Abstract
A hydro-economic approach for planning on-farm managed aquifer recharge is developed and demonstrated for two contiguous sub-basins in California’s Central Valley, USA. The amount and timing of water potentially available for recharge is based on a reoperation study for a nearby surface-water reservoir. Privately owned cropland is intermittently used for recharge with payments to landowners that compensate for perceived risks to crop health and productivity. Using all cropland in the study area would have recharged approximately 4.8 km3 (3,900 thousand acre-feet) over the 20-year analysis period. Limits to recharge effectiveness are expected from (1) temporal variability in recharge water availability, (2) variations in infiltration rate and few high-infiltration recharge sites in the study area, and (3) recharged water escaping from the study area groundwater system to surface water and adjacent sub-basins. Depending on crop tolerance to ponding depth, these limitations might be reduced by (1) raising berm heights on higher-infiltration-rate croplands and (2) creating dedicated recharge facilities over high-infiltration-rate sites.
Résumé
Une approche hydro-économique visant à planifier la recharge d’un aquifère gérée en plein champ a été conçue et appliquée au niveau de deux sous-bassins contigus dans la Vallée Centrale en Californie, Etats-Unis d’Amérique. La quantité et le moment où l’eau est potentiellement disponible pour la recharge sont définis à partir d’une étude de reconfiguration d’un réservoir d’eau de surface situé à proximité. Les terres cultivées sur des propriétés privées sont utilisées par intermittence pour la recharge, avec une indemnisation des propriétaires pour compenser les risques identifiés concernant l’état des cultures et leur productivité. En ayant recours à la totalité des terres cultivées de la zone d’étude permettrait une recharge d’environ 4.8 km3 (1,560 milliers d’hectares) au cours de la période d’analyse sur 20 ans. Des limites à l’efficacité de la recharge sont attendues (1) de la variabilité temporelle de la disponibilité en eau de recharge, (2) des variations du taux d’infiltration et du faible nombre de sites à forte recharge dans l’aire d’étude, et (3) des fuites de l’eau rechargée hors du système hydrogéologique vers les eaux de surface et les sous-bassins adjacents. En tenant compte de la tolérance des cultures à la hauteur d’inondation, ces limitations peuvent être réduites (1) en augmentant la hauteur des digues dans les terres cultivées à fort taux d’infiltration et (2) en créant des infrastructures de recharge dédiées pour les sites à fort taux d’infiltration.
Resumen
Se desarrolló y demostró un enfoque hidroeconómico para planificar la recarga de acuíferos administrados en fincas de dos subcuencas contiguas en el Valle Central de California, EEUU. La cantidad y el tiempo del agua potencialmente disponible para la recarga se basan en un estudio de reoperación para un embalse de agua superficial cercano. Las tierras de cultivo de propiedad privada se utilizan de forma intermitente para la recarga con pagos a los propietarios de la tierra que compensan los riesgos percibidos para la salud y la productividad de los cultivos. El uso de todas las tierras de cultivo en el área de estudio se habría recargado aproximadamente 4.8 km3 (3,900 mil acres-pie) durante el período de análisis de 20 años. Se esperan límites para la efectividad de la recarga a partir de (1) variabilidad temporal en la disponibilidad de agua de recarga, (2) variaciones en la tasa de infiltración y pocos sitios de recarga de alta infiltración en el área de estudio, y (3) agua recargada que se escapa del sistema de agua subterránea del área de estudio al agua superficial y subcuencas adyacentes. Dependiendo de la tolerancia del cultivo a la profundidad del embalse, estas limitaciones podrían reducirse en (1) elevando las alturas de los terraplenes en las tierras de cultivo con mayor índice de infiltración y (2) creando instalaciones de recarga dedicadas en los sitios con alto índice de infiltración.
