S, Ghalib H (2017) Spatial mapping of groundwater potential using entropy weighted linear aggregate novel approach and GIS. Arab J Sci Eng 42:1185–1199. https://doi.org/10.1007/s13369-016-2374-1

    Article  Google Scholar 

  • Al Saud M (2010) Mapping potential areas for groundwater storage in Wadi Aurnah Basin, western Arabian peninsula, using remote sensing and geographic information system techniques. Hydrogeol J 18:1481–1495

  • Al Shaheeb AA, Al-Adamat R, Al-Fugara A, Al-Amoush H, AlAyyash S (2018) Delineating groundwater potential zones within the Azraq Basin of central Jordan using multi-criteria GIS analysis. Groundw Sustain Devel 7:82–90

    Article  Google Scholar 

  • Aladejana OO, Anifowose AYB, Fagbohun BJ (2016) Testing the ability of an empirical hydrological model to verify a knowledge-based groundwater potential zone mapping methodology. Model Earth Syst Environ 2:174. https://doi.org/10.1007/s40808-016-0234-3

    Article  Google Scholar 

  • Ali H, Priju CP, Prasad NBN (2015) Delineation of groundwater potential zones in deep Midland aquifers along Bharathapuzha River basin, Kerala using geophysical methods. Aquatic Procedia 4:1039–1046

    Article  Google Scholar 

  • An Y, Wang Y, Zhang H, Wu X (2012) GIS-based suitability assessment for shallow groundwater development in Zhangye Basin. Procedia Environ Sci 12:1397–1403

    Article  Google Scholar 

  • Assatse WT, Nouck PN, Tabod CT, Akame JM, Biringanine GN (2016) Hydrogeological activity of lineaments in Yaounde Cameroon region using remote sensing and GIS techniques. Egypt J Remote Sens Space Sci 19:49–60

    Google Scholar 

  • Aydav PSS, Mizn S (2015) Modified self-learning with clustering for the classification of remote sensing images. Proced Comput Sci 58:97–104

    Article  Google Scholar 

  • Bagyaraj M, Ramkumar T, Venkatramanan S, Gurugnanam B (2012) Application of remote sensing and GIS analysis for identifying groundwater potential zone in parts of Kodaikanal taluk, South India. Front Earth Sci 7(1):65–75. https://doi.org/10.1007/s11707-012-0347-6

    Article  Google Scholar 

  • Balamurugan G, Seshan K, Bera S (2017) Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert, India. J King Saud Univ Sci 29:333–347

    Article  Google Scholar 

  • Bannari A, Morin D, Bonn F, Huete A (1995) A review of vegetation indices. Remote Sens Rev 13(1):95–120

    Article  Google Scholar 

  • Barsi JA, Lee K, Kvaran G, Markham BL, Pedelty JA (2014) The spectral response of the Landsat-8 operational land imager. Remote Sens 6:10232–10251

    Article  Google Scholar 

  • Bashe BB (2017) Groundwater potential mapping using remote sensing and GIS in Rift Valley Lakes Basin, Weito Sub Basin, Ethiopia. Int J Sci Eng Res 8(2):43–51

    Google Scholar 

  • Bayewu OO, Oloruntola MO, Mosuro GO, Laniyan TA, Ariyo AO, Fatoba JO (2018) Assessment of groundwater prospect and aquifer protective capacity using resistivity method in Olabisi Onabanjo University campus, Ago-Iwoye, southwestern Nigeria. NRIAG J Astron Geophys. https://doi.org/10.1016/j.nrjag.2018.05.002

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24(1):43–69. https://doi.org/10.1080/02626667909491834

    Article  Google Scholar 

  • Bishop C (2018) Geological remote sensing. Int J Appl Earth Obs Geoinf 64:267–274

    Article  Google Scholar 

  • Bruning JN, Gierke JS, Maclean AL (2011) An approach to lineament analysis for groundwater exploration in Nicaragua. Photogramm Eng Remote Sens 77(5):509–519

    Article  Google Scholar 

  • Burton-Johnson A, Black M, Fretwell PT, Kaluza-Gilbert J (2016) An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10:1665–1677

    Article  Google Scholar 

  • Calera A, Campos I, Osann A, D’Urso G, Menenti M (2017) Remote sensing for crop water management: from ET modelling to services for the end users. Sensors 17(5). https://doi.org/10.3390/s17051104

