Abstract
In the process of artificial recharge to remediate seawater intrusion, the disturbances that impact hydrogeochemistry and hydrodynamics lead to an abrupt change of permeability. When freshwater drives seawater, there is a critical salt concentration (CSC) and a critical flocculation concentration (CFC). When the salinity is lower than the CSC, the particles will release from the pore surfaces. When the salinity is higher than the CFC, flocculation will occur between the released clay particles. The CSC depends on the interaction force between the clay particles and the pore surface, and the CFC depends on the interaction force between the released clay particles. This study found the distinction between CSC and CFC through batch experiments and sand column experiments. The CFC of clay particles for a NaCl solution and a seawater/freshwater mixed solution were determined as 40 mmol/L (4,485 μS/cm) and 4,800 μS/cm, respectively, both lower than the CSC (60 mmol/L and 6,800 μS/cm, respectively), which shows that the released clay particles can be re-flocculated. The result was consistent with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical calculation. In this experiment, the flocculation of the released clay particles had a significant effect, by reducing the permeability. When the electrical conductivity was higher than the CFC, the clay particles concentration in the solution fell to about 20% of the initial concentration, and the permeability reduced with the decrease of electrical conductivity during the whole process. When the electrical conductivity was lower than the CFC (4,800 μS/cm), the permeability reduction of the porous medium was not obvious.
Résumé
Dans le processus de recharge artificielle pour remédier aux intrusions salines, les perturbations qui impactent l’hydrogéochimie et l’hydrodynamique entrainent des changements abrupts de perméabilité. Quand l’eau douce entraine l’eau de mer, il y a une concentration en sel critique (CSC) et une concentration de floculation critique (CFC). Lorsque la salinité est inférieure à la CSC, les particules seront libérées de la surface des pores. Quand la salinité est supérieure à la CFC, la floculation entre les particules d’argile libérées aura lieu. La CSC dépend de la force d’interaction entre les particules d’argiles et la surface du pore, et la CFC dépend de la force d’interaction entre les particules d’argile libérées. Cette étude a trouvé la distinction entre CSC et CFC au travers d’expériences batch et d’expériences en colonnes de sable. La CFC des particules d’argile pour une solution de NaCl et une solution mixte eau salée/eau douce ont été déterminées à 40 mmol/L (4,485 μS/cm) et 4,800 μS/cm, respectivement, les deux inférieures au CSC (60 mmol/L et 6,800 μS/cm, respectivement), ce qui montre que les particules d’argiles libérées peuvent de nouveau floculer. Ce résultat est cohérent avec le calcul théorique de Derjaguin-Landau-Verwery-Overbeek (DLVO). Dans cette expérience, la floculation des particules d’argile libérées eu un effet significatif en réduisant la perméabilité. Quand la conductivité électrique était supérieure au CFC, la concentration des particules d’argile en solution ont été réduite d’environ 20% de la concentration initiale, et la perméabilité a été réduite avec une augmentation de la conductivité électrique pendant tout le processus. Quand la conductivité électrique était inférieure au CFC (4,800 μS/cm), la réduction de la perméabilité du milieu poreux n’était pas évidente.
Resumen
En el proceso de recarga artificial para remediar la intrusión de agua de mar, las perturbaciones que afectan a la hidrogeoquímica y la hidrodinámica provocan un cambio brusco de permeabilidad. Cuando el agua dulce impulsa el agua de mar, existe una concentración crítica de sal (CSC) y una concentración crítica de floculación (CFC). Cuando la salinidad es menor que la del CSC, las partículas se liberan de las superficies de los poros. Cuando la salinidad es mayor que la del CFC, se produce una floculación entre las partículas liberadas de la arcilla. El CSC depende de la fuerza de interacción entre las partículas de arcilla y la superficie del poro, y el CFC depende de la fuerza de interacción entre las partículas liberadas de arcilla. Este estudio encontró la distinción entre CSC y CFC a través de experimentos por lotes y experimentos en columnas de arena. El CFC de las partículas de arcilla para una solución de NaCl y una solución de mezcla de agua de mar/agua dulce se determinó como 40 mmol/L (4,485 μS/cm) y 4,800 μS/cm, respectivamente, ambos más bajos que el CSC (60 mmol/L y 6,800 μS/cm, respectivamente), lo que demuestra que las partículas de arcilla liberadas pueden ser reflotadas. El resultado fue consistente con el cálculo teórico de Derjaguin-Landau-Verwey-Overbeek (DLVO). En este experimento, la floculación de las partículas de arcilla liberadas tuvo un efecto significativo, al reducir la permeabilidad. Cuando la conductividad eléctrica era superior a la del CFC, la concentración de partículas de arcilla en la solución descendía a cerca del 20% de la concentración inicial, y la permeabilidad se reducía con la disminución de la conductividad eléctrica durante todo el proceso. Cuando la conductividad eléctrica era inferior al CFC (4,800 μS/cm), la reducción de la permeabilidad del medio poroso no era evidente.