摘要
在美国加州中央谷的两个相邻的子盆地,开发并论证了一种规划农田管理含水层补给的水文经济方法。可供补充的水量和时间是根据附近地表水水库的再运行研究确定的。私人拥有的农田被间歇性地用于向土地所有者支付补偿,以补偿作物健康和生产力可能面临的风险。在20年的分析期间,使用研究地区的所有耕地将补充约4.8 km3(390万英亩-英尺)。研究区补水有效性的限制包括:(1)补水有效性的时间变异性;(2)研究区入渗速率的变化和高入渗补水点较少;(3)从研究区地下水系统向地表水及邻近亚盆地补水。根据作物对积水深度的耐受性,这些限制可以通过以下措施来降低:(1)在入渗率较高的农田上提高护堤高度;(2)在入渗率较高的土地上建立专用的补给设施。
Resumo
Uma abordagem hidro-econômica para o planejamento da recarga de aquíferos gerenciados na fazenda é desenvolvida e demonstrada para duas subacias contíguas no Vale Central da Califórnia, EUA. A quantidade e o tempo da água potencialmente disponível para recarga é baseado em um estudo de reoperação para um reservatório de água de superfície próximo. As terras de propriedade privada são utilizadas de forma intermitente para recarregar com pagamentos a proprietários de terras que compensam os riscos percebidos para a saúde e a produtividade das culturas. O uso de todas as terras cultiváveis na área de estudo teria recarregado aproximadamente 4.8 km3 (3,900 mil acres) ao longo do período de análise de 20 anos. Os limites para a efetividade da recarga são esperados de (1) variabilidade temporal na disponibilidade de água de recarga, (2) variações na taxa de infiltração e poucos locais de recarga de alta infiltração na área de estudo, e (3) água recarregada escapando do sistema de águas subterrâneas da área de estudo para águas superficiais e subacias adjacentes. Dependendo da tolerância da cultura à profundidade das represas, essas limitações podem ser reduzidas por (1) elevação das alturas de barragens em terras de alta taxa de infiltração e (2) criação de instalações de recarga dedicadas em locais de alta taxa de infiltração.
Similar content being viewed by others
References
Afshar A, Zahrael A, Marino MA (2010) Large-scale nonlinear conjunctive use optimization problem: decomposition algorithm. J Water Resour Plan Manag 136(1):59–71. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:1(9)
Ahlfeld DP, Mulligan AE (2000) Optimal management of flow in groundwater systems. Academic, San Diego
Ascott MJ, Gooddy DC, Wang L, Stuart ME, Lewis MA, Ward RS, Binley AM (2017) Global patterns of nitrate storage in the vadose zone. Nat Commun 8:1416. https://doi.org/10.1038/s41467-017-01321-w
Bachand PAM, Roy SB, Choperena J, Cameron D, Horwath WR (2014) Implications for using on-farm flood flow capture to recharge groundwater and mitigate flood risks along the Kings River, CA. Environ Sci Technol 48(23):13601–13609. https://doi.org/10.1021/es501115c
Bachand PAM, Roy SB, Stern N, Choperena J, Cameron D, Horwath WR (2016) On-farm flood capture could reduce groundwater overdraft in Kings River Basin. Calif Agric 70(4):200–207. https://doi.org/10.3733/ca.2016a0018
Barlow PM, Leakey SA (2012) Streamflow depletion by wells – understanding and managing the effects of groundwater pumping on streamflow. US Geol Surv Circ 1376
Barlow PM, Reichard EG (2010) Saltwater intrusion in coastal regions of North America. Hydrogeol J 18(2):247–260. https://doi.org/10.1007/s10040-009-0514-3
Bertoldi GL, Johnston RH, Evenson KD (1991) Ground water in the Central Valley, California: a summary report. US Geol Surv Prof Pap 1401-A
Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10(1):153–179. https://doi.org/10.1007/s10040-001-0183-3
Bouwer H (2000) Integrated water management: emerging issues and challenges. Agric Water Manag 45(3):217–228. https://doi.org/10.1016/S0378-3774(00)00092-5
Brush CF, Dogrul EC, Kadir TN (2013) Development and calibration of the California Central Valley Groundwater-Surface Water Simulation Model (C2VSim), Version 3.03-CG. California Department of Water Resources. http://baydeltaoffice.water.ca.gov/modeling/hydrology/C2VSim/download/C2VSim_Model_Report_2016-03_vR374.pdf. Accessed 1 April 2018
CADWR (2016) Basin boundary modifications. California Department of Water Resources. https://www.water.ca.gov/Programs/Groundwater-Management/Bulletin-118/Basin-Boundary-Modifications. Accessed 30 March 2018
CADWR (2018a) Sustainable groundwater management website. California Department of Water Resources. California Department of Water Resources. https://www.water.ca.gov/Programs/Groundwater-Management/SGMA-Groundwater-Management/. Accessed 31 March 2018