  • Chaudhary BS, Kumar S (2017) Identification of groundwater potential zones using remote sensing and GIS of K-J watershed, India. J Geol Soc India 91(2018):717–721

    Google Scholar 

  • Chen W, Li H, Houa E, Wang S, Wang G, Panahi M, Li T, Peng T, Guo C, Niua C, Xiao L, Wang J, Xie X, Ahmad BB (2018) GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci Total Environ 634:853–867

    Article  Google Scholar 

  • Chilton PJ, Foster SSD (1995) Hydrogeological characterisation and water-supply potential of basement aquifers in tropical Africa. Hydrogeol J 3(1):36–49

    Article  Google Scholar 

  • Crossman J, Bradley C, David JNW, Milner AM (2012) Use of remote sensing to identify areas of groundwater upwelling on active glacial floodplains: their frequency, extent and significance on a landscape scale. Remote Sens Environ 123:116–126

    Article  Google Scholar 

  • Dadgar MA, Zeaieanfirouzabadi P, Dashti M, Porhemmat R (2017) Extracting of prospective groundwater potential zones using remote sensing data, GIS, and a probabilistic approach in Bojnourd basin, NE of Iran. Arab J Geosci 10:114. https://doi.org/10.1007/s12517-017-2910-7

    Article  Google Scholar 

  • Dailey D, Sauck W, Sultan M, Milewski A, Ahmed M, Laton WR, Elkadiri R, Foster J, Schmidt C, Al Harbi T (2015) Geophysical, remote sensing, GIS, and isotopic applications for a better understanding of the structural controls on groundwater flow in the Mojave Desert. Cal J Hydrol Regional Studies 3:211–232

    Article  Google Scholar 

  • Dar IA, Sankar K, Dar MA (2010) Remote sensing technology and geographic information system modeling: An integrated approach towards the mapping of groundwater potential zones in hardrock terrain, Mamundiyar basin. J Hydrol 394:285–295

    Article  Google Scholar 

  • Das S, Gupta A, Ghosh S (2017) Exploring groundwater potential zones using MIF technique in semi-arid region: a case study of Hingoli district, Maharashtra. Spat Inf Res 25(6):749–756

    Article  Google Scholar 

  • Das S, Pardeshi SD, Kulkarni PP, Doke A (2018) Extraction of lineaments from different azimuth angles using geospatial techniques: a case study of Pravara basin, Maharashtra, India. Arab J Geosci 11:160. https://doi.org/10.1007/s12517-018-3522-6

    Article  Google Scholar 

  • Dasho OA, Ariyibi EA, Akinluyi FO, Awoyemi MO, Adebayo AS (2017) Application of satellite remote sensing to groundwater potential modeling in Ejigbo area, southwestern Nigeria. Model Earth Syst Environ 3:615–633. https://doi.org/10.1007/s40808-017-0322-z

    Article  Google Scholar 

  • DEP (1993) Carte hydrogeologique du Burkina Faso [Hydrogeological map of Burkina Faso]. Direction des Etudes de la Planification, Ministère de l’Eau, Ouagadougou, Burkina Faso, 45 pp

  • DGEP (2016) Inventaire nationale des ouvrages [National inventory of public works]. Direction Générale de l’Eau Potable, Ouagadougou, Burkina Faso, 440 pp

  • Diaz-Alcaide S, Martínez-Santos P, Villarroya F (2017) A commune-level groundwater potential map for the Republic of Mali. Water 9:839. https://doi.org/10.3390/w9110839

    Article  Google Scholar 

  • Dinesan VP, Gopinath G, Ashitha MK (2015) Application of geoinformatics for the delineation of groundwater prospect zones: a case study for Melattur Grama panchayat in Kerala, India. Aquatic Proced 4(105):1389–1396

    Article  Google Scholar 

  • DNH (2010) Données Hydrogeologiques et des Forages [Hydrogeological data and drilling]. Direction Nationale de l’Hydraulique, Ministère de l’Environnement, de l’Eau et de l’Assainissement, Bamako, Mali

  • Duan H, Deng Z, Deng F, Wang D (2016) Assessment of groundwater potential based on multicriteria decision making model and decision tree algorithms. Math Probl Eng. https://doi.org/10.1155/2016/2064575