摘要
在人工回灌修复海水入侵的过程中,水化学和水动力学的扰动会导致渗透性的突变。在淡水驱替海水的过程中存在着临界盐浓度和临界絮凝浓度。当盐浓度低于临界盐浓度时,粘土颗粒会从孔隙表面释放。当盐浓度高于临界絮凝浓度时,被释放的粘土颗粒之间又会产生絮凝。临界盐浓度取决于粘土颗粒与孔隙表面之间的相互作用力,而临界絮凝浓度取决于被释放的粘土颗粒之间的相互作用力。本研究通过批量试验和砂柱试验发现了临界盐浓度和临界絮凝浓度之间的差异。粘土颗粒在NaCl溶液和海水/淡水混合溶液中的临界絮凝浓度分别为40 mmol/L (4,485 μS/cm) 和4,800 μS/cm,均低于粘土颗粒释放的临界盐浓度 (60 mmol/L和6,800 μS/cm),这说明释放后的粘土颗粒可以再絮凝。这一结果与DLVO理论计算值一致。在本试验中,释放后的粘土颗粒再絮凝对渗透性的降低具有显著效应。当电导率高于临界絮凝浓度时,流出液中粘土颗粒的浓度约降至初始浓度的20%,并且在整个过程中渗透性随着电导率的降低而降低。当电导率低于临界絮凝浓度 (4,800 μS/cm) 时,多孔介质的渗透性并没有明显降低。
Resumo
No processo de recarga artificial para remediar a intrusão da água do mar, as perturbações que impactam a hidrogeoquímica e a hidrodinâmica levam a uma mudança abrupta de permeabilidade. Quando a água doce conduz água do mar, há uma concentração salina crítica (CSC) e uma concentração crítica de floculação (CCF). Quando a salinidade é menor que a CSC, as partículas se libertarão das superfícies dos poros. Quando a salinidade é maior que a CCF, ocorrerá floculação entre as partículas de argila liberadas. O CSC depende da força de interação entre as partículas de argila e a superfície do poro, e oa CCF depende da força de interação entre as partículas de argila liberadas. Este estudo encontrou a distinção entre CSC e CCF através de experimentos em lotes e experimentos de coluna de areia. A CCF das partículas de argila para uma solução de NaCl e uma solução mista de água do mar / água doce foi determinado como 40 mmol / L (4,485 μS / cm) e 4,800 μS / cm, respectivamente, ambos abaixo do CSC (60 mmol / L e 6,800 μS / cm, respectivamente), o que mostra que as partículas de argila liberadas podem ser refloculadas. O resultado foi consistente com o cálculo teórico de Derjaguin-Landau-Verwey-Overbeek (DLVO). Neste experimento, a floculação das partículas de argila liberadas teve um efeito significativo, reduzindo a permeabilidade. Quando a condutividade elétrica foi maior que a CCF, a concentração de partículas de argila na solução caiu para cerca de 20% da concentração inicial, e a permeabilidade diminuiu com a diminuição da condutividade elétrica durante todo o processo. Quando a condutividade elétrica era menor que a da CCF (4,800 μS / cm), a redução da permeabilidade do meio poroso não era óbvia.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abadzic SD, Ryan JN (2001) Particle release and permeability reduction in a natural zeolite (clinoptilolite) and sand porous medium. Environ Sci Technol 35(22):4502–4508. https://doi.org/10.1021/es001868s
Bradford SA, Kim HN, Haznedaroglu BZ, Saeed T, Walker SL (2009) Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. Environ Sci 43(18):6996–7006. https://doi.org/10.1021/es900840d
Compère F, Porel G, Delay F (2001) Transport and retention of clay particles in saturated porous media: influence of ionic strength and pore velocity. J Contam Hydrol 49(1):1–21. https://doi.org/10.1016/S0169-7722(00)00184-4
Cuthbertson AJS, Samsami F, Dong P (2018) Model studies for flocculation of sand-clay mixtures. Coast Eng 132:13–32. https://doi.org/10.1016/j.coastaleng.2017.11.006
Dikinya O, Hinz C, Aylmore G (2008) Decrease in hydraulic conductivity and particle release associated with self-filtration in saturated soil columns. Geoderma 146(1):192–200. https://doi.org/10.1016/j.geoderma.2008.05.014