CADWR (2018b) Water available for replenishment. California Department of Water Resources. https://www.water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-Management/Data-and-Tools/Files/Statewide-Reports/WAFR/Final/Water-Available-for-Replenishment%2D%2D-Final-Report.pdf. Accessed 20 April 2018
CADWR (2018c) Flood-MAR: using flood water for managed aquifer recharge to support sustainable water resources, white paper—discussion draft. California Department of Water Resources. https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/All-Programs/Flood-MAR/DWR_FloodMAR-White-Paper_06_2018_updated.pdf?la=en&hash=350DBD68452230C5CF1706C3E8EB1E3E3E613C2. Accessed 23 October 2018
CADWR (2018d) Land use viewer. California Department of Water Resources. https://gis.water.ca.gov/app/CADWRLandUseViewer/ Accessed 29 Dec 2018
CADWR (2018e) Groundwater information center interactive map application. California Department of Water Resources. https://gis.water.ca.gov/app/gicima/. Accessed 29 Dec 2018
Cia X, McKinney DC, Lasdon LS (2001) Solving nonlinear water management models using a combined genetic algorithm and linear programming models. Adv Water Resour 24:667–676. https://doi.org/10.1016/S0309-1708(00)00069-5
Dahlke HE, Brown AG, Orloff S, Putnam D, O’Geen T (2018) Managed winter flooding of alfalfa recharges groundwater with minimal crop damage. Calif Agric 72(1):65–75. https://doi.org/10.3733/ca.2018a0001
Dillon PJ, Pavelic P, Page D, Beringen H, Ward J (2009) Managed aquifer recharge, an introduction. Australia National Water Commission Waterlines Report Series 13, Australia NWC, Canberra, Australia
Dokoozlian NK, Petrucci VE, Ayars JE, Clary CD, Schoneman RA (1987) Artificial ground water recharge by flooding during grapevine dormancy. J Am Water Resour Assoc 23(2):307–311
Döll P, Schmied HM, Schuh C, Portmann FT, Eicker A (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50:5698–5720. https://doi.org/10.1002/2014WR015595
Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:L03403. https://doi.org/10.1029/2010GL046442
Farr TG, Jones C, Liu Z (2015) Progress report: subsidence in the Central Valley, California. Prepared for the California Department of Water Resources. http://water.ca.gov/groundwater/docs/NASA_REPORT.pdf. Accessed 5 July 2017
Faunt CC (ed) (2009) Groundwater availability of the Central Valley Aquifer, California. US Geol Surv Prof Pap 1766
Fogg GE, Carle SF, Green C (2000) Connected-network paradigm for the alluvial aquifer system. In: Zhang D, Winter CL (eds) Theory, modeling and field investigation in hydrogeology: a special volume in honor of Shlomo P. Neuman’s 60th Birthday. Geological Society of America Special Paper 348, GSA, Boulder, CO, pp 25–42
Foster SSD, Chilton PJ (2003) Groundwater: the processes and global significance of aquifer degradation. Philos Trans R Soc B 358(1440):1957–1972. https://doi.org/10.1098/rstb.2003.1380
Gailey RM (2013) Comments on hydrogeologic points of concern for the Kern River Watershed Coalition Authority area regarding Monitoring and Reporting Program Tentative Order R5–2013-XXXX waste discharge requirements general order for growers within the Tulare Lake Basin area that are members of third-party group. LLP Counsel for Kern River Watershed Coalition Authority. http://www.itrc.org/swrcb/Files/Gailey%20Comments%20on%20Hydrogeologic%20Points%20of%20Concern%202013%20.pdf. Accessed 5 April 2018
Gale I (ed) (2005) Strategies for managed aquifer recharge (MAR) in semi-arid areas. United Nations Educational, Scientific and Cultural Organization, Paris
Geoffrion AM (1972) Generalized benders decomposition. J Optim Theory Appl 10(4):237–260
GFSAD30 (2017) Global food security analysis: support data at 30 meters (GFSAD30) project. https://www.croplands.org/app/map/finalmaps#Mosaic. Accessed 28 March 2018
Goharian E, Gailey R, Medellin-Azuara J, Maples S, Adams LE, Sandoval-Solis S, Fogg GE, Dahlke HE, Harter T, Lund JR (2016) Whole watershed management to maximize total water storage: case study of the American-Cosumnes River Basin. American Geophysical Union Fall Meeting, San Francisco, CA, December 2016
Gorelick SM, Freeze RA, Donohue D, Keely JF (1993) Groundwater contamination, optimal capture and containment. Lewis, Boca Raton, FL
Green CT, Fisher LH, Bekins BA (2008) Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States. J Environ Qual 37(3):1073–1085. https://doi.org/10.2134/jeq2007.0010