  • Ducart DF, Moreira-Silva A, Toledo CLB, Mozer de Assis L (2016) Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil. Brazilian J Geol 46(3):331–349

    Article  Google Scholar 

  • Elbeih SF (2015) An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Eng J 6:1–15

    Article  Google Scholar 

  • Elhag M (2017) Consideration of Landsat-8 spectral band combination in typical Mediterranean Forest classification in Halkidiki, Greece. Open Geosci 9:468–479

    Article  Google Scholar 

  • Fashae OA, Tijani MN, Talabi OA, Adedeji OI (2014) Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach. Appl Water Sci 4:19–38. https://doi.org/10.1007/s13201-013-0127-9

    Article  Google Scholar 

  • Feng W, Zhong M, Lemoine JM, Biancale R, Hsu HT, Xia J (2013) Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements. Water Resour Res 49(4):2110–2118

    Article  Google Scholar 

  • Fetter CW (1993) Contaminant hydrogeology. Macmillan, New York

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, 604 pp

    Google Scholar 

  • Gabriel BO, Olusola OM, Omowonuola AF, Lawrence AO (2014) A preliminary assessment of the groundwater potential of Ekiti state, southwestern Nigeria, using terrain and satellite imagery analyses. J Environ Earth Sci 4(18):33–43

    Google Scholar 

  • García-Rodríguez M, Antón L, Martínez-Santos P (2014) Estimating groundwater resources in remote desert environments by coupling geographic information systems with groundwater modeling (Erg Chebbi, Morocco). J Arid Environ 110:19–29

    Article  Google Scholar 

  • Ghodratabadi S, Feizi F (2015) Identification of groundwater potential zones in Moalleman, Iran by remote sensing and index overlay technique in GIS. Iranian J Earth Sci 7:142–152

    Google Scholar 

  • Gokool S, Riddell ES, Swemmer A, Nippert JB, Raubenheimer R, Chetty KT (2018) Estimating groundwater contribution to transpiration using satellite-derived evapotranspiration estimates coupled with stable isotope analysis. J Arid Environ 152:45–54

    Article  Google Scholar 

  • Govindaraj V, Karthick P, Lakshumanan C (2017) Assessment of groundwater potential zones using remote sensing and GIS techniques in Gomukhi River basin of Tamilnadu, India. Int Res J Earth Sci (11):1–12

  • Gumma MK, Pavelic P (2013) Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling. Environ Monit Assess 185:3561–3579. https://doi.org/10.1007/s10661-012-2810-y

    Article  Google Scholar 

  • Gupta RP (2018) Remote sensing geology, 3rd edn. Springer, Berlin, 428 pp

    Book  Google Scholar 

  • Hadzic E, Lazovic N, Mulaomerovic-Seta A (2015) The importance of groundwater vulnerability maps in the protection of groundwater sources: key study—Sarajevsko Polje. Procedia Environ Sci 25:104–111

    Article  Google Scholar 

  • Haghizadeh A, Moghaddam DD, Pourghasemii HR (2017) GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran). J Earth Syst Sci 126:109. https://doi.org/10.1007/s12040-017-0888-x

    Article  Google Scholar 

  • Han T, Nelson J (2015) Mapping hydrothermally altered rocks with Landsat 8 imagery: a case study in the KSM and Snowfi eld zones, northwestern British Columbia. In: Geological Fieldwork 2014, British Columbia Geological Survey Paper 2015-1:103-112

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction. Springer, New York, 745 pp

    Book  Google Scholar 

  • Helaly AS (2017) Assessment of groundwater potentiality using geophysical techniques in Wadi Allaqi basin, Eastern Desert, Egypt: case study. NRIAG J Astron Geophys 6:408–421

    Article  Google Scholar 

  • Hernández-Espriú A, Reyna-Gutiérrez JA, Sánchez-León E, Cabral-Cano E, Carrera-Hernández J, Martínez-Santos P, Falorni G, Colombo D (2014) DRASTIC-Sg model, a new extension to the DRASTIC approach for mapping groundwater vulnerability in aquifers subject to differential land subsidence: application to Mexico City. Hydrogeol J 22(6):1–17

    Article  Google Scholar 

  • Huang Y, Chen ZX, Yu T, Huang XZ, Gu XF (2018) Agricultural remote sensing big data: management and applications. J Integr Agric 17(9):1915–1931