Fancher GH, Lewis JA (1933) Flow of simple fluids through porous materials. Ind Eng Chem 25(10):1139–1147. https://doi.org/10.1021/ie50286a020
Godinez IG, Darnault CJG, Khodadoust AP, Bogdan D (2013) Deposition and release kinetics of nano-TiO2 in saturated porous media: effects of solution ionic strength and surfactants. Environ Pollut 174:106–113. https://doi.org/10.1016/j.envpol.2012.11.002
Goldberg S, Glaubig RA (1987) Effect of saturating cation, pH, and aluminum and iron oxide on the flocculation of kaolinite and montmorillonite. Clay Clay Miner 35(3):220–227. https://doi.org/10.1346/CCMN.1987.0350308
Gregory J (1975) Interaction of unequal double layers at constant charge. J Colloid Interface Sci 51(1):44–51. https://doi.org/10.1016/0021-9797(75)90081-8
Gregory J (1981) Approximate expressions for retarded van der Waals interaction. J Colloid Interface Sci 83(1):138–145. https://doi.org/10.1016/0021-9797(81)90018-7
Jakovovic D, Werner AD, de Louw PGB, Post VEA, Morgan LK (2016) Saltwater upconing zone of influence. Adv Water Resour 94:75–86. https://doi.org/10.1016/j.advwatres.2016.05.003
Ketabchi H, Mahmoodzadeh D, Ataieashtiani B, Werner AD, Simmons CT (2014) Sea-level rise impact on fresh groundwater lenses in two-layer small islands. Hydrol Process 28(24):5938–5953. https://doi.org/10.1002/hyp.10059
Khilar KC, Fogler HS (1984) The existence of a critical salt concentration for particle release. J Colloid Interface Sci 101(1):214–224. https://doi.org/10.1016/0021-9797(84)90021-3
Lebron I, Suarez DL (1992) Variations in soil stability within and among soil types. Soil Sci Soc Am J 56(5):1412–1421. https://doi.org/10.2136/sssaj1992.03615995005600050014x
Liu X, Jiang X, Liu J, Li J, Li W (2017) The effect of the injection salinity and clay composition on aquifer permeability. Appl Therm Eng 118. https://doi.org/10.1016/j.applthermaleng.2017.02.098
Lu C, Chen Y, Zhang C, Luo J (2013) Steady-state freshwater–seawater mixing zone in stratified coastal aquifers. J Hydrol 505(21):24–34. https://doi.org/10.1016/j.jhydrol.2013.09.017
Lu C, Xin P, Kong J, Li L, Luo J (2016) Analytical solutions of seawater intrusion in sloping confined and unconfined coastal aquifers. Water Resour Res 52(9). https://doi.org/10.1002/2016WR019101
Lu C, Shi W, Xin P, Wu J, Werner AD (2017) Replenishing an unconfined coastal aquifer to control seawater intrusion: injection or infiltration? Water Resour Res 53. https://doi.org/10.1002/2016WR019625
Manga M, Beresnev I, Brodsky EE, Elkhoury JE, Elsworth D, Ingebritsen SE, Mays DC, Wang CY (2012) Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Rev Geophys 50(2). https://doi.org/10.1029/2011RG000382
Marion GM, Babcock KL (1976) Predicting specific conductance and salt concentration in dilute aqueous solutions. Soil Sci 122(4):181–187. https://doi.org/10.1097/00010694-197610000-00001
Masciopinto C (2013) Management of aquifer recharge in Lebanon by removing seawater intrusion from coastal aquifers. J Environ Manag 130(1):306–312. https://doi.org/10.1016/j.jenvman.2013.08.021