Hanak E, Jezdimirovic J, Green S, Escriva-Bou A (2018) Replenishing groundwater in the San Joaquin Valley. Public Policy Institute of California. http://www.ppic.org/wp-content/uploads/r-0417ehr.pdf. Accessed 20 April 2018
Hao Q, Shao J, Cui Y, Zhang Q, Huang L (2018) Optimization of groundwater artificial recharge systems using a genetic algorithm: a case study in Beijing, China. Hydrogeol J. https://doi.org/10.1007/s10040-018-1781-7
Harter T (2015) California’s agricultural regions gear up to actively manage groundwater use and protection. Calif Agric 69(3):193–201. https://doi.org/10.3733/ca.E.v069n03p193
Harter T, Dahlke H (2014) Out of sight but not out of mind: California refocuses on groundwater. Calif Agric 68(3):54–44. https://doi.org/10.3733/ca.v068n03p54
Harter T, Lund JR (2012) Addressing nitrate in California’s drinking water with a focus on Tulare Lake Basin and Salinas Valley groundwater. Prepared for California State Water Resources Control Board by University of California Davis Watershed Sciences Center. http://groundwaternitrate.ucdavis.edu/. Accessed 5 April 2018
Hersh-Burdick R (2008) Effects of groundwater management strategies on the greater Sacramento water supply. MSc Thesis, University of California Davis. https://watershed.ucdavis.edu/shed/lund/students/HershBurdickThesis.pdf. Accessed 31 March 2018
Howell TA (2001) Enhancing water use efficiency in irrigated agriculture. Agron J 93(2):281–289. https://doi.org/10.2134/agronj2001.932281x
Jurgens BC, Fram MS, Belitz K, Burow KR, Landon MK (2010) Effects of groundwater development on uranium: Central Valley, California, USA. Ground Water 48(6):913–928. https://doi.org/10.1111/j.1745-6584.2009.00635.x
Kiparsky M, Fisher AT, Hanemann MW, Bowie J, Kantor R, Coburn C, Lockwood B (2018) Recharge net metering to enhance groundwater sustainability. Center for Law, Energy & the Environment, UC Berkeley School of Law, Berkeley, CA. https://www.law.berkeley.edu/wp-content/uploads/2018/04/CLEE_ReNeM_IssueBrief.pdf. Accessed 20 April 2018
Kocis TN, Dahlke HE (2017) Availability of high-magnitude streamflow for groundwater banking in the Central Valley, California. Environ Res Lett 12(8):084009. https://doi.org/10.1088/1748-9326/aa7b1b
Konikow LF (2013) Groundwater depletion in the United States (1900–2008). US Geol Surv Sci Invest Rep 2013–5079
Liao L, Green CT, Bekins BA, Böhlke JK (2012) Factors controlling nitrate fluxes in groundwater in agricultural areas. Water Resour Res 48(6):W00L09. https://doi.org/10.1029/2011WR011008
Maples SR, Fogg GE, Maxwell RM, Liu Y (2017) Transitioning groundwater from an extractive resource to a managed water storage resource: geology and recharge in sedimentary basins. American Geophysical Union Fall Meeting, San Francisco, CA, December 2016
Marques GF, Lund JR, Howitt RE (2010) Modeling conjunctive use operations and farm decisions with two-stage stochastic quadratic programming. J Water Resour Plan Manag 136(3):386–394. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000045
McMahon PB, Dennehy KF, Bruce BW, Böhlke JK, Michel RL, Gurdak JJ, Hurlbut DB (2006) Storage and transit time of chemicals in thick unsaturated zones under rangeland and irrigated cropland, High Plains, United States. Water Resour Res 42(3):W03413. https://doi.org/10.1029/2005WR004417
Miller K, Nylen NG, Doremus H, Owen D, Fisher AT (2018) When is groundwater recharge a beneficial use of surface water in California? UC Berkeley School of Law, Berkeley, CA. https://www.law.berkeley.edu/wp-content/uploads/2018/08/CLEE_RechargingGroundwater_BeneficialUse-2.pdf. Accessed 20 Aug 2018
Moran T, Choy J, Sanchez C (2014) The hidden costs of groundwater overdraft: understanding California’s groundwater. Stanford Water in the West. http://waterinthewest.stanford.edu/groundwater/overdraft/. Accessed 5 July 2017
Mushtaq H, Mays LW, Lansey KE (1994) Optimum operation of recharge basins. J Water Resour Plan Manag 120(6):927–943. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:6(927)
Niswonger RG, Morway ED, Triana E, Huntington JL (2017) Managed aquifer recharge through off-season irrigation in agricultural regions. Water Resour Res 53(8):6970–6992. https://doi.org/10.1002/2017WR020458