    Article  Google Scholar 

  • Hussein AA, Govindu V, Nigusse AGM (2017) Evaluation of groundwater potential using geospatial techniques. Appl Water Sci 7:2447–2461. https://doi.org/10.1007/s13201-016-0433-0

    Article  Google Scholar 

  • Ibrahim-Bathis K, Ahmed SA (2016) Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. Egypt J Remote Sens Space Sci 19:223–234

    Google Scholar 

  • Jahan CS, Rahaman MF, Arefin R, Ali MS, Mazumder QH (2018) Delineation of groundwater potential zones of Atrai–Sib river basin in north-west Bangladesh using remote sensing and GIS techniques. Sustain Water Resour Manag. https://doi.org/10.1007/s40899-018-0240-x

  • Jaiswal RK, Mukherjee S, Krishnamurthy J, Saxena R (2003) Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development: an approach. Int J Remote Sens 24(5):993–1008

    Article  Google Scholar 

  • Jasmin I, Mallikarjuna P (2011) Review: Satellite-based remote sensing and geographic information systems and their application in the assessment of groundwater potential, with particular reference to India. Hydrogeol J 19:729–740. https://doi.org/10.1007/s10040-011-0712-7

    Article  Google Scholar 

  • Jasrotia AS, Kumar A, Singh R (2016) Integrated remote sensing and GIS approach for delineation of groundwater potential zones using aquifer parameters in Devak and Rui watershed of Jammu and Kashmir, India. Arab J Geosci 9:304

    Article  Google Scholar 

  • Jenifer MA, Jha MK (2017) Comparison of analytic hierarchy process, catastrophe and entropy techniques for evaluating groundwater prospect of hard-rock aquifer systems. J Hydrol 548:605–624

    Article  Google Scholar 

  • Jha MK, Chowdhury A, Chowdary VM, Peiffer S (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manag 21:427–467

    Article  Google Scholar 

  • Jothibasu A, Anbazhagan S (2017) Spatial mapping of groundwater potential in Ponnaiyar River basin using probabilistic-based frequency ratio model. Model Earth Syst Environ 3:33. https://doi.org/10.1007/s40808-017-0283-2

    Article  Google Scholar 

  • Kelleher JD, MacNamee B, D’Arcy A (2015) Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies. MIT Press, Cambridge, 690 pp

    Google Scholar 

  • Konkul J, Rojborwornwittaya W, Chotpantarat S (2014) Hydrogeologic characteristics and groundwater potentiality mapping using potential surface analysis in the Huay Sai area, Phetchaburi province, Thailand. Geosci J 18(1):89–103. https://doi.org/10.1007/s12303-013-0047-6

    Article  Google Scholar 

  • Kumar T, Gautam AK, Kumar T (2014) Appraising the accuracy of GIS-based multi-criteria decision making technique for delineation of groundwater potential zones. Water Resour Manag 28:4449–4466

    Article  Google Scholar 

  • Kumar P, Herath S, Avtar R, Takeuchi K (2016) Mapping of groundwater potential zones in Killinochi area, Sri Lanka, using GIS and remote sensing techniques. Sustain Water Resour Manag 2:419–430. https://doi.org/10.1007/s40899-016-0072-5

    Article  Google Scholar 

  • Lakshmi V (2016) Beyond GRACE: using satellite data for groundwater investigations. Ground Water 54(5):615–618

    Article  Google Scholar 

  • Leblanc M, Favreau G, Tweed S, Leduc C, Razack M, Mofor L (2007) Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa. Hydrogeol J 15(1):97–100

    Article  Google Scholar 

  • Lee S, Kim YS, Oh HJ (2012) Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. J Environ Manag 96:91–105

    Article  Google Scholar 

  • Liu T, Yan H, Zhai L (2015) Extract relevant features from DEM for groundwater potential mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, volume XL-7/W4. International Workshop on Image and Data Fusion, Kona, Hawaii, 21–23 July 2015

  • Llamas MR, Martínez-Santos P (2005) Intensive groundwater use: silent revolution and potential source of social conflict. J Water Resour Plan Manag 131(5):337–341

    Article  Google Scholar 

  • Madani A, Niyazi B (2015) Groundwater potential mapping using remote sensing techniques and weights of evidence GIS model: a case study from Wadi Yalamlam basin, Makkah Province, Western Saudi Arabia. Environ Earth Sci 74:5129–5142