Mays DC (2010) Contrasting clogging in granular media filters, soils, and dead-end membranes. J Environ Eng 136(5):475–480. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000173
Mazzilli N, Guinot V, Jourde H (2010) Sensitivity analysis of two-dimensional steady-state aquifer flow equations: implications for groundwater flow model calibration and validation. Adv Water Resour 33(8):905–922. https://doi.org/10.1016/j.advwatres.2010.04.014
Mesticou Z, Kacem M, Dubujet P (2014) Influence of ionic strength and flow rate on silt particle deposition and release in saturated porous medium: experiment and modeling. Transp Porous Media 103(1):1–24. https://doi.org/10.1007/s11242-014-0285-8
Oude Essink GHP (2001) Improving fresh groundwater supply: problems and solutions. Ocean Coast Manag 44(5):429–449. https://doi.org/10.1016/S0964-5691(01)00057-6
Sadek H (1983) Walden product, Stokes’ law and water structure: a critical review. J Electroanal Chem:11–32. https://doi.org/10.1016/S0022-0728(83)80140-5
Sharma MM, Yortsos YC (1987) Transport of particulate suspensions in porous media: model formulation. AICHE J 33(10):1636–1643. https://doi.org/10.1002/aic.690331007
Sharma MM, Yortsos YC (2010) Transport of particulate suspensions in porous media: model formulation. AICHE J 33(10):1636–1643. https://doi.org/10.1002/aic.690331007
Singh A (2015) Managing the environmental problem of seawater intrusion in coastal aquifers through simulation–optimization modeling. Ecol Indic 48:498–504. https://doi.org/10.1016/j.ecolind.2014.09.011
Witteveen P, Ferrari A, Laloui LJG (2013) An experimental and constitutive investigation on the chemo-mechanical behaviour of a clay. Geotechnique 63(3):244–255. https://doi.org/10.1680/geot.SIP13.P.027
Zevi Y, Dathe A, Gao B, Zhang W, Richards BK, Steenhuis TS (2009) Transport and retention of colloidal particles in partially saturated porous media: effect of ionic strength. Water Resour Res 45(12):69–76. https://doi.org/10.1029/2008WR007322
Zhou J, Zheng X, Flury M, Lin G (2009) Permeability changes during remediation of an aquifer affected by sea-water intrusion: a laboratory column study. J Hydrol 376(3):557–566. https://doi.org/10.1016/j.jhydrol.2009.07.067
Zhou J, Lin G, Liu J, Zhang P, Lei G (2015) A laboratory column study on particles release in remediation of seawater intrusion region. J Ocean Univ China 14(6):1013–1018. https://doi.org/10.1007/s11802-015-2850-3
Zhou J, Qiu L, Lin G, Yan X, Chen X, Pang H (2016) Chemical mechanism of flocculation and deposition of clay colloids in coastal aquifers. J Ocean Univ China 15(5):847–852. https://doi.org/10.1007/s11802-016-3045-2
Funding
This work was supported by the Natural Science Foundation of Shandong Province, China (grant No. ZR2017LD007); and the Key Research and Development Project of Shandong Province, China (grant No. 2018GSF117016).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhou, J., You, X., Niu, B. et al. The flocculation process of released clay particles and its effect on the permeability of porous media. Hydrogeol J 27, 1827–1835 (2019). https://doi.org/10.1007/s10040-019-01949-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-019-01949-6