O’Geen AT, Saal MBB, Dahlke H, Döll D, Elkins R, Fulton A, Fogg G, Harter T, Hopmans JW, Ingels C, Niederholzer F, Sandoval-Solis S, Verdegaal P, Walkinshaw M (2015) Soil suitability index identifies potential areas for groundwater banking on agricultural lands. Calif Agric 69(2):75–84. https://doi.org/10.3733/ca.v069n02p75
Perrone DD, Rhode MM (2016) Benefits and economic costs of managed aquifer recharge in California. San Franc Estuary Water Sci Sci 14(2):1–13. https://doi.org/10.15447/sfews.2016v14iss2art4
Portmann F, Siebert S, Döll P (2010) MIRCA2000: global monthly irrigated and rainfed crop areas around the year 2000—a new high-resolution dataset for agricultural and hydrological modeling. Glob Biogeochem Cycles 24:GB1011. https://doi.org/10.1029/2008GB003435
RBI/WRIME (2011) South basin groundwater management plan. South Area Water Council, Sacramento, CA
Reilly TE, Franke OL, Bennett GD (1987) The principle of superposition and its application in ground-water hydraulics. US Geological Survey Techniques of Water-Resources Investigations, book 3: Applications of hydraulics, chap B6. https://pubs.usgs.gov/twri/twri3-b6/pdf/twri_3-B6_a.pdf. Accessed 5 April 2018
RMC (2014) Groundwater and stream interaction in California’s Central Valley: insights for sustainable groundwater management. The Nature Conservancy. https://www.scienceforconservation.org/assets/downloads/GroundwaterStreamInteraction_2016.pdf. Accessed 31 March 2018
RMC (2015) Creating an opportunity: groundwater recharge through winter flooding of agricultural land in the San Joaquin Valley. The California Water Foundation. http://californiawaterfoundation.org/wp-content/uploads/2015/09/Creating%20an%20Opportunity%20On%20Farm%20Recharge%20Final%20Full%20Report%20(00306327xA1C15).pdf. Accessed 31 March 2018
Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impacts of land use and land cover change on groundwater recharge and quality in southwestern US. Glob Chang Biol 11(10):1577–1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x
Scanlon BR, Reedy RC, Faunt CC, Pool D, Uhlman K (2016) Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ Res Lett 11:035013. https://doi.org/10.1088/1748-9326/11/3/035013
Schmidt CM, Fisher AT, Racz A, Wheat CG, Los Huertos M, Lockwood B (2012) Rapid nutrient load reduction during infiltration of managed aquifer recharge in an agricultural groundwater basin: Pajaro Valley, California. Hydrol Process 26(15):2235–2247. https://doi.org/10.1002/hyp.8320
Singh A (2014) Simulation-optimization modeling for conjunctive water use management. Agric Water Manag 141:23–29. https://doi.org/10.1016/j.agwat.2014.04.003
Sneed M, Brandt J, Solt M (2013) Land subsidence along the Delta-Mendota canal in the northern part of the San Joaquin Valley, California 2003-10. US Geol Surv Sci Invest Rep 2013–5142
Tindula GN, Orang MN, Snyder RL (2013) Survey of irrigation methods in California in 2010. J Irrig Drain Eng 139(3):233–238. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000538
UNESCO (2012) Managing water under uncertainty and risk, United Nations world water development report 4, vol 1. United Nations Educational, Scientific and Cultural Organization, Paris. http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4-2012/. Accessed 28 March 2018
UNESCO (2015) Water for a sustainable world, United Nations world water development report 2015. United Nations Educational, Scientific and Cultural Organization, Paris. http://unesdoc.unesco.org/images/0023/002318/231823E.pdf. Accessed 28 March 2018
USGS (2017) Drought impacts website. United States Geological Survey. https://ca.water.usgs.gov/data/drought/drought-impact.html. Accessed 5 July 2017
Wada Y, van Beek LPH, Bierkens MFP (2012) Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour Res 48(6):W00L06. https://doi.org/10.1029/2011WR010562
Wagner HM (1969) Principles of operations research. Prentice-Hall, Englewood Cliffs, NJ
Walvoord MA, Phillips FM, Stonestrom DA, Evans RD, Hartsough PC, Newman BD, Striegl RG (2003) A reservoir of nitrate beneath desert soils. Science 302(5647):1021–1024. https://doi.org/10.1126/science.1086435
Weissmann GS, Zhang Y, Fogg GE, Mount JF (2004) Influence of incised-valley fill deposits on hydrogeology of stream-dominated alluvial fan. In: Bridges JS, Hyndman DW (eds) Aquifer characterization. SEPM vol 80, SEPM, Tulsa, OK, pp 15–28