    Article  Google Scholar 

  • Magaia LA, Goto TN, Masoud AA, Koike K (2018) Identifying groundwater potential in crystalline basement rocks using remote sensing and electromagnetic sounding techniques in central western Mozambique. Nat Resour Res 27(3):275–298

    Article  Google Scholar 

  • Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front 3(2):198–196

    Article  Google Scholar 

  • Manap MA, Sulaiman WNA, Ramli MF, Pradhan B, Surip N (2013) A knowledge-driven GIS modeling technique for groundwater potential mapping at the upper Langat Basin, Malaysia. Arab J Geosci 6:1621–1637. https://doi.org/10.1007/s12517-011-0469-2

    Article  Google Scholar 

  • Mandal U, Sahoo S, Munusamy SB, Dhar A, Panda SN, Kar A, Mishra PK (2016) Delineation of groundwater potential zones of coastal Groundwater Basin using multi-criteria decision making technique. Water Resour Manag 30:4293–4310. https://doi.org/10.1007/s11269-016-1421-8

    Article  Google Scholar 

  • Manikandan J, Kiruthika AM, Sureshbabu S (2014) Evaluation of groundwater potential zones in Krishnagiri District, Tamil Nadu using MIF technique. Int J Innovative Res Sci Eng Technol 3(3):10524–10534

    Google Scholar 

  • Martín-Loeches M, Reyes-López J, Ramírez-Hernández J, Temiño-Vela J, Martínez-Santos P (2018) Comparison of RS/GIS analysis with classic mapping approaches for siting low-yield boreholes for hand pumps in crystalline terrains: an application to rural communities of the Caimbambo province, Angola. J Afr Earth Sci 138:22–31

  • Martínez-Santos P (2017) Does 91% of the world’s population really have “sustainable access to safe drinking water”? Int J Water Resour Dev. https://doi.org/10.1080/07900627.2017.1298517

  • Meijerink AMJ (1996) Remote sensing applications to hydrology: groundwater. Hydrol Sci J 41(4):549–561. https://doi.org/10.1080/02626669609491525

    Article  Google Scholar 

  • Meijerink AMJ (2007) Remote sensing applications to groundwater, IHP-VI, Series on Groundwater no. 16, UNESCO, Paris, 311 pp

  • Misi A, Gumindoga W, Hoko Z (2018) An assessment of groundwater potential and vulnerability in the upper Manyame sub-catchment of Zimbabwe. Phys Chem Earth 105:72–83

    Article  Google Scholar 

  • Mitchell TM (1997) Machine learning. McGraw-Hill , New York, 432 pp

  • Mogaji KA, Lim HS (2018) Application of Dempster-Shafer theory of evidence model to geoelectric and hydraulic parameters for groundwater potential zonation. NRIAG J Astron Geophys 7:134–148

    Article  Google Scholar 

  • Mohammadi Z, Alijani F, Rangzan K (2014) DEFLOGIC: a method for assessment of groundwater potential in karst terrains: Gurpi anticline, southwest Iran. Arab J Geosci 7:3639–3655. https://doi.org/10.1007/s12517-013-0958-6

    Article  Google Scholar 

  • Mohammadi-Behzad HR, Charchi A, Kalantari N, Nejad AM, Vardanjani HK (2018) Delineation of groundwater potential zones using remote sensing (RS), geographical information system (GIS) and analytic hierarchy process (AHP) techniques: a case study in the Leylia–Keynow watershed, southwest of Iran. Carbonates Evaporites. https://doi.org/10.1007/s13146-018-0420-7

  • Mokadem N, Boughariou E, Mudarra M, Ben Brahim F, Andreo B, Hamed Y, Bouri S (2018) Mapping potential zones for groundwater recharge and its evaluation in arid environments using a GIS approach: case study of North Gafsa Basin (central Tunisia). J Afr Earth Sci 141:107–117

    Article  Google Scholar 

  • Molina G, Gaber A, El-Baz F (2017) Mapping palaeolakes in the Ténéré Desert of northeastern Niger using space-borne data for groundwater potential. NRIAG J Astron Geophys 6:395–407

    Article  Google Scholar 

  • MWE (2012) Groundwater Potential Map. Uganda. Scale 1:1,100,000. Ministry of Water and Environment. Government of Uganda, Kampala

  • Nag SK (2005) Application of lineament density and hydrogeomorphology to delineate groundwater potential zones of Baghmundi block in Purulia district, West Bengal. J Indian Soc Remote Sens 33(4):521–529

    Article  Google Scholar 

  • Nag SK, Ghosh P (2012) Delineation of groundwater potential zone in Chhatna block, Bankura district, West Bengal, India using remote sensing and GIS techniques. Environ Earth Sci. https://doi.org/10.1007/s12665-012-1713-0

  • Naghibi SA, Pourghasemi HR, Dixon B (2015) GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess 188:44. https://doi.org/10.1007/s10661-015-5049-6

    Article  Google Scholar 

  • Naghibi SA, Moghaddam DD, Kalantar B, Pradhan B, Kisi O (2017) A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. J Hydrol 548:471–483

    Article  Google Scholar 

  • Nampak H, Pradhan B, Manap MA (2014) Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol 513:283–300

    Article  Google Scholar 

  • Nanda S, Annadurai R, Barik KK (2017) Geospatial decipherment of groundwater potential of Kattankolathur block of Tamil Nadu using MCDM techniques. Remote Sens Appl Soc Environ 8:240–250

    Google Scholar 

  • NASA (2018a) Remote Sensors. Earth Data website. National Aeronautics and Space Administration. https://earthdata.nasa.gov/user-resources/remote-sensors. Accessed July 15, 2018

  • NASA (2018b) Landsat 8 Bands. Landsat Science website. National Aeronautics and Space Administration. https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-bands/. Accessed July 15, 2018

  • Nasir MJ, Khan S, Zahid H, Khan A (2018) Delineation of groundwater potential zones using GIS and multi influence factor (MIF) techniques: a study of district swat, Khyber Pakhtunkhwa, Pakistan. Environ Earth Sci 77:367. https://doi.org/10.1007/s12665-018-7522-3

    Article  Google Scholar 

  • Ndou NN, Palamuleni LG, Ramoelo A (2017) Modelling depth to groundwater level using SEBAL-based dry season potential evapotranspiration in the upper Molopo River catchment, South Africa. Egypt J Remote Sens Space Sci. https://doi.org/10.1016/j.ejrs.2017.08.003

  • Nicolas M, Selles S, Bour O, Maréchal JC, Chandra S, Mohanty A, Ahmed MS (2017) Delineation of groundwater potential zones using non-invasive techniques to improve conceptual modelling of recharge in a non-instrumented weathered crystalline aquifer in South India. 43rd IAH Congress. Montpellier, France, December 2017

  • Nsiah E, Appiah-Adjei EK, Adjei KA (2018) Hydrogeological delineation of groundwater potential zones in the Nabogo basin, Ghana. J Afr Earth Sci 143:1–9

    Article  Google Scholar 

  • Odzemir A (2011a) GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J Hydrol 411:290–308

    Article  Google Scholar 

  • Odzemir A (2011b) Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey). J Hydrol 405:123–136

    Article  Google Scholar 

  • Oh HJ, Kim YS, Choi JK, Park E, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol 399:158–172

    Article  Google Scholar 

  • Oikonomidis D, Dimogianni S, Kazakis N, Voudouris K (2015) A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. J Hydrol 525:197–208

    Article  Google Scholar 

  • Omosuyi GO, Oseghale A, Bayode S (2013) Hydrogeophysical delineation of groundwater prospect zones at Odigbo, southwestern Nigeria. Academic Jo 8(15):596–608. https://doi.org/10.5897/SRE2013.5359

  • Panahi MR, Mousavi SM, Rahimzadegan M (2017) Delineation of groundwater potential zones using remote sensing, GIS, and AHP technique in Tehran–Karaj plain, Iran. Environ Earth Sci 76:792. https://doi.org/10.1007/s12665-017-7126-3

    Article  Google Scholar 

  • Parks S, Byrnes J, Abdelsalam MG, Dávila DAL, Atekwana EA, Atya MA (2017) Assessing groundwater accessibility in the Kharga Basin, Egypt: a remote sensing approach. J Afr Earth Sci 136:272–281