World Bank (2018) World Bank open data. https://data.worldbank.org/indicator/AG.LND.AGRI.K2?end=2015&start=2015&view=map. Accessed 28 March 2018
Acknowledgements
Yueyue Fan, Thomas Harter and three anonymous reviewers are appreciatively acknowledged for editorial and technical comments that improved this manuscript. This work was supported by the UC Office of the President’s Multi-Campus Research Programs and Initiatives (MR-15-328473) through UC Water, the University of California Water Security and Sustainability Research Initiative.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Details regarding formulation of the linear programming model are presented in the following sections.
Ponded water drainage
The upper bound for recharge water applied is specified as Eqs. (4, 16 and 28) and based on a requirement that water ponded on the field not overtop an assumed perimeter berm of height HB. A series of steps are taken to develop an expression for the maximum allowable recharge volume.
An ordinary differential equation and initial condition for water mass balance in a recharge pond during filling is formulated and solved:
where:
- A :
-
is the ponding area
- h :
-
is the ponding depth
- t :
-
is time
- Q :
-
is the rate of inflow
- I :
-
is the reference rate ponded water infiltrates the subsurface
- H 0 :
-
is ponding depth associated with I
The quantity (I/H0) in Eq. (33) normalizes the infiltration rate by the ponding depth used to estimate the quantities summarized in Fig. 7 (Maples et al. 2017; S. Maples, Hydrologic Sciences Graduate Group, University of California Davis, unpublished manuscript, 2018) and allows scaling by h to simulate variation in infiltration rate with ponding depth. Evaporation is not considered in the pond mass balance because recharge operations are considered during the winter when evaporative losses are expected to be small.
Filling the pond at a constant rate until the maximum ponding depth is reached at a specified time is represented by substituting h = HB, Q = Qmax and t = T into Eq. (35). Rearrangement yields:
An ordinary differential equation for water mass balance in a recharge pond during draining is formulated and solved for the general condition:
Substituting t = t – T into Eq. (38) so that Eqs. (35) and (38) initiate at the same time and rearranging yields:
Equating Eqs. (35) and (39) at time t = T, solving for K and substituting into Eq. (39) yields:
Substituting Eq. (36) for Q and rearranging yields an expression for filling to time T and then draining thereafter:
Assume that the pond must be filled and drained within 1 month to allow operational flexibility such that the land could be used for purposes other than recharge during the following month. A 1-month filling and draining cycle is represented by introducing a terminal boundary condition for Eq. (41): h(1) = ɛ HB, where ɛ is a small increment. Solving for T yields:
Substituting Eq. (42) into Eq. (41) and the result into Eq. (36) yields an expression for Qmax:
Multiplying this expression for Qmax by the Eq. (42) for T results in an expression for the maximum recharge volume that can be added to a pond in a single month:
Equation (44) is based on an infiltration rate derived for water ponded on the deeper geologic materials. Because a lower hydraulic conductivity soil overlays the geology, the expression is scaled by a factor that accounts for the effective vertical hydraulic conductivity of the layered porous medium:
where:
- K eff :
-
is the effective vertical hydraulic conductivity calculated as the harmonic mean of the conductivities of the soil and geologic layers
- K geol :
-
is the averaged vertical hydraulic conductivity of the deeper geologic materials (Maples et al. 2017; S. Maples, Hydrologic Sciences Graduate Group, University of California Davis, unpublished manuscript, 2018)
- K soil :
-
is the vertical hydraulic conductivity of the soil (taken as 3 × 10−2 ft/day, or 10−5 cm/s, based on Brush et al. 2013)
- b geol :
-
is the thickness of the unsaturated zone in the geologic materials (Maples et al. 2017; S. Maples, Hydrologic Sciences Graduate Group, University of California Davis, unpublished manuscript, 2018)
- b soil :
-
is the thickness of the soil layer (taken as 1 ft or 0.3 m)
Applying the scaling factor to Eq. (44) yields the general expression used for Eq. (4).