    Article  Google Scholar 

  • Patra S, Mishra P, Mahapatra SC (2018) Delineation of groundwater potential zone for sustainable development: a case study from ganga alluvial plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. J Clean Prod 172:2485–2502

    Article  Google Scholar 

  • Prasad RK, Mondal NC, Banerjee P, Nandakumar MV, Singh VS (2007) Deciphering potential groundwater zone in hard rock through the application of GIS. Environ Geol 55(3):467–475

    Article  Google Scholar 

  • Rahmati O, Melesse AM (2016) Application of Dempster–Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran. Sci Total Environ 568:1110–1123

    Article  Google Scholar 

  • Rao YS, Jugran DK (2004) Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS. Hydrol Sci J 48(5):821–833

    Google Scholar 

  • Ravi Shankar MN, Mohan G (2006) Assessment of the groundwater potential and quality in Bhatsa and Kalu river basins of thane district, western Deccan Volcanic Province of India. Environ Geol 49:990–998. https://doi.org/10.1007/s00254-005-0137-5

    Article  Google Scholar 

  • Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Services Sci 1(1):83–98

  • Saha R, Dey NC, Rahman S, Galagedara L, Bhattacharya P (2018) Exploring suitable sites for installing safe drinking water wells in coastal Bangladesh. Groundw Sustain Devel 7:91–100

    Article  Google Scholar 

  • Sahoo S, Das P, Kar A, Dhar A (2018) A forensic look into the lineament, vegetation, groundwater linkage: study of Ranchi District, Jharkhand (India). Remote Sens Appl Soc Environ 10:138–152

    Google Scholar 

  • Samadder RK, Kumar S, Gupta RP (2011). Paleochannels and their potential for artificial groundwater recharge in the western Ganga plains. J Hydrol 400(2011):154–164

  • Sander (2007) Lineaments in groundwater exploration: a review of applications and limitations. Hydrogeol J 15:71–74

    Article  Google Scholar 

  • Sander P, Chesley MM, Minor TB (1996) Groundwater assessment using RS and GIS in a rural groundwater project in Ghana: lessons learned. Hydrogeol J 4:40–49

    Article  Google Scholar 

  • Sander P, Minor TB, Chesley MM (1997) Groundwater exploration based on lineament analysis and reproducibility tests. Ground Water 35(5):888–894

    Article  Google Scholar 

  • Selvam S, Magesh NS, Chidambaram S, Rajamanickam M, Sashikkumar MS (2015) A GIS based identification of groundwater recharge potential zones using RS and IF technique: a case study in Ottapidaramtaluk, Tuticorin district, Tamil Nadu. Environ Earth Sci 73:3785–3799. https://doi.org/10.1007/s12665-014-36640

    Article  Google Scholar 

  • Sener E, Sener S, Davraz A (2018) Groundwater potential mapping by combining fuzzy-analytic hierarchy process and GIS in Beyşehir Lake Basin, Turkey. Arab J Geosci 11:187

    Article  Google Scholar 

  • Shahid S, Nath SK, Roy J (2000) Groundwater potential modelling in a soft rock area using a GIS. Int J Remote Sens 21(9):1919–1924. https://doi.org/10.1080/014311600209823

    Article  Google Scholar 

  • Shalev-Shwartz S, Ben-David S (2014) Understanding machine learning: from theory to algorithms. Cambridge University Press, Cambridge 449 pp

    Book  Google Scholar 

  • Shekhar S, Pandey AC (2014) Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto Int. https://doi.org/10.1080/10106049.2014.894584

  • Siddha S, Sahu P (2018) Assessment of groundwater potential of Gandhinagar region. Gujarat. J Geol Soc India 91:91–98

    Article  Google Scholar 

  • Simon N, Ali CA, Mohamed KR, Sharir K (2016) Best band ratio combinations for the lithological discrimination of the Dayang Bunting and Tuba Islands, Langkawi, Malaysia. Sains Malaysiana 45(5):659–667

    Google Scholar 

  • Singh LK, Jha MK, Chowdary VM (2018) Assessing the accuracy of GIS-based multi-criteria decision analysis approaches for mapping groundwater potential. Ecol Indicators 91:24–37

  • Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeol J 14:729–741

    Article  Google Scholar 

  • Sorensen R, Zinko U, Seibert J (2006) On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol Earth Syst Sci 10:101–112

    Article  Google Scholar 

  • Sternberg T, Paillou P (2015) Mapping potential shallow groundwater in the Gobi Desert using remote sensing: Lake Ulaan Nuur. J Arid Environ 118:21–27

    Article  Google Scholar 

  • Sultan SA, Essa KSAT, Khalil MH, El-Nahry AEH, Galal ANH (2017) Evaluation of groundwater potentiality survey in south Ataqa-northwestern part of Gulf of Suez by using resistivity data and site-selection modeling. NRIAG J Astron Geophys 6:230–243

    Article  Google Scholar 

  • Tahmassebipoor N, Rahmati O, Noormohamadi F, Lee S (2016) Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab J Geosci 9:79

    Article  Google Scholar 

  • Teeuw RM (1995) Groundwater exploration using remote sensing and a low-cost geographical information system. Hydrogeol J 3(3):21–30

    Article  Google Scholar 

  • Thapa R, Gupta S, Guin S, Kaur H (2017a) Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal. Appl Water Sci 7:4117–4131. https://doi.org/10.1007/s13201-017-0571-z

    Article  Google Scholar 

  • Thapa R, Gupta S, Gupta A, Reddy DV, Kaur H (2017b) Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India. Hydrogeol J 26:899–922

    Article  Google Scholar 

  • Tschritter, C, Westerhoff R, Rawlinson, Z, White P (2017). Aquifer classification and mapping at the national scale: phase 1—identification of hydrogeological units. GNS Science Rep 2016/51, GNS Science, Lower Hutt, New Zealand, 52 pp

  • UNESCO (2015) Water for a sustainable world. Facts and figures. The United Nations World Water Development Report 2015. United Nations World Water Assessment Programme Programme Office for Global Water Assessment, Division of Water Sciences, Perugia, Italy, 12 pp

  • Varade AM, Khare YD, Yadav P, Doad AP, Das S, Kanetkar M, Golekar RD (2018) ‘Lineaments’ the potential groundwater zones in hard rock area: a case study of basaltic terrain of WGKKC-2 watershed from Kalmeswar Tehsil of Nagpur District, Central India. J Indian Soc Remote Sens 46(4):539–549

    Article  Google Scholar 

  • Venkatesan V, Krishnaveni M, Karunakaran K, Ravikumar G (2010) GIS based multi-criteria analysis for assessment of groundwater potential and land suitability. Int J Earth Sci Eng 3(2):207–224

    Google Scholar 

  • Venkateswaran S, Ayyandurai R (2015) Groundwater potential zoning in upper Gadilam River basin. Tamil Nadu. Aquatic Procedia 4:1275–1282

    Article  Google Scholar 

  • Vias J, Andreo B, Perles M, Carrasco F (2005) A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ Geol 47:586–595

    Article  Google Scholar 

  • Vishwakarma J, Sinha MK, Verma MK, Ahmad I (2014) Application of remote sensing and GIS in groundwater prospect mapping. Int J Eng Res Technol 3(10):549–555

    Google Scholar 

  • Wendt L, Hilberg S, Rob J, Dirnberger D, Strasser T, Braun A (2016) Remote sensing in hydrogeology: a short summary of methods and constraints for groundwater exploration. Technical report, University of Salzburg and University of Tübingen, Germany, 57 pp

  • Xie Y, Sha Z, Yu M (2008) Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1(1):9–23

    Article  Google Scholar 

  • Xue J, Su B (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sensors. https://doi.org/10.1155/2017/1353691

  • Yeh HF, Cheng YS, Lin HI, Lee CH (2016) Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustain Environ Res 26:33–43

    Article  Google Scholar 

  • Younger P (2007) Groundwater in the environment: an introduction. Blackwell, Oxford, 318 pp

    Google Scholar 

Download references

Funding

This paper was prepared under research grant 2016/ACDE/1953 of the Agencia Española de Cooperación Internacional al Desarrollo. The second author received a Salvador de Madariaga grant from Spain’s Ministerio de Educación, Cultura y Deporte to carry out a 3-month research stay at the Université de Neuchâtel, where part of his paper was prepared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Martínez-Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Alcaide, S., Martínez-Santos, P. Review: Advances in groundwater potential mapping. Hydrogeol J 27, 2307–2324 (2019). https://doi.org/10.1007/s10040-019-02001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02001-3

Keywords

Navigation