Dividing Eq. (47) by A yields a general expression for the maximum recharge depth that can be added to a pond in a single month. This is used for Eqs. (16) and (28).
The formulation is somewhat sensitive to the value chosen for ɛ with smaller values reducing the upper bound. Using a value of 0.01 appeared reasonable for this analysis. Finally, the assumed 1-month filling and drainage cycle could be adjusted by extending the approach described here to simulate pulsed flooding for crop root health (Dahlke et al. 2018).
Groundwater elevation calculation
The upper bound on groundwater elevation is specified as Eqs. (6), (18 and (30) based on ground surface elevation and an assumed required freeboard to avoid waterlogging of soil. This consideration can be important for down-flow parts of basin where recharge might not be applied but water levels may rise as a result of recharge water redistribution by means of groundwater flow (Niswonger et al. 2017). The groundwater elevation itself is based on a linearized representation of groundwater head response to addition of water to the system at a particular location and time (Reilly et al. 1987; Gorelick et al. 1993; Ahlfeld and Mulligan 2000). The representation is most accurate for confined systems but works well for unconfined conditions when the head change in response to the addition of water is small relative to the saturated thickness, as is the case for this work.
The groundwater simulation model used in this work (coarse-grid version of C2VSim; Brush et al. 2013) was manipulated to generate the background groundwater heads (H) as well as the mounding responses (M) for the control locations. The background heads were based on running the original model. Information for M was generated through a series of steps: (1) altering the model by stripping out all unmanaged hydrologic stresses, (2) making a suite of runs with the altered model separately simulating a managed stress for each potential recharge location using a unit recharge volume (RVu) in the first time step of the model, (3) running the altered model once with no managed stresses and (4) calculating the differences in heads at control locations between the runs from steps 2 and 3. The resulting information for M is a set of vectors containing transient mounding responses at each control location for each potential recharge location. The vectors are then arranged in tableaus as described by Gorelick et al. (1993) to create a matrix M for each control location.
The information developed for M is used as a groundwater elevation simulator that represents increases in elevation over time as a linear combination of responses to monthly recharge volumes. The responses (1) are produced by recharge events simulated for single time steps in any model element within the study area and any time step over the planning horizon, (2) scale with the magnitude of recharge volume and (3) can be summed to simulate combinations of recharge events over space and time.
Reformulation of Lagrange multiplier for berm height
A generalized form of constraint Eq. (28) is as follows:
When this constraint is binding in the linear programming solution, the Lagrange multiplier will be non-zero and indicate the change in the optimal value of the objective function for an increase of 1 in the right-hand side (RHS). If HB in Eq. (49) were increased by 1, the RHS would increase by [Kscale (I/H0 + ln{ɛ})]/[1 – e–(It/H0 + ln{ɛ})]. Multiplying the Lagrange multiplier value from Eq. (49) by this quantity converts the original linear programming result, Lagrange multiplier for Eq. (49), into a Lagrange multiplier for HB. Summing the converted Lagrange multipliers for each model element over all time steps in the planning horizon provides a location-specific estimate for total increase in recharge over the planning horizon for a unit increase in berm height.
Rights and permissions
About this article
Cite this article
Gailey, R.M., Fogg, G.E., Lund, J.R. et al. Maximizing on-farm groundwater recharge with surface reservoir releases: a planning approach and case study in California, USA. Hydrogeol J 27, 1183–1206 (2019). https://doi.org/10.1007/s10040-019-01936-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-019-01936-